
 1 

Development of Novel Methods for QSAR 

Modeling by Machine Learning Repeatedly: A Case 

Study on Drug Distribution to Each Tissue 

Koichi Handa1, *, Saki Yoshimura1, Michiharu Kageyama1, and Takeshi Iijima1 

1Toxicology&DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin 

Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan 

KEYWORDS 

AI, QSAR, machine learning, tissue-to-plasma partition coefficient, Kp, random forest, message 

passing neural network, missing values, NA, classification of tissues. 

 

  

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2 ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 2 

Abstract 

AI is expected to help identify excellent candidates in drug discovery. However, we face a lack of 

data as it is time consuming and expensive to acquire raw data perfectly for many compounds. 

Hence, we tried to develop a novel QSAR method to predict a parameter more precisely from an 

incomplete dataset via optimizing data handling by making use of predicted explanatory variables. 

As a case study we focused on the tissue-to-plasma partition coefficient (Kp), which is an 

important parameter for understanding drug distribution in tissues and building the physiologically 

based pharmacokinetic (PBPK) model, is a representative of small and sparse datasets. In this 

study, we predicted the Kp values of 119 compounds in nine tissues (adipose, brain, gut, heart, 

kidney, liver, lung, muscle, and skin), while some of these were not available. To fill the missing 

values in Kp for each tissue, firstly we predicted those Kp values by the non-missing dataset using 

a random forest (RF) model with in vitro parameters (log P, fu, Drug Class, and fi) like a classical 

prediction by a QSAR model. Next, to predict the tissue-specific Kp values in a test dataset, we 

constructed a second RF model with not only in vitro parameters but also the Kp values of other 

tissues (i.e. other than target tissues) predicted by the first RF model as explanatory variables. 

Furthermore, we tested all possible combinations of explanatory variables and selected the model 

with the highest predictability from the test dataset as the final model. The evaluation of Kp 

prediction accuracy based on the root-mean-square error and R2-value revealed that the proposed 

models outperformed other machine learning methods, such as the conventional RF and message-

passing neural networks. Significant improvements were observed in the Kp values of adipose 

tissue, brain, kidney, liver, and skin. These improvements indicated that the Kp information of 

other tissues can be used to predict the same for a specific tissue. Additionally, we found a novel 

relationship between each tissue by evaluating all combinations of explanatory variables. In 
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conclusion, we developed a novel RF model to predict Kp values. We hope that this method will 

be applied to various problems in the field of experimental biology which often contains missing 

values in the near future. 
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Introduction 

Pharmacokinetics (PK) research is crucial in developing new drugs, from searching for seed 

compounds to conducting clinical trials1. In general, the parameters significantly affecting the 

blood concentration profile of a drug are volume of distribution (Vd), which quantifies the 

distribution of the drug inside the human body, and total body clearance (CLtot), which shows the 

drug processing capacity of the entire body2. However, these parameters only reveal the drug’s 

exposure to the blood (or plasma). From the viewpoint of the PK/PD concept, more direct 

information is often obtained from the unbound concentrations in target tissues3. Physiologically 

based pharmacokinetics (PBPK) modeling has been used to predict drug concentration in target 

tissues. The U.S. Food and Drug Administration (FDA), along with the European Medicines 

Agency (EMA), announced and released the availability of their guidance documents for the PBPK 

model4,5. Consequently, when submitting a new drug application (NDA), researchers can use the 

PBPK model to explain the various PK concerns. Based on survey, over 20 PBPK models of drugs 

have been submitted to the FDA and/or EMA, 80% of which were accepted by 20186. The PBPK 

model has various utilities, including predicting drug concentration-time profile and PK 

parameters, DDI magnitude, effect on special populations (e.g., pediatrics, elderly, and pregnancy), 

bioequivalence, and food effect7. The PBPK model consists of organ compartments with specific 

volumes and blood flow rates connected by the circulatory system. 

