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ABSTRACT 23 

Background: Understanding potential prenatal and development toxicity hazard associated with 24 

the use of pharmaceutical and cosmetic products is an important component of women health. This 25 

hazard can be estimated from chemical structure of respective agents using Quantitative Structure-26 

Activity Relationship (QSAR) models; however, the development of reliable models is 27 

challenging due to the complex nature of this endpoint.   28 

Methods: Aggregating and curating data from the Food and Drug Administration (FDA), 29 

Teratogen Information System (TERIS) database, and select independent studies, we have created, 30 

to the best of our knowledge, the largest publicly available dataset comprising compounds 31 

annotated as developmental toxicants or not toxicants. 32 

Results: We built several binary classification QSAR models exhibiting a correct classification 33 

rate of 62-72%, a sensitivity of 66-75%, a specificity of 59-82%, and high coverage of 70-90% 34 

assessed using five-fold external validation protocol. We developed a publicly accessible web 35 

portal PregPred for developmental toxicity prediction of both overall toxicity and trimester-36 

specific toxicity predictions.   37 

Conclusions: Due to high accuracy and coverage as well as public accessibility of the respective 38 

web portal, our models can be employed as a computational tool to support regulatory assessment 39 

of pharmaceutical and cosmetic products in alignment with the 3Rs (refining, reducing, and 40 

replacing) of animal testing. This in silico model holds the potential to substantially influence the 41 

field of developmental toxicology, steering regulatory practices toward safer drug development 42 

for pregnant women. The first-of-its-kind curated dataset of developmental toxicants and all 43 

developed models implemented as a user-friendly web tool, PregPred, are freely available at 44 

https://pregpred.mml.unc.edu/).   45 
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Introduction 46 

In high-income countries, approximately 80% of pregnant women take prescription 47 

medications, and an even higher proportion take over-the-counter medications.1 Despite the high 48 

usage of medication among pregnant women, drug safety in this population is grossly 49 

understudied. For example, clinical trials rarely include pregnant women, leaving knowledge gaps 50 

as to the potential toxicity to the fetus and pharmacokinetic differences between non-pregnant and 51 

pregnant women.2 Additionally, there remains a lack of sizeable epidemiological cohort studies 52 

following children who were exposed to medications in utero.3 Therefore, pregnant women and 53 

their physicians are often faced with the difficult decision of whether to continue the medication 54 

throughout pregnancy based on limited data. Further investigation into medication safety for 55 

pregnant women and the developing fetus is thus warranted.  56 

Developmental toxicity is broadly defined as the potential for a compound, whether it be a 57 

medication, environmental, cosmetic, or other chemical, to cause abnormalities in the developing 58 

fetus upon a mother's exposure.4 Manifestations of developmental toxicity include, but are not 59 

limited to, spontaneous abortions, physical abnormalities of organs and bones, low fetal 60 

birthweights, jaundice, deafness, and intellectual deficits.5,6 Given the broad nature of this 61 

endpoint, there are many possible implicated mechanisms. Developmental toxicants can interfere 62 

with cells in various ways, including inappropriately upregulating or downregulating molecular 63 

pathways, binding to DNA and proteins, and oxidatively damaging macromolecules. These 64 

changes may be widespread, occurring in many parts of the developing fetus, or localized by 65 

damaging specific organs or the neural tube – the latter contributed to the developmental toxicity 66 

of thalidomide, the most well-known human teratogen.7  67 
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The 1960s thalidomide tragedy inspired the incorporation of pregnancy information into 68 

drug labels and the implementation of regulatory developmental toxicity guidelines.8 In brief, 69 

animal studies for developmental toxicity typically involve administering the chemical to the 70 

pregnant animal through the intended route of administration, removing the fetus, and evaluating 71 

structural abnormalities.9 These are described in further detail in the Organization for Economic 72 

Co-operation and Development (OECD) guidelines 414 for developmental toxicity testing and 426 73 

for developmental neurotoxicity, as well as in the Environmental Protection Agency (EPA) 74 

guidelines OPPTS 870.3700 for prenatal toxicity and 870.6300 for developmental toxicity.10,11 75 

Important considerations include the relevance of the species used, the stage of pregnancy during 76 

which the chemical is administered, and the dosage.  77 

Adverse Outcome Pathways (AOPs) are a series of linked events at different levels of 78 

biological organization (e.g., cell, tissue, organ) that lead to an adverse health effect in an organism 79 

following exposure to a stressor.12 Various AOPs exist for developmental toxicity; however, 80 

zebrafish, mice, and rabbit models are currently the best in vivo models for screening.13–16 It is also 81 

worthwhile to consider Clinical Outcome Pathways (COPs); while conceptually similar to AOPs, 82 

COPs consider a series of critical molecular and cellular events that underlie the therapeutic effects 83 

of drug molecules.17  84 

Currently, animal studies are the major way to determine developmental toxicity 85 

experimentally; however, they are associated with several pitfalls. Thus, animal toxicity studies 86 

are time-consuming and expensive.  In 2018, the EPA reported that a single developmental toxicity 87 

rodent study costs around $128,000, and developmental neurotoxicity study costs around $750,000 88 

per compound.18 They also require that many animals be used, raising ethical concerns. For 89 

example, both EPA and OECD guidelines require that at least 20 animals be used in the control 90 
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and test-dose groups. Another potential issue is that the indicated disease state is often not induced 91 

in the maternal animal model. Consequently, a medication that may restore homeostasis in an 92 

indicated individual may disrupt functioning in a healthy individual. This can result in false 93 

positives, wherein medications that would not induce developmental toxicity in utero of a mother 94 

with the indicated condition may induce toxicity in a healthy mother's fetus.19 Another downside 95 

is that these studies do not track neurobehavioral endpoints over time, an essential manifestation 96 

of developmental neurotoxicity.20 Despite these limitations, animal studies are still a valuable data 97 

source in toxicology research. Luckily, this data has become more widely accessible.21 98 

