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ABSTRACT: Controllable installation of a single nitrogen atom is central to many major goals in skeletal editing, with progress 
often gated by the availability of an appropriate N-atom source. Here we introduce a novel reagent, termed DNIBX,  based on  
dibenzoazabicycloheptadiene (dbabh), which allows the electrophilic installation of dbabh to organic substrates. When inda-
none β-ketoesters are aminated by DNIBX, the resulting products undergo divergent ring expansions depending on the mode 
of activation, producing heterocycles in differing oxidation states under thermal and photochemical conditions. The mecha-
nism of each transformation is discussed, and the different reactivity modes of the indanone-dbabh adducts are compared to 
other nitrogenous precursors. 

Skeletal editing requires the concurrent formation or cleav-
age of multiple new bonds to a single atom.1–4 Accordingly, 
central to many of the recent advances in this space are re-
agents that successfully manage this bond choreography, 
delivering a single-atom equivalent. An example illustrating 
this fact can be found in work from Suero, whose single-
component reagent has enabled insertion of a carbon atom 
to olefinic substrates (Fig. 1A).5–8 An analogous N-atom 
transfer was demonstrated by Morandi, with nitrogen in-
sertion promoted through in-situ reaction between ammo-
nia and iodine(III) oxidants.9,10 Though powerful, the lack of 
a well-defined single-component reagent in this latter case 
introduces mechanistic ambiguity and limits the potential 
applications of this reagent system due to competing oxida-
tions.11,12 Though a range of other reagents have advanced 
the opportunities for nitrogen atom transfer, including ano-
meric amides,13–15 sulphenyl nitrene precursors,16–18 oxadi-
azoles,19 diazirines,20 and osmium nitrides,21 many desira-
ble classes of nitrogen atom insertions remain elusive. Con-
tinued progress in this area is intimately tied to the further 
development of novel reagents capable of transferring sin-
gle nitrogen atoms. 
 
We were inspired by Cummins’s use of dibenzoazabicyclo-
heptadiene (dbabh) as a nitrogen atom source in metal ni-
tride synthesis (Fig. 1B).22,23  While dbabh has served re-
peatedly as a nitrogen atom synthon in inorganic synthesis, 
it has largely been ignored in this capacity by organic chem-
ists,24–28 with the closest precedent in Gribble’s synthesis of 
polyaromatic systems by oxidative deamination, which dis-
cards the nitrogen atom.29–34  
 
Here we report a single-component nitrogen atom transfer 
reagent that enables productive skeletal incorporation of 
the nitrogen atom of dbabh. This hypervalent iodine rea-
gent (Fig.  1C), for which we propose the name DNIBX (1, 
dibenzo-7-azanorbornadiene-benziodoxolone, akin to 
Waser’s EBX reagent35), is demonstrated to aminate inda-
none β-ketoesters; these aminated indanones display diver-
gent subsequent reactivity in which the dbabh functionality 
allows access to ring-expansion products in multiple redox 
states.  
 

Hypervalent iodine has traditionally served as a platform 
for the transfer of protected nitrogen species,36,37 including 
azide,38,39 bis-tosylamine,40 sulfoximine,41 phthalimide,42 
and diarylimines.43 A striking recent development in hyper-
valent iodine chemistry is the realization of stable io-
dine(III) reagents bearing unprotected amines (primary44 
or secondary45 alkyl amines, and more recently ammonia46)  
 