Tissue-to-plasma partition coefficient (Kp) is one of the most important parameters in PBPK 

modeling. It is the ratio of the drug concentration in the tissue to that in plasma, representing the 

amount of drug transferred to or retained in the tissue. Kp is used in a perfusion-limited model, the 

limiting process of which is the blood flow to the tissue. Here, Kp divides the drug concentration 

in a tissue to produce the plasma concentration (also blood concentration using Rb), which returns 
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to the blood system, and differential equations can be used to account for it8. The guidelines of 

drug regulatory authorities suggest distribution studies in animals, such as rats and monkeys (i.e., 

Kp in animals), as it is difficult to determine the concentration in human tissues9.  

To obtain Kp values for various tissues, the drug concentrations in the plasma and tissues must be 

determined. However, drug concentration measurement in tissues is much more difficult than that 

in plasma10. In addition to being expensive and time-consuming, this procedure is not feasible 

during the drug discovery stage. Therefore, various methods have been proposed to predict Kp. 

The three main methods are as follows: the tissue composition-based algorithm (TCB) (also called 

as mechanistic model of tissue binding), which is based on drug binding to tissue 

components11,12,13,14, the correlation-based algorithm (CBA), which uses a specific tissue to find 

the Kp values for other tissues based on a regression equation using the Kp value of the muscle15, 

and a nonlinear regression model using machine learning algorithm for Kp value prediction. The 

study by Yun et al. was the first to employ machine learning (ML) to predict Kp values16. Recently, 

our group developed a more accurate multimodal model using the minimum required experimental 

values and physicochemical descriptors [root-mean-square error (RMSE) and % of two-fold error: 

0.39 and 64.5% in 10-fold cross-validation]17. Despite obtaining an accurate Kp prediction model, 

we noticed several missing Kp values. This was because none of the tissues handled in the study 

had Kp values for all 119 compounds (the number of compounds with Kp values in adipose:69; 

bone:42; brain:89; gut:66; heart:94; kidney:92; liver:85; lung:93; muscle:104; skin:64; and 

spleen:34). Therefore, we believed that missing data may worsen the accuracy of the QSAR model. 

Several solutions are known to address the problem of missing values. In the area of drug discovery, 

accurate prediction of drug repositioning has been made possible by the incorporation of missing-

value predictions based on the similarity of compound structures18. Missing data related to the 
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activity values of different compound targets were predicted using the random forest (RF) method, 

and a QSAR model was constructed using the data from these predicted values as explanatory 

variables19. In addition, to predict the drug clearance and volume of distribution in humans, the 

predicted values in other animals were used as explanatory variables20. 

Based on previous studies, we aimed to build a more accurate model by filling the missing values 

with the predicted values. More specifically, we investigated the multitask message passing neural 

network (MPNN) model (Chemprop)21 and repeated RF model to predict the missing values and 

then built the RF model again using the predicted values as explanatory variables. Furthermore, to 

obtain a novel aspect of drug distribution through the analysis of the built models, we investigated 

the features of Kp values for each tissue as well as the relationship between tissues. 
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Materials and Methods 

Dataset 

The utilized dataset was investigated for 119 compounds in a previous report16,17. In this dataset 

in addition to the compound’s name, Kp values in each tissue and several properties described in 

“Properties for explanatory variables” below were included. The amount of data differed for each 

tissue (adipose, 69; bone,42; brain,89; gut,66; heart,94; kidney,92; liver,85; lung,93; muscle,104; 

skin,64; and spleen,34). Because the amount of bone and spleen data was significantly small, we 

decided to omit these tissues. 

Properties for Explanatory Variables 

The in vitro experimental data [LogP, free fraction of plasma (fu), DrugClass (acid, base, weak 

base, neutral, zwitter), and fraction of ionization (fi)] were used as parameters for the following 

machine learning models. These values were obtained from our previous research17, and shown in 

Table S1. 

Machine Learning Algorithm 

The workflow of this study is shown in Figure 1A to D. In this study, we investigated several 

QSAR modeling methods from different viewpoints, including if they were single task or multitask, 

whether missing values filled or left empty, and whether explanatory features selected or not 

selected. Overall, the models built in this study were validated by 3-fold cross validation, and the 

details are transcribed below. 