Over the past several decades, expanding publicly available biomedical databases has 99 

supported the development of computational models for developmental toxicity, furthering the 100 

3Rs in toxicology: reducing, refining, and replacing animal testing.22 One powerful in silico 101 

approach is quantitative structure-activity relationship (QSAR) modeling. Several groups have 102 

argued against the use of QSAR modeling due to its lack of mechanistic insight; however, we have 103 

previously reported QSAR models with high externally validated accuracy for complex endpoints 104 

such as skin sensitization, cardiotoxicity, and pharmacokinetics.23–25 QSAR modeling entails the 105 

collection of chemicals and their respective biological activity for the desired endpoint; these data 106 

may come from animal studies, in vitro studies, or, more favorably, human studies such as clinical 107 

trials or epidemiological cohort studies. The next critical step is to perform biological and chemical 108 

curation of the dataset; we emphasize that this is critical to developing reliable QSAR models but, 109 

unfortunately, is neglected in many studies.26  110 

Developing reliable computational models to predict developmental toxicity remains a 111 

significant challenge.29,30 Herein, we have collected developmental toxicity data from large 112 

publicly available databases, such as DailyMed (includes Food and Drug Administration (FDA) 113 
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labels) and Teratogen Information System (TERIS), as well as from smaller toxicity studies.31,32 114 

We meticulously validated all the compounds classified as nontoxic by searching the literature for 115 

regulatory-approved animal studies and epidemiological cohort studies, and removed compounds 116 

with ambiguous toxicity results. Other groups have modeled developmental toxicity but did not 117 

rigorously validate the negative compounds as we have.33,34 Compounds were also validated for 118 

overall toxicity during pregnancy and individual risk per trimester. In addition to this extensive 119 

biological curation, we followed the best practices in the field for chemical data curation, which 120 

we have previously shown is necessary to develop reliable and accurate QSAR models.35–37 121 

Finally, we used this curated data to build and rigorously validate a QSAR model for 122 

developmental toxicity and enabled its use via a user-friendly web tool (PregPred), publicly 123 

available to the research community at https://pregpred.mml.unc.edu/.  124 

 125 

Methods 126 

Data collection and curation 127 

We collected chemical data from human and animal developmental toxicity studies, 128 

including records from the FDA, TERIS, and independent studies. Drug, environmental, and 129 

cosmetic chemicals were included. We focused on acquiring the most credible literature, using 130 

widely recognized and cited sources. As we have shown previously, it is generally acceptable to 131 

include drug, cosmetic, and environmental compounds in the same dataset for QSAR modeling, 132 

especially when employing the applicability domain, given the overlap in chemical space.38 133 

Additionally, while human data is preferred over animal data, they are often scarce for toxicity 134 

endpoints. Therefore, we have also included results from animal studies. Since many chemicals 135 

lacked standard identifiers (International Chemical Identifier (InChI), Chemical Abstracts Service 136 
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Registry Number (CASRN), or Simplified molecular-input line-entry system (SMILES)), having 137 

instead only the compound name, we retrieved SMILES for each molecule in KNIME using the 138 

"Chemical Identifier Resolver" node.39 All outcomes were binary (i.e., toxic or nontoxic). Datasets 139 

were biologically and chemically curated according to the best practices in the field.35–37 As for 140 

chemical curation, we removed mixtures, inorganics, and large organic compounds, removed 141 

counterions, cleaned and neutralized salts, and normalized chemotypes using the ChemAxon 142 

Standardizer software.40 We followed one of the two appropriate procedures for handling 143 

duplicates: (i) if the outcomes of all duplicates were concordant, one record was kept with the 144 

respective outcome; (ii) if any outcomes disagreed, they were further investigated, as described in 145 

the Section "Merging the datasets and verification of nontoxic compounds." We developed four 146 

binary QSAR models to predict developmental toxicity risk in (i) any trimester, (ii) first trimester, 147 

(iii) second trimester, and (iv) third trimester. Dataset-specific biological curation is described in 148 

the following sections. 149 

 150 

FDA database  151 

In 1979, the FDA implemented a policy that pregnancy safety information be included on 152 

FDA-approved drug labels, if available.41 Drugs may be classified into one of the five following 153 

classes: A, B, C, D, and X (see Table 1). In 2015, the FDA began shifting from these classes to a 154 

new labeling system called the Pregnancy and Lactation Labeling Rule (PLLR). While the PLLR 155 

provides a more holistic view of compound-mediated pregnancy risk, the old classification system 156 

(A, B, C, D, and X) is more practical for use in our study for the following reasons: (i) there is 157 

greater data availability, given that many drug labels have not been updated with PLLR data, and 158 