 
Figure 1. A) Select examples of atom transfer reagents used 
for skeletal editing. B) Inspiring precedent of N-atom trans-
fer with dbabh. C) Synthesis, scalability, and structure of 
DNIBX.  
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Figure 2. Scope of the amination reaction. Isolated yields on 0.3 mmol scale 

for the direct transfer of amino groups. These advances 
prompted us to synthesize 1 from the corresponding silyla-
mine (Fig. 1C).25 The synthesis was remarkably scalable, al-
lowing  the production of decagrams of 1 in a single batch. 
Structural data indicates a distorted T-shaped geometry 
about the iodine, akin to other cyclic amino-iodine(III) spe-
cies. The N-I-O (165.83°) and endocyclic C-I-O (76.13°) bond 
angles   are comparable to previous reported N-bound cyclic 
iodine(III).42–44,47 The I-N bond length (2.087 Å) falls within 
the range of other I(III)-NR2 bonds (NR2 = piperidine, 
2.093(11) Å;45 carbazole, 2.069(4) Å).47 Differential scan-
ning calorimetry shows a multifaceted exotherm that onsets 
at temperature of 133 °C and releases 440 kJ/kg (see SI for 
details). The onset temperature is comparable to azido-hy-
pervalent iodine species, but 1 releases less than one third 
of the energy per kilogram than Zhdankin’s reagent (1770 
kJ/kg) and less than half of Waser’s ABZ reagent (965 
kJ/kg).39 
 
With a structurally validated and thermally robust reagent 
in hand, we chose indanone β-keto-ester enolates (2) as 
model nucleophiles to investigate the reactivity of 1, envi-
sioning that release of a nitrene through retro-[4+1] elec-
trocyclization of the dbabh functional group48 would result 
in ring expansion to the corresponding lactam.49 Gratify-
ingly, we found that copper(I)-enolates engaged in produc-
tive amination; potassium- or ammonium-enolates reacted 
only to give oxygenated products (see SI). Routine optimi-
zation resulted in a catalytic protocol that uses the commer-
cially available, air-stable copper(I) thiophene-2-carbox-
ylate as a catalyst in combination with stoichiometric tri-
ethylamine as a base. This protocol can be adapted for the 
synthesis of a variety of aminated indanones (Fig. 2).  Of 
note, oxidatively sensitive functional groups (3f, 3g, 3n) 
were unaffected by the reaction conditions.  Additionally, 
Chan-Lam coupling of a pinacol boronate ester was not 

observed, allowing aminated product 3k to be obtained in 
good yield. A number of fused heterocycles (3m, 3n, 3o, 3p) 
were also tolerated in the amination reaction. While tert-
butyl ester 3d could be formed under these conditions, ad-
ditional steric hindrance in the form of mono- or dimethyl 
substitution at the β-position of the indanone resulted in 
prohibitively sluggish reactivity (see SI). Radical scavenging 
experiments (TEMPO, BHT) indicate that the copper-cata-
lyzed amination of 2 proceeds via a radical mechanism, in 
line with previous studies of copper(I) enolates (See SI).50  
 
Having synthesized a family of aminated indanones, we 
sought to engage the newly-installed dbabh functional 
group as a nitrenoid precursor to generate isoquinolones 
(4) (Fig. 3A).49 Initially, we tested a variety of conditions to 
thermolyze 3 in high-boiling solvents and/or in the pres-
ence of metal catalysts.48,51–55 However, we found all of these 
conditions to be unsuccessful, where the main observed 
product was often the result of a single C-N bond cleavage.54 
Surprisingly, we found that methanol was a privileged sol-
vent for this transformation; refluxing in methanol afforded 
4a in 21% yield (along with anthracene (5) as a byproduct) 
where heating in other solvents at the same temperature 
did not yield any product. Further optimization revealed 
LiCl as an effective promoter (possibly due to an ionic 
strength effect, vide infra), allowing 4a to be obtained in 
70% yield in just 24 h. These conditions proved general, al-
lowing many other isoquinolones to be obtained including 
those bearing halogen, alkoxy, and boron substituents, as 
well as unusual, fused heterocycles 4m and 4o. However, 
electron-rich substrates with donors in direct conjugation  
with the carbonyl (3g and 3n) did not give appreciable 
yields of 4. Instead, these substrates typically afforded 
products of partial solvolysis of the dbabh unit (see SI). It 
should also be noted that under these conditions, alkyl es-
ters (with the exception of tert-butyl) undergo transesteri-
fication with the methanol solvent (4a, 4m, 4o).  
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Figure 3. Scope of the ring expansion reactions to form isoquinolones (top) and isoquinolines (bottom). Isolated yields on 0.1 
mmol scale. TXO = Thioxanthen-9-one. a[Ir(dF(CF3)ppy)2(dtbpy)]PF6 and 427 nm Kessil lamp used in place of TXO and 390 
nm. bBenzoic acid (1 eq) added. 