-Dataset Separation for 3-fold Cross Validation 

A total of 119 compounds with Kp values in nine tissues, LogP, fu, DrugClass, and fi, were 

collected from a previous report17 (Figure 1A) and were separated into 42 compounds with 

complete Kp data and 77 compounds with missing Kp values (Figure 1B). In fold 1, 14 compounds 
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were randomly selected from the 42 compounds identified in the previous step and used as the test 

dataset. A total of 105 compounds consisting of 28 filled Kp compounds and 77 compounds with 

missing Kp values, were used as the training dataset. Folds 2 and 3 included repeating the processes 

in fold 1 by selecting 14 different test compounds other than those utilized in fold 1 (Figure 1C). 

The fold setting (training and dataset) remained the same as in the previous step, and the missing 

Kp values of the training dataset in each fold were filled using the ML model (Figure 1D).  

-Conventional RF Model 

The RF method is one of the most reliable machine learning algorithms16,17,22,23, and the modeling 

process involved in obtaining the missing values is shown in Figure 1A to C. The objective variable 

for each tissue was Kp, and the explanatory variables were the chemical properties described above. 

Because this model was built in a single task manner, nine models for Kp prediction corresponding 

to the nine tissues were built independently. The caret package of R2.4.1 was used for modeling. 

The default values of the package were used as the initial parameter values, where Ntree was set 

to 500 and Mtry was set to the root of the number of explanatory variables observed. Parameter 

tuning was performed according to the RMSE calculation minimization during cross-validation 

using the caret package. We describe this approach as the conventional RF (CRF) model.  

-Multitask Chemprop Model 

We investigated the multitask model using MPNN. The modeling process is shown in Figure 1A 

to C. The objective variable was Kp for each tissue, and the explanatory variable was the graph of 

each chemical structure, which was canonicalized smiles through Schrödinger Suite 2016. The 

Python (ver. 3.7.10) Chemprop (version 1.3.1) library Chemprop function was used, and the 

parameters were set to default values21. As this model was built in a multitask manner, one 

independent model for Kp was built called the multitask Chemprop (MTC) model. 
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-Repeated RF Model 

To fill the missing values of Kp and utilize it as one of the explanatory variables for the QSAR 

model, we investigated another RF approach (Figure 1A to D). In this model, we first followed the 

CRF method to fill the blanks in the training dataset with predicted values. Next, another RF model 

called the Repeated RF (RRF) model was built for tissue-specific Kp value prediction using the 

chemical properties (logP, fu, Drug Class, and fi) and Kp values other than the objective variables. 

-Repeated RF Model with Best Parameters 

We examined all possible combinations of explanatory variables and the model with the lowest 

RMSE value was selected as the RRF model with the best parameters (RRF-BP). 
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Figure 1. Workflow for QSAR Modeling.  

The dataset (A), dataset separation into training and test set (B), 3-fold setting and Kp NA filled 

by ML (C), and ML with filled Kp data (D).  
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Evaluation of Each Model 

To evaluate the QSAR model used in this study, we calculated the RMSE (Eq. 1). We compared 

our method with previously published methods and cited the results in published literature16. The 

methods used for comparison were tissue composition-based models, including Berezhkovskiy12, 

Rodgers13, and Schmitt14.  

                               (Eq. 1) 

Additionally, R2-value were calculated for comparison of the proposed model with other models. 

The R2-values were calculated using Eq. 2 and used as log10 transformed values.  

                (Eq. 2) 

 

Analysis of The Explanatory Variables 

To understand the relationship between each tissue, we performed a cluster analysis of the nine 

tissues used in this study. Through the RRF-BP modeling process, we recorded the explanatory 

variable combinations producing the 10 lowest RMSE values. Based on this data, after 

normalization clustering was performed using the cluster hierarchy function of the SciPy package 

(ver. 1.7.3) in Python (ver. 3.7.10). A dendrogram was obtained from hierarchical clustering using 

Euclidian distance and Ward’s method. 