(ii) they fit better into the schema of binary classification (i.e., toxic vs. nontoxic). A plethora of 159 
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information on FDA-approved prescription drugs and other biological products (such as 160 

cosmetics) is contained in the DailyMed database; for example, their indications, 161 

contraindications, dosage, route of administration, and use in specific populations (for example, 162 

pregnant women). 31 163 

As of March 2023, there were 46,943 records in DailyMed.31 We collected these records 164 

and curated the data. After removing compounds with missing SMILES, 42,075 records remained. 165 

We excluded the 25,245 non-classified records, leaving 16,830 records. Of these, 9,455 were 166 

category C, in which there are no satisfactory studies in pregnant women, but animal studies 167 

demonstrated a risk to the fetus. Due to this, we excluded class C compounds, leaving 7,375 168 

records. After removing inorganics, organometallics, and mixtures and normalizing chemotypes, 169 

4,023 compound entries remained. After removing duplicate entries for the same compound, 221 170 

remained (102 nontoxic categories A and B, 119 toxic categories D and X, and 3 non-concordant). 171 

The non-concordant compounds were investigated further once the datasets were merged.  172 

 173 

Table 1. FDA Pregnancy-Risk Categories and their respective definitions. 174 

Category Definition 

A No risk in human studies (studies in pregnant women have not 

demonstrated a risk to the fetus during the first trimester). 

 

B No risk in animal studies (there are no adequate studies in humans, but 

animal studies did not demonstrate a risk to the fetus). 
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C Risk cannot be ruled out. There are no satisfactory studies in pregnant 

women, but animal studies demonstrated a risk to the fetus; the potential 

benefits of the drug may outweigh the risks. 

 

D Evidence of risk (studies in pregnant women have demonstrated a risk to 

the fetus; potential benefits of the drug may outweigh the risks). 

 

X Contraindicated (studies in pregnant women have demonstrated a risk to the 

fetus, and/or human or animal studies have shown fetal abnormalities; risks 

of the drug outweigh the potential benefits). 

*Definitions from "Pregnancy Medications" by Leek and Arif.42 175 

 176 

Teratogen Information System (TERIS) 177 

The Teratogen Information System (TERIS) database comprises over 1,700 compounds 178 

paired with in-depth summaries of their teratogenic risk.32 Unfortunately, we did not have access 179 

to this database. However, a dataset consisting of 293 compounds from either/both the FDA and 180 

TERIS was published by Arena et al.43 We collected these compounds. We removed the 181 

compound, "Azatguiorube," for which no structural information was available. After removing 182 

inorganics, organometallics, and mixtures and normalizing chemotypes, 275 compounds 183 

remained. We removed one duplicate, leaving 274 compounds (160 nontoxic and 114 toxic). 184 

 185 

Aschner et al. (2017) 186 

Aschner et al. compiled a list of 75 positive and negative compounds for developmental 187 

neurotoxicity.44 It should be noted that this endpoint is more specific than "developmental 188 
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toxicity"; for example, a compound that may not induce neurotoxicity may exhibit developmental 189 

toxicity. As described in the section, "Merging the datasets and verification of nontoxic 190 

compounds," we verified all negative compounds after merging the datasets, so this difference 191 

does not invalidate the use of these chemicals. We removed records for compounds with no 192 

structural information, leaving 73 compounds remaining. After removing inorganics, 193 

organometallics, and mixtures and normalizing chemotypes, 62 compounds remained. There was 194 

only one duplicate compound. The final dataset was comprised of 61 compounds (35 nontoxic and 195 

26 toxic).  196 

 197 

Grandjean (2006; 2014) 198 

Grandjean and Landrigan compiled one list of six developmentally neurotoxic compounds 199 

in 2006 and another set of six in 2014.45,46 Two entries were not specific compounds but classes 200 

of compounds (for example, polychlorinated biphenyls) and were therefore excluded. After 201 

removing inorganics, organometallics, and mixtures and normalizing chemotypes, 5 compounds 202 

remained (all toxic).  203 

 204 

Abortion medications 205 

There are two medication abortion compounds in the United States, specifically, 206 

mifepristone and misoprostol. These structures were cleaned and standardized as described above.  207 

 208 

Web search for non-developmentally toxic compounds 209 

To increase the number of non-toxicants in our dataset, we performed a web search for 210 

medications that are widely accepted as safe for the pregnant population. We required that two or 211 
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more medical websites or peer-reviewed studies supported the safety of these compounds. The 212 

web search was performed with adapted web scraping code, which enabled a quick compilation 213 

and filtering of relevant articles.47 PubMed articles were searched with combinations of: 214 

"Compound selected," and "Teratogenic," and "Trimester Risk."  215 

 216 

Martin (2022) dataset 217 

It is challenging to validate compounds as being developmentally nontoxic. Martin et al. 218 

sought to address this issue. Specifically, a panel of experts from the Center for Computational 219 

Toxicology and Exposure of the U.S. Environmental Protection Agency performed a thorough 220 

literature review on 39 compounds suggested by previous studies to be non-developmentally 221 

neurotoxic. They found that 29 chemicals did not have sufficient evidence to be categorized as 222 

nontoxic. After merging the datasets, according to this study, we removed all compounds that did 223 

not have sufficient evidence to classify them as nontoxic.48 We verified the remaining ten 224 

compounds in the study that were classified as having sufficient evidence to be categorized as 225 

nontoxic, as described below. 226 

 227 

Merging the datasets and verification of nontoxic compounds 228 

After curating each dataset individually, we merged them. Using KNIME, we removed 229 

overlapping compounds (identical InChiKey) between datasets, leaving 482 unique compounds. 230 

Then, we exported this list of compounds to Comma-Separated Values (CSV) so that we could 231 

manually investigate all compounds.  232 

Two separate searches were conducted: overall toxicity and trimester toxicity. Each of the 233 

482 compounds was evaluated for overall toxicity based on the available literature. If toxicity was 234 
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identified at any stage, the compound was labeled as toxic. Rigorous criteria were used for dataset 235 

creation in compliance with the US EPA guidelines for Developmental Toxicity Risk 236 

Assessment49,50, wherein only stringent and validated data would enter the dataset. Human studies 237 

were only included if they followed the criteria stated in the US EPA guidelines with the change 238 

that the study was included if the sample size in the study was more significant than or equal to 239 

80, as studies with larger sample sizes testing developmental toxicity were scarce. Animal studies 240 

were only included if the ratio of the tested dose was stated and if the tests were performed on rats, 241 

rabbits, or mice in compliance with OECD guidelines.14–16 Compounds that did not contain reliable 242 

studies were removed. We removed these compounds if animal studies demonstrated a 243 

compound's developmental toxicity but were not up to regulatory standards. If epidemiological 244 

studies showed developmental toxicity, we replaced the outcome with "toxic," as human data is 245 

preferred over animal data. We also removed compounds for which reliable studies were not 246 

available. After the literature search and careful curation, removing compounds without reliable 247 

sources, 144 compounds remained (59 toxic and 85 nontoxic). 248 

Then, a separate literature search was performed to classify compounds based on their 249 

trimester toxicity. This search was more rigorous, wherein a study was included only if it labeled 250 

the trimester at which the toxicity occurred. In this case, various drugs ended up being labeled as 251 

"toxic" or "nontoxic" for a particular trimester or removed for trimesters where articles were 252 

unavailable or not up to regulatory standards. In this study, data labeling was performed using a 253 

binary classification system within KNIME, where "toxic" compounds were encoded as "1" and 254 

"nontoxic" as "0" to facilitate streamlined computational processing and analysis. After excluding 255 

irrelevant compounds, only 156 remained for the first trimester, 65 for the second, and 60 for the 256 
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third. As an additional measure of validation, we manually inspected the compounds in both 257 

datasets before proceeding with QSAR modeling.  258 

 259 

QSAR Modeling: 260 

 Calculation of Molecular Fingerprints 261 

We used the RDKit  node in KNIME to calculate Extended-Connectivity Fingerprints, with 262 

a diameter 4 (ECFP4) with 2,048 bits51 and Molecular ACCess System (MACCS) Fingerprints.52  263 

 264 

Chemical Space Analysis 265 

Our dataset comprised toxic and nontoxic compounds as defined by testing for the overall 266 

developmental toxicity collected from the FDA53, TERIS32, and select articles.45,48 The 144 267 

compounds were investigated by plotting a similarity map generated using OSIRIS DataWarrior 268 

Software v.05.02.01.54 The similarity map utilizes a Rubberbanding Forcefield approach, which 269 

translates similarity (vertices) between compounds (nodes). The similarity map approach entails 270 

the following steps: (i) all compounds are randomly positioned in a 2D space; (ii) Calculation of 271 

similarity matrix between all compounds using Tanimoto coefficients (Tc) and Datawarrior's 272 

default substructure-based binary fingerprint (FragFP)55; (iii) determination of most similar 273 

neighbors (Tc>0.8), considered for every compound; and (iv) stepwise relocation of all compounds 274 

to ensure similar molecules are located in proximity to each other.56 275 

  276 

Model Development and Performance Assessment 277 

QSAR models were developed and validated according to the best practices in the field.57 278 

The models were developed using the RF algorithm, wherein trees were decorrelated via 279 
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bootstrapping with replacement, and LightGBM, a gradient-boosting algorithm that optimizes 280 

model performance through a leaf-wise tree construction approach. Models used LightGBM58 and 281 

RF27 were implemented through Scikit-learn v.1.4.0.59. The consensus among trees defined in each 282 

model was used to ascertain the confidence of a binary prediction. Since all compounds were 283 

manually verified during data curation, models were built with 4 different criteria: models for 284 

overall toxicity, where toxicity in any trimester flags the compound as toxic, and models for each 285 

the first, second, or third trimester toxicities where toxicity would only be flagged if predicted to 286 

be toxic during the given trimester. 287 

Because all data were binarized (i.e., toxic vs. nontoxic), the following statistical metrics 288 

were used to assess different aspects of the performance of classification models (Equations 1-6): 289 

 290 

Sensitivity (SE): 291 

𝑆𝐸 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑁
              [Eq. 1] 292 

Specificity (SP): 293 

𝑆𝑃 =
𝑁𝑇𝑁

𝑁𝑇𝑁 + 𝑁𝐹𝑃
                [Eq. 2] 294 

Correct Classification Rate (CCR): 295 

𝐶𝐶𝑅 =
𝑆𝐸 + 𝑆𝑃

2
                [Eq. 3] 296 

Positive Predictive Value (PPV): 297 

𝑃𝑃𝑉 =
𝑁𝑇𝑃

𝑁𝑇𝑃 + 𝑁𝐹𝑃
             [Eq. 4] 298 

Negative Predictive Value (NPV): 299 

𝑁𝑃𝑉 =
𝑁𝑇𝑁

𝑁𝑇𝑁 + 𝑁𝐹𝑁
             [Eq. 5] 300 
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Area Under the Receiver Operating Characteristic Curve (AUC): 301 