 

  

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2 ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 12 

Results and Discussion 

Comparison of Prediction Accuracies Between ML Models Built in This Study 

First, to investigate the applicability of our concept in modeling, we compared the ML models 

built in this study by calculating the RMSE and R2-values. The results are shown in Table 1. When 

comparing CRF and MTC, the RMSE and R2-values of CRF/MTC in most tissues were 0.57/0.58 

and 0.38/0.31 in brain, 0.42/0.51 and 0.69/0.52 in gut, 0.37/0.40 and 0.61/0.48 in heart, 0.40/0.42 

and 0.64/0.59 in kidney, 0.46/0.53 and 0.71/0.61 in lung, 0.34/0.42 and 0.67/0.48 in muscle, and 

0.33/0.37 and 0.37/0.19 in skin, respectively. This superiority of CRF to MTC indicates that, (1) 

the properties LogP, fu, Drug Class, and fi worked well, and this inference is consistent with 

several existing studies11,12,13,16, and (2) multitasking in Chemprop did not work well as it 

automatically handled missing entries in the dataset by masking out the respective values in the 

loss function21,24 and these results indicate that this method of handling the missing values does 

not work well in these tissues. However, R2-value of MTC in adipose (0.39) was better than CRF 

(0.32), and in the liver both RMSE and R2-value of MTC (0.48 and 0.47) were better than CRF 

(0.52 and 0.38). This is in agreement with the specific tissue features, because adipose tissue has 

different components than the others14 and liver has different types of transporters25; hence, the 

properties used as explanatory variables might not be effective in these tissues. 

When comparing CRF with RRF, no significant difference was found in RMSE and R2-values, 

except for the liver. It was the only tissue with RMSE difference over 0.05 [The R2-value of liver 

in RRF (0.49) was higher than CRF (0.38)]. Similar results for CRF and RRF in most tissues 

indicates that using all the predicted Kp values is not always effective as this might lead to the 

concept of each tissue being similar to a specific tissue and not all tissues. 
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Next, we compared the CRF and RRF-BP to further investigate the effectiveness of the RRF 

concept. The RMSE and R2-values of CRF/RRF-BP were 0.55/0.49 and 0.32/0.47 in adipose, 

0.57/0.50 and 0.38/0.52 in brain, 0.42/0.37 and 0.69/0.76 in gut, 0.37/0.34 and 0.61/0.64 in heart, 

0.40/0.34 and 0.64/0.75 in kidney, 0.52/0.46 and 0.38/0.52 in liver, 0.46/0.42 and 0.71/0.75 in lung, 

0.34/0.34 and 0.67/0.70 in muscle, 0.33/0.29 and 0.37/0.51 in skin, respectively. This proves the 

superiority of RRF-BP over CRF or other methods. The similar performance of RRF and CRF 

shows the importance of selecting the best parameters, and it could be derived from the features 

of each tissue, which are similar to some other specific tissues. The RRF-BP addresses the issue 

of overfitting by selecting the best parameters to reduce the number of explanatory variables. 

However, it is important to note that we were unable to create a hold-out test dataset due to the 

lack of Kp data in all tissues.26. Consequently, it should be noted that we are unable to demonstrate 

the generalizability of the RRF-BP method. To achieve this, we would need to obtain a larger 

experimental dataset. 
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Table 1. Evaluation of QSAR Models Using RMSE and R2-value 

CRF: Conventional Random Forest model, MTC: multitask Chemprop model, RRF: Repeated RF model, RRF-BP: RRF model with 

the best parameters. 

  

Method 

Adipose  Brain  Gut  Heart  Kidney 

RMSE 
R2-

value 
 RMSE 

R2-

value 
 RMSE 

R2-

value 
 RMSE 

R2-

value 
 RMSE 

R2-

value 

CRF 0.55 0.32  0.57 0.38  0.42 0.69  0.37 0.61  0.40 0.64 

MTC 0.55 0.39  0.58 0.31  0.51 0.52  0.40 0.48  0.42 0.59 

RRF 0.55 0.34  0.58 0.34  0.41 0.71  0.37 0.58  0.36 0.73 

RRF-BP 0.49 0.47  0.50 0.52  0.37 0.76  0.34 0.64  0.34 0.75 

               

Method 

Liver  Lung  Muscle  Skin    

RMSE 
R2-

value 
 RMSE 

R2-

value 
 RMSE 

R2-

value 
 RMSE 

R2-

value 
   

CRF 0.52 0.38  0.46 0.71  0.34 0.67  0.33 0.37    

MTC 0.48 0.47  0.53 0.61  0.42 0.48  0.37 0.19    

RRF 0.47 0.49  0.48 0.69  0.34 0.69  0.35 0.31    

RRF-BP 0.46 0.52  0.42 0.75  0.34 0.70  0.29 0.51    
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Comparison of Prediction Accuracies of Methods Developed for Each Tissue with The Published 