𝐴𝑈𝐶 = ∑ [(𝑆𝐸𝑖+1)((𝑆𝑃𝑖+1 − (𝑆𝑃𝑖]              [Eq. 6]
𝑖

 302 

 303 

N represents the number of compounds, NTP and NTN represent the number of true positives 304 

and true negatives, and NFP and NFN represent the number of false positives and false negatives, 305 

respectively. 306 

Compounds known to cause developmental toxicity were classified as positive (class 1), 307 

and nontoxic compounds were classified as negative (class 0). 308 

  309 

 Hyperparameter Optimization 310 

 Taking into consideration that the performance of machine learning (ML) is closely 311 

related to its hyperparameters, the models were optimized using a Bayesian approach, 312 

implemented in Optuna60 v. 3.5.0. Optuna's framework can perform Bayesian hyperparameter 313 

optimization for a given set of descriptors and ML algorithms. The best hyper-parameters were 314 

then used to fine-tune the model using the entire training set of compounds and tested during the 315 

5-fold cross-validation step. 316 

 317 

 Dimensionality Reduction 318 

 The dimensionality reduction method implemented was the filter of low-variance 319 

descriptors using the "Low Variance Filter" node in KNIME. Molecular fingerprints with a 320 

variance less than an established threshold were removed from the data set because they did not 321 

provide relevant information for the model. In this study, a threshold of 0.01 was utilized. We 322 

employed a threshold of 0.01 for dimensionality reduction to efficiently filter out noise and retain 323 
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only the most predictive features, thereby enhancing the model's ability to accurately predict 324 

developmental toxicity. 325 

 326 

 Dataset Split and 5-Fold Cross Validation 327 

We employed 5-fold external cross-validation.61 For this, the dataset is split into five 328 

equal parts, wherein one subset (20%) is used as the test set, and the remaining compounds (80%) 329 

compose the training set. This procedure is repeated five times, and each subset is used as the 330 

validation set exactly once. Models are built using the training set only, and compounds in the test 331 

set must not be present in the training set.  332 

 333 

 Threshold-Moving 334 

 We tried threshold-moving calibration of probability estimates to increase prediction 335 

confidence without losing data, i.e., without needing to balance the data. QSAR models probability 336 

thresholds were adjusted using a threshold-moving approach, incorporated into Scikit-learn 337 

Version 1.4.0.56,59. Threshold-moving was used to select the binary classification probability 338 

threshold for the model that produced the highest geometric-mean values on these test sets. The 339 

geometric mean was chosen as it better assesses the performance of models when predicting 340 

imbalanced data.56,62–64 341 

 342 

 Applicability domain 343 

 We have previously established the importance of the applicability domain when 344 

analyzing predictions from developed QSAR models. The AD must be addressed for the given 345 

chemical space of predictive models to identify "reliable" and "unreliable" regions for 346 
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predictions.56,65 Thus, users should only consider the model's predictions if their set of compounds 347 

is within the AD.  348 

 We employed the "Applicability Domain" meta-node to assess the AD of our models. 349 

Within this meta node, the "Domain-Similarity" node uses Euclidean distances to measure 350 

chemical similarity between a compound from the test set and its nearest neighbor in the training 351 

set. The prediction may be unreliable if the distance of a compound not present in the test set to its 352 

nearest neighbor is higher than an arbitrary parameter (Z=0.5) that controls the significance level.66 353 

 354 

 Model Interpretation 355 

 Contribution maps 67,68 were generated from QSAR models to visualize atoms and 356 

fragments contributing to developmental toxicity. An atom's "weight" was considered a predicted 357 

probability difference obtained when bits in the fingerprints corresponding to the atom were 358 

removed. Then, the normalized weights were used to color atoms in a topography-like map in 359 

which green indicates the contribution to toxicity (i.e., predicted probability decreases when bits 360 

are removed) and red indicates a negative contribution to toxicity (i.e., predicted probability 361 

increases when bits are removed).68 362 

 363 

 Model Implementation – The PregPred Web Application 364 

 The QSAR models developed in this study have been implemented as a web application, 365 

PregPred, which runs on an Ubuntu server. The PregPred application is encoded using Flask69, 366 

uWSGI70, Nginx71, Python 3.872, RDKit52, scikit-learn59, and Javascript73. PregPred also includes 367 

the JSME molecule editor74, which is written in JavaScript and supported by most popular web 368 
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browsers. The server takes input chemicals and produces the developmental toxicity predictions 369 

for the user. 370 

 371 

Results and Discussion 372 

In the present study, we integrated, curated, and carefully verified the most extensive 373 

collection of developmental toxicants for overall trimester risk and risk for each trimester 374 

(Supplemental File S2). Data curation represents a quintessential step for the construction of 375 

QSAR models. However, given the inconsistencies we found between FDA pregnancy category 376 

labeling and the most up-to-date literature – many compounds were labeled as nontoxic by the 377 

FDA, but there were more recent epidemiological and animal studies – we emphasize the 378 

importance of our rigorous biological curation. Specifically, we searched the literature for 379 

evidence for or against developmental toxicity for each compound in the dataset and removed 380 

compounds for which tests were not up to regulatory standards. OECD testing guidelines were 381 

utilized when verifying compound activity data with current literature.15,75 We do not intend to 382 

criticize other groups for using the FDA and TERIS developmental toxicity classifications at the 383 

face value; it seems reasonable to expect that the FDA data, especially, would be up to date. 384 

Instead, this is an issue that needs to be addressed by drug regulatory agencies to ensure that drug-385 

specific pregnancy information is current. After merging the datasets, the same compound may 386 

contain multiple entries in the modeling and external sets. QSAR models developed with duplicate 387 

models will have low accuracy if toxicity outcomes are dissimilar or over-optimistic performance 388 

if outcomes are identical.35,36 Nevertheless, we took extensive measures in this study to ensure our 389 

developmental toxicity model was built on the most reliable and accurate data possible. Table 2 390 

demonstrates the compounds obtained after each trimester's thorough, up-to-date literature search. 391 
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 392 

 Table 2. Distribution of chemicals in each dataset for overall toxicity model and first, second, 393 

and third-trimester toxicity models. 394 

Dataset Classification models  

 Toxic Nontoxic Total 

Overall Toxicity 59 85 144 

First Trimester Toxicity 50 106 156 

Second Trimester Toxicity 18 47 65 

Third Trimester Toxicity 15 45 60 

 395 

 396 

 397 
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Figure 1. Structural distribution of toxic (1) and nontoxic (0) compounds from the Overall 398 

Toxicity dataset. Clusters of highly similar compounds are connected. Blue circles represent 399 

nontoxic compounds, and red squares represent toxic compounds. Compounds with a Tanimoto 400 

coefficient >0.8 are connected by vertices. The color scheme in the background represents the 401 

number of neighbors. 402 

 403 

The chemical space analysis was performed using the overall toxicity dataset. The analysis 404 

has been performed by plotting the dataset using similarity maps. 54 As shown in Fig. 1,  most 405 

toxic and nontoxic compounds do not share the same clusters or are not connected and the dataset 406 

contains few toxicity cliffs (i.e., structurally similar compounds with a significant difference in 407 

toxicity), which improves the effective discrimination between toxic and nontoxic entities, and 408 

paves the way for more reliable predictions with our models.76–78 409 

As described in the QSAR Modeling section, 16 models were built with various 410 

combinations of fingerprints and ML methods. The RF and LightGBM models were built in 411 

KNIME and validated with 5-fold cross-validation. The statistical characteristics of the model are 412 

shown in Tables 3 and S1. All cross-validated models for the overall toxicity, first, second, and 413 

third-trimester toxicities are present in Table 3 after threshold moving. Threshold moving increases 414 

prediction confidence without losing data (i.e., we tried threshold-moving calibration of 415 

probability estimates without the need to balance the data).79,80 All cross-validated developmental 416 

toxicity endpoint models showed high predictive accuracy on 5-fold external cross-validation 417 

based on several metrics, including CCR, SE, SP, PPV, and NPV. 418 

Briefly, overall toxicity models showed reasonable CCR (65-68%), SE (62-72%), and SP 419 

(62-82%). The models also displayed a good coverage of 75%-82% with varying calibrations. The 420 
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ECFP4 + RF model showed excellent coverage and consistent metrics, so it was implemented into 421 

the web tool. The first trimester models showed reasonable CCR (60-68%), SP (56-80%) and PPV 422 

(73-81%), with a good coverage of (72.7-90%). The ECFP4 + RF model was also selected for the 423 

web tool to represent the first trimester, as it showed the highest coverage and accuracy for first 424 

trimester models. The second-trimester models had adequate CCR (59-73%), PPV (84-87%), and 425 

coverage of 54.5%-90%. The ECFP4 + LightGBM model showed the most promising 426 

performance, so it was selected for the web tool. Lastly, third-trimester models showed superior 427 

SP (73-80%), PPV (83-88%), and coverage (70-90%). Given its performance, the ECFP4 + 428 

LightGBM model was selected for the web tool. 429 

 430 

Table 3. Statistical characteristics of the developmental toxicity calibrated QSAR models.  431 

Fingerprint Method CCR SE SP PPV NPV Coverage (%) PT 

Overall Toxicity 

ECFP4 RF 0.65 0.66 0.63 0.55 0.73 82.1 0.35 

MACCS RF 0.67 0.72 0.62 0.57 0.76 75.0 0.38 

ECFP4 LightGBM 0.65 0.48 0.82 0.65 0.70 82.1 0.46 

MACCS LightGBM 0.62 0.60 0.64 0.54 0.70 75.0 0.41 

First Trimester Toxicity 

ECFP4 RF 0.66 0.75 0.56 0.75 0.56 90.9 0.72 

MACCS RF 0.63 0.59 0.66 0.75 0.47 72.7 0.67 

ECFP4 LightGBM 0.63 0.71 0.54 0.73 0.51 90.9 0.72 

MACCS LightGBM 0.64 0.48 0.80 0.81 0.46 72.7 0.73 

Second Trimester Toxicity 
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RF, Random Forest; ECFP4, extended connectivity fingerprints with diameter 4; LightGBM, Light 432 

Gradient-boosting machine; MACCS, Molecular Access Systems keys fingerprint; CCR, Correct 433 