Models Using RMSE 

Next, we analyzed the RMSE of models developed for each tissue in this study. To compare the 

accuracy with the already published methods, we cited the RMSE information of the tissue 

composition-based models16. The results of this analysis are shown in Figure 2. It can be seen that 

when comparing the best methods of tissue-composition-based methods and ML models, the 

lowest RMSE values were found in ML; RMSE values were 0.61 (Rodger) / 0.50 (RRF-BP) in 

brain, 0.39 (Rodger) / 0.37 (RRF-BP) in gut, 0.36 (Rodger) / 0.34 (RRF-BP) in heart, 0.54 

(Schmitt) / 0.34 (RRF-BP) in kidney, 0.57 (Schmitt) / 0.46 (RRF-BP) in liver, 0.50 (Rodger) / 0.42 

(RRF-BP) in lung, 0.37 (Rodger) / 0.34 (RRF-BP) in muscle, and 0.41 (Rodger) / 0.29 (RRF-BP) 

in skin. Although the difference in RMSEs for a few tissues (gut, heart, and muscle) was less than 

0.05, it was clear that the RMSE values of the ML model (RRF-BP) were better than those of the 

tissue composition-based methods. However, for adipose tissue, Rogers (RMSE:0.47)13 produced 

the best RMSE value and the best ML model was RRF-BP with an RMSE of 0.49. This indicates 

that adipose tissue has different features, which is in agreement with the specific tissue 

components; namely, this tissue has very little water content and consists mostly of lipid 

components14. Hence we can conclude that RRF-BP outperformed others in predicting Kp values 

for most tissues. However, considering the algorithm of RRF-BP is ML that is totally different 

form the tissue composition-based models, we should be care of applicability domain when 

predicting new compounds27.  

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2 ORCID: https://orcid.org/0000-0003-2748-9742 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-qsrxp-v2
https://orcid.org/0000-0003-2748-9742
https://creativecommons.org/licenses/by/4.0/


 16 

 

Figure 2. RMSE Analysis of Each Model.  

Each bar represents RMSE. In the most of tissues, lower RMSEs were observed in machine learning methods investigated in this study 

than tissue-composition-based methods. 
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Predictive Feature of Repeated RF model 

As the RRF-BP model accurately predicted the Kp values in all tissues, we analyzed predictivity 

in detail by comparing the observed and predicted values of RRF-BP in all tissues. The results are 

shown in Figure 3, and it can be seen that the observed and predicted values correlated well in 

most tissues. However, for adipose and brain tissue, the predicted values were observed in a 

horizontal manner. Outliers were observed in lower and higher Kp regions of the gut and lungs, 

respectively. In the liver, outliers were observed in both the low- and high-Kp regions.  

Next, for a more quantitative investigation, we counted the compounds with 2- and 3-fold errors. 

The results are shown in Table 2 [for comparison, the results of the other models are shown in 

supporting information, CRF in Table S2, MTC in Table S3, and RRF in Table S4]. The % of 

within 2-fold errors in the muscle and skin was over 75%. With regard to 3-fold errors, those in 

the skin were over 95%, and those in the adipose, gut, heart, and muscle were over 80%. On the 

other hand, % of within 2-fold errors in the brain and lungs was below 60%, and the % of within 

3-fold errors was still below 70%. Hence, in most tissues, the compounds were within 2- and 3-

fold errors, but only for the brain and lungs, which was not the case. 