Classification Rate; SE, Sensitivity; SP, Specificity; PPV, Positive predictive value; NPV, 434 

Negative predictive value; Coverage, a ratio of the test set or external set compounds within the 435 

applicability domain; Probability Threshold, PT; Statistical results all obtained after threshold-436 

moving calibration. Statistical results obtained from the default probability threshold available in 437 

Supplementary Material. 438 

 439 

In the developed RF and LightGBM models, a continuous value represents the probability 440 

of a given compound belonging to a specific class. In this study, independent training of 441 

classification models using developmental toxicity in overall or individual trimesters aims to 442 

differentiate toxic and non-toxic compounds. Due to the nature of the endpoint and the lack of 443 

available literature, binary classification models were utilized instead of continuous ones to 444 

ECFP4 RF 0.70 0.46 0.94 0.95 0.44 90.9 0.88 

MACCS RF 0.65 0.51 0.78 0.84 0.41 54.5 0.73 

ECFP4 LightGBM 0.72 0.76 0.67 0.84 0.55 90.9 0.79 

MACCS LightGBM 0.66 0.49 0.83 0.87 0.42 54.5 0.75 

Third Trimester Toxicity 

ECFP4 RF 0.73 0.59 0.87 0.92 0.45 90.0 0.89 

MACCS RF 0.62 0.51 0.73 0.83 0.37 70.0 0.78 

ECFP4 LightGBM 0.70 0.67 0.73 0.87 0.46 90.0 0.87 

MACCS LightGBM 0.62 0.44 0.8 0.85 0.35 70.0 0.79 
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categorically differentiate between compounds as toxic or non-toxic, simplifying the prediction of 445 

developmental toxicity risks. 446 

Typically, probabilities less than 0.5 are assigned to the nontoxic class, while values greater 447 

than or equal to 0.5 are assigned to the tox class. However, when dealing with imbalanced data, 448 

QSAR models for classification often yield poor probability estimates (<0.5) for the minority 449 

class.56 We explored various probability thresholds ranging from 0 to 1 to identify the optimal 450 

threshold for model performance. The statistical performance of these QSAR models is detailed 451 

in Table S1. Overall, the statistical performances of the calibrated models for developmental 452 

toxicity resulted in significant enhancements in the statistical performance of these QSAR models 453 

(Fig 2A-D). Consequently, the ideal thresholds in the table were retained as the final model for 454 

predicting the developmental toxicity of new compounds. The calibrated models outperformed the 455 

uncalibrated counterparts or scored similarly, rarely underperforming models without calibration. 456 

(File S1) 457 

 458 
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 459 

Figure 2. Radar chart for Overall Toxicity Models Predictions with Uncalibrated and Calibrated 460 

Models. 1A) Uncalibrated and Calibrated model statistics for ECPF4+ RF model 1B) Uncalibrated 461 

and Calibrated model statistics for MACCS + RF models 1C) Calibrated and Uncalibrated models 462 

for ECFP4 and LightGBM models. 1D) Calibrated and Uncalibrated models for 463 

MACCS+LightGBM models. The calibrated models outperformed the uncalibrated counterparts 464 

or scored similarly, rarely underperforming models without calibration. 465 

 466 
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The most predictive classification model for the developmental toxicity category was 467 

implemented in the PregPred web application (https://pregpred.mml.unc.edu/). The PregPred 468 

web tool has an intuitive user interface (Figure 3.), in which the user may draw a compound of 469 

interest in the "molecular editor" box or directly paste the SMILES string of the queried chemical 470 

structure. The user will be prompted to select the models they wish to use in a checkbox format 471 

(e.g., overall toxicity, first trimester toxicity). After hitting the "Get Properties" button, the user 472 

will receive the classification outcomes (e.g., toxic, nontoxic) using the best classification model 473 

for each of the selected models. The user will also be shown the predicted probability values, 474 

which are helpful for estimating the confidence of classification outcomes. 81 All predictions also 475 

contain the AD estimates and mechanistic interpretation using color-coded maps of fragment 476 

contribution. 67,68 For the fragment contribution maps, atoms or fragments promoting positive 477 

toxicity are highlighted in green, while those decreasing the toxicity are highlighted in purple. 478 

The models developed in this study are available within the PregPred web application 479 

(https://pregpred.mml.unc.edu/). 480 
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 481 

Figure 3. User interface for PregPred. The query chemical can be drawn in the "molecular editor" 482 

box or directly inserted by pasting the SMILES strings. After hitting the "get properties" button, 483 

the user will receive predicted values for developmental toxicity for all the model options selected 484 
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under the box "Model Options" and, if selected, color-coded maps of fragment contributions to 485 

toxicity. 486 

 487 

In order to carry out an additional statistical validation of the PregPred app, we compiled 488 

and prepared a list of 6 additional drugs (not included in any of the QSAR datasets) with 489 

developmental toxicity data from various studies.82–86 These were compounds with known 490 

developmental toxicity effects from studies that adhered to the criteria listed under "Merging the 491 

datasets and verification of nontoxic compounds." Then, we used PregPred to predict the 492 

developmental toxicity potential of these compounds (Fig 4). 493 

 494 
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 495 

Fig 4. Experimental and predicted toxicity of six developmental toxicants not included in any of 496 

the train or test datasets with structural fragments' contribution to toxicity. Fragments contributing 497 

to toxicity are highlighted in green, and fragments decreasing toxicity are colored red. Predictions 498 

were made using the overall toxicity model from the PregPred web tool. Confidence in the 499 

prediction is shown inside the parenthesis. 500 

According to the results of PregPred (Figure 4), the classification models correctly 501 

classified 4 out of 5 compounds. These results corroborate the high external predictive power 502 

reported above, especially when considering compounds inside the AD. Conversely, one 503 
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compound was erroneously predicted by the overall toxicity classification model. The incorrect 504 

prediction was inside of the model's applicability; therefore, the analysis of predictions using 505 

PregPred should be cautious, as the classification models were trained using small datasets, and 506 

the biological mechanism underlying the compound's developmental toxicity might be 507 

multifactorial or distinct from those represented in the training data, indicating a gap in the model's 508 

ability to generalize across mechanistic pathways. 509 

In toxicity modeling, it is more important for a model to accurately predict toxic than 510 

nontoxic compounds; this can reduce animal testing and resource waste by eliminating compounds 511 

likely to fail downstream in the development process due to safety concerns. Therefore, the 512 

sensitivity of the models (66-76%) indicates their utility, given that toxic compounds were 513 

classified as positives or class 1. The specificity (54-83%) indicates that nontoxic compounds are 514 

not frequently mislabeled as toxic. Our models yielded PPV ranging from 55% to 87% and an 515 

NPV from 42% to 77%, which underscores the models' considerable potential in contributing to 516 

the advancement of the 3 Rs (Reduce, Refine, and Replace). The high PPV and NPV scores 517 

provide a comprehensive understanding of a model's predictive accuracy, with high values 518 

suggesting a precise model in identifying true cases of a condition and reliable in confirming its 519 

absence. While the model could be improved by including more diverse true negatives (nontoxic 520 

compounds) in the dataset, we still emphasize that sensitivity and specificity are considerable for 521 

a model with only 144 compounds.  522 

To our knowledge, the high sensitivity of this developmental toxicity QSAR model 523 

outperforms others in the field. Other groups have reported competitive QSAR models for 524 

developmental toxicity on similar datasets, such as the FDA and TERIS databases.24,25 Some 525 

groups utilized proper chemical curation protocols (i.e., removing mixtures and salts and 526 
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standardizing chemotypes), but not all. In the future, we hope to expand the dataset to include more 527 

compounds verified as either developmentally or non-developmentally toxic, especially those with 528 

evidence from epidemiological studies. However, it is difficult to definitively classify compounds 529 

as being non-developmentally toxic, given the complexity of this endpoint and the many 530 

manifestations of developmental toxicity.  531 

Another major challenge for this endpoint is elucidating whether the medication induces 532 

developmental toxicity or the mother's underlying illness for which she is being treated. To address 533 

this issue, we suggest that regulatory agencies incentivize, for each drug and indication, 534 

epidemiological studies following cohorts of babies born to women who took the medication 535 

throughout pregnancy and those born to women who did not. This, of course, is outside the scope 536 

of this work; however, it would prove a helpful step in furthering maternal and fetal health, which 537 

is desperately needed in the US and other countries. 538 

We suggest that the utility of our developmental QSAR model lies within its potential to 539 

predict developmental toxicants with high accuracy. Currently, regulatory standards require that 540 

animal tests be used to determine developmental toxicity for environmental compounds and FDA-541 

approved drugs and cosmetics. Unfortunately, these studies are time-consuming, expensive, and 542 

raise ethical concerns. In contrast, our QSAR model can be easily implemented in the early stages 543 

of drug development to reduce animal testing downstream. We hope that this model, as well as the 544 

other toxicity models we have developed, progresses further toward regulatory acceptance.  545 

  546 

Conclusions 547 

 We have created the largest publicly available heavily curated database of developmental 548 

toxicity that includes the per-trimester data as well as overall toxicity irrespective of pregnancy 549 
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term. We have compiled robust QSAR models for accurately predicting developmental toxicants 550 

with a CCR of 62-72%, sensitivity of 54-76%, PPV of 55-87%, and NPV of 42-77%. These models 551 

were implemented in the PregPred web app, which is reliable, fast, and user-friendly for the 552 

assessment of the developmental toxicity of compounds. Users can make predictions using these 553 

rigorous and externally validated computation models that fulfill all the OECD principles for 554 

developing and validating QSAR models for regulatory purposes. The web app is intuitive and 555 

does not require prior programming or knowledge of computation skills for its utilization. The 556 

predictions for a single compound take only a few seconds. Furthermore, the PregPred interface 557 

provides users with the following outcomes: (i) toxic/nontoxic classification for overall 558 

developmental toxicity and trimester toxicity; (ii) confidence in the predictions; (iii) applicability 559 

domain estimation; and (iv) color-coded contribution maps illustrating the relative contribution of 560 

chemical fragments for toxicity. Considering the model's accuracy and ease of implementation, we 561 

suggest that this be considered a novel alternative approach in light of the 3Rs (refining, reducing, 562 

and replacing) for animal testing. Medication safety in pregnant women is vastly understudied, 563 

and we hope that our in silico model supports the advancement of developmental toxicology.  564 

 565 

Supplemental Material 566 

Supplemental Material includes the results for the calibrated and uncalibrated models and curated 567 

datasets for the developmental toxicity endpoint in xlsx format. 568 

 569 
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