Furthermore, we investigated the tendency of over- and under-prediction of RRF-BP in each tissue 

type. The results are also shown in Table 2 where it can be seen that values for the adipose, brain, 

and gut tissues were overpredicted. By contrast, values for the heart, kidney, and liver were under-

predicted. Hence, we can conclude that the predictive model for each tissue has good accuracy and 

prediction tendency, which must be understood before using it in the practical drug discovery 

process. 
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Table 2. Fold Error Analysis of Repeated RF Model with Best Parameters 

Tissue 
% of within 2-

fold error 

% of within 3-

fold error 

% of over-

estimated more 

than 2-fold 

% of under-

estimated less 

than 2-fold 

% of over-

estimated more 

than 3-fold 

% of under-

estimated less 

than 3-fold 

Adipose 66.7 81.0 21.4 11.9 11.9 7.1 

Brain 54.8 66.7 28.6 16.7 26.2 7.1 

Gut 61.9 81.0 23.8 14.3 11.9 7.1 

Heart 66.7 81.0 11.9 21.4 7.1 11.9 

Kidney 66.7 78.6 14.3 19.0 9.5 11.9 

Liver 61.9 76.2 16.7 21.4 9.5 14.3 

Lung 57.1 69.0 23.8 19.0 14.3 16.7 

Muscle 78.6 83.3 9.5 11.9 9.5 7.1 

Skin 76.2 95.2 7.1 16.7 4.8 0.0 
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Figure 3. Predictivity of The RRF-BP Model in Each Tissue. Each Grey Circle Represents An Individual Compound.  

The x- and y-axes show the observed and predicted log Kp values, respectively. The center diagonal thin line, dotted line, and bold line 

on each side represent the unity, 2-fold error, and 3-fold error, respectively. 
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Best Parameters Selected in Repeated RF Model 

Next, we investigated the parameters that are important for Kp prediction in each tissue. The best 

parameters are marked in Table 3. However, regarding some tissues that highly express 

transporters (brain23,24,28, kidney29, and liver25), the discussion is very difficult because Kpuu 

should be investigated for it30,31. Consequently, we have the discussion of adipose, gut, muscle and 

skin. The key findings from these tissues are as follows. 

-Adipose 

Only chemical properties (LogP, fi, and DrugClass) were selected for the RRF-BP model. This 

was the only tissue that did not require the Kp values of other tissues to predict its Kp value (Table 

3). This could be in agreement with the fact that adipose tissue is completely different from other 

tissues in terms of composition as mentioned already14. Additionally, the properties selected could 

include lipophilicity, which is directly linked to the drug’s affinity to adipose tissue32. Hence, we 

can conclude that the parameters selected for adipose Kp are interpretable and reliable. However, 

because this model had a higher RMSE (0.49) than the RRF-BP models of other tissues, the Kp 

prediction for adipose tissue remained difficult (Table 1). 

-Gut 

LogP, fi, and DrugClass were selected as chemical properties, and the Kp predicted for the adipose 

tissue and kidney was used for RRF-BP of the gut. The gut acts as a barrier to drug absorption. In 

this process, permeation is very important and is strongly linked to lipophilicity and ionization33. 

As lipophilicity is also directly linked to the affinity of the drug to adipose32, the Kp for adipose 

tissue is an appropriate parameter for the RRF-BP model in the gut. Therefore, we can conclude 

that, although it is not easy to interpret the function of kidney Kp in the RRF-BP model of the gut, 

the chemical properties selected in the gut were understandable. 
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-Muscle and Skin 

The muscle RRF-BP model used eight explanatory variables (Kp-predicted values in adipose, 

brain, gut, skin, LogP, fi, DrugClass, and fu), which was the highest among the RRF-BP models. 

This indicates one of the reasons of using muscle Kp as a representative Kp in the other tissues. 

Additionally, tissues that highly express transporters, such as the kidney and liver, were not 

selected, which might indicate that the muscle represents the extent of drug diffusion transfer to 

tissues15. The skin RRF-BP model used seven explanatory variables (Kp predicted values in 

adipose, brain, gut, heart, fi, DrugClass, and fu), which was the second highest among the RRF-

BP models. However, the RRF-BP model of the skin did not use LogP as compared to the muscle 

RRF-BP model. Hence it is truly one of the representative tissues as average Kp of tissues17. 

However, this feature may be different from that of the muscles. 
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Table 3. Explanatory Variables in RRF-BP Model 

Objective 

tissue 

Explanatory Variables in BS-TRF 

Adipose Brain Gut Heart Kidney Liver Lung Muscle Skin LogP fi 
Drug 
Class 

fu 

Adipose - □ □ □ □ □ □ □ □ ☑ ☑ ☑ □ 

Brain □ - ☑ □ □ □ □ □ ☑ □ □ □ □ 

Gut ☑ □ - □ ☑ □ □ □ □ ☑ ☑ ☑ □ 

Heart ☑ □ □ - □ □ □ ☑ ☑ ☑ □ □ ☑ 

Kidney □ □ ☑ ☑ - □ ☑ ☑ □ □ ☑ □ □ 

Liver □ ☑ ☑ ☑ □ - □ □ □ □ ☑ ☑ □ 

Lung □ □ ☑ □ □ □ - □ ☑ □ ☑ ☑ □ 

Muscle ☑ ☑ ☑ □ □ □ □ - ☑ ☑ ☑ ☑ ☑ 

Skin ☑ ☑ ☑ ☑ □ □ □ □ - □ ☑ ☑ ☑ 
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Clustering of The Tissues by The Parameters Needed for Predicting Kp 

Next, to understand the relationship between each tissue, we analyzed the parameters used in the 

top 10 RRF-BP models for each tissue with a lower RMSE. We present the sum of the total 

instances for each item listed in Table S5. Most of the explanatory variables were selected for 

different Kp prediction models except the predicted Kp value of the liver. For example, in the liver, 

in addition to the highly expressed transporters there is another feature that does not follow the 

drug-free theory34. This indicates that its distribution into the liver has a completely different 

mechanism from that in the other tissues. 

Using the results of the number of explanatory variables used in the RRF-BP modeling process, 

we built a dendrogram for each tissue. The result is shown in Figure 4 where it can be seen that 

four clusters was obtained, called as group I to IV. The tissues were grouped as follows: kidney, 

brain, and heart in group I; lung and muscle in group II; adipose tissue in group III; and gut, liver, 

and skin in group IV. Adipose tissue with completely different components from other tissues was 

placed in group III. The tissues that highly expressed the transporters were located in groups I 

(kidney and brain) and IV (gut and liver). Hence, considering the features of each tissue, this 

grouping reflected the tendency of Kp. By contrast, Yau et. al. clustered tissues into four groups, 

called A to D for convenience, based on tissue components as follows: adipose in group A; brain 

and muscle in group B; skin in group C; and kidney, liver, lung, gut, and heart in group D35. 

Although adipose was separated as in our study, the grouping of the other tissues was totally 

different from ours. Certainly, clustering by tissue components is considered very important, 

especially for passive diffusion; however, it does not always reflect the tendency of the Kp values 

of drugs. Through this analysis, we can also see that when only a limited tissue can be obtained, 
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we can suggest a tissue within the same group that could become representative of the Kp value 

other tissues. 
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Figure 4. Clustering Analysis of Tissues.  

The Y axis represents the height of the dendrogram. Each tissue was classified into four groups 

from I to IV. 
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Conclusions 

In this study, we investigated a novel QSAR method to predict a parameter more precisely from 

an incomplete dataset by optimizing the data handling. We focused on the prediction of Kp values, 

which consisted of the Kp values of 119 compounds in nine tissues (adipose, brain, gut, heart, 

kidney, liver, lung, muscle and skin), some of which were not available (NA). First, to fill in the 

missing Kp values for each tissue, we predicted those in the entire dataset using a RF model with 

in vitro parameters (log P, fu, DrugClass, and fi). Second, to predict the Kp value for a certain 

tissue in a test dataset, we constructed a second RF model with not only in vitro parameters but 

also the Kp values for other tissues predicted by the first RF model as explanatory variables. The 

prediction accuracies of the Kp values of the final models were higher than those predicted by the 

other ML methods, and we also observe the usage of the Kp information of the other tissues in 

predicting the Kp value for a specific tissue. Additionally, through the evaluation of all 

combinations of explanatory variables for the RRF-BP model, we found that Kp values of no other 

tissues were needed for the prediction of adipose Kp, whereas liver Kp was not needed for the 

prediction of Kp for other tissues. Hence, we developed a novel model for predicting of Kp values 

using a RF model twice, and we hope that this method can be applied to not only the Kp prediction 

problem but also various other problems. 
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