We next sought to explore the photochemistry of the dbabh 
functional group. In the event, we were surprised to dis-
cover that photolysis of 3 in methanol resulted in methyl 
isoquinoline-3-carboxylate (6a) along with dimethoxydihy-
droanthracene (7, formed as a cis/trans mixture). This unu-
sual transformation represents a redox transposition of the 
thermally induced isoquinolone synthesis, formally migrat-
ing the oxidation balance from the heterocyclic product to 
the anthracene-derived leaving group. Again, methanol 
proved to be unique in its ability to promote this transfor-
mation; other solvents arrested at an aldehyde-containing 
intermediate (vide infra). 
 
Our initial investigations into the scope of this reaction re-
vealed highly substrate-dependent reactivity. High 
throughput experimentation (HTE) was leveraged to 

remedy this. After exploring a range of photocatalysts and 
additives (see SI for details),  thioxanthen-9-one (TXO) was 
identified as the optimal photocatalyst, with dilution of the 
reaction mixture also necessary to enable light penetration 
due to the generally low solubility of aminated substrates 3 
in MeOH. Notably, in contrast to the thermal conditions, 
transesterificaiton was not observed under photolysis, al-
lowing the synthesis of isoquinolines with varied ester func-
tionality (6a, 6b, 6c, 6d, Fig. 3B). Electron rich substrates 6f 
and 6g required extended reaction times, but nonetheless 
afforded product. While fused pyridine 3o reacted very 
sluggishly with poor yield (5% yield after 5 days),  an addi-
tional round of HTE revealed that a mild acid additive 
(AcOH or BzOH) rescued its reactivity, allowing napthy-
ridines 6o and 6p to be prepared in 63% and 32% yield, re-
spectively.  
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Figure 4. A) Trapping of 4H-isoquinolone. B) Ring opening of α-pyrrolidine indanone. C) Isolation and resubjection of retro-

Dieckmann product. D) Proposed mechanism for thermal ring expansion.  

Having discovered two new reactions of the dbabh scaffold, 
we embarked on a mechanistic investigation of each reac-
tion pathway. Despite our initial hypothesis of a pericyclic 
release of a nitrene from 3, the stark solvent effect noted in 
the optimization of the reaction strongly suggests other-
wise, as a concerted cheletropic extrusion would be ex-
pected to have little-to-no solvent dependence.56,57 As such, 
we investigated alternative mechanisms, using related sub-
strates as a guide. First, acenaphthalene derivative 3q was 
found to give the methanol-trapped lactam 8 in 53% yield 
(Fig. 4a); this product represents a solvent-trapped analog 
of the tautomeric 4H-isoquinoline potentially encountered 
in the parent reaction. Next, pyrrolidine 9 was found to af-
ford the retro-Dieckmann product, diester 10, in 70% yield 
(Fig. 4B). To test whether an analogous ring opening is rel-
evant to the formation of 4 we prepared the dbabh-substi-
tuted retro-Dieckmann product 11 by reaction with NaOMe. 
Upon resubjection to the thermal ring expansion reaction 
conditions, 11 did not yield any 4a, ruling out such a path-
way (Fig. 4C). Instead, we favor a mechanism (Fig. 4D) sim-
ilar to that proposed by Christoffers for the base-mediated 
ring expansion of alpha-amino ketones,58 in which intramo-
lecular alkoxyaziridine formation and Grob-type ring ex-
pansion gives a zwitterionic intermediate. This intermedi-
ate may extrude anthracene (by either a concerted 
cheletropic extrusion or stepwise bond cleavage events, as 

shown) and 4H-isoquinolone, which ultimately tautomer-
izes to 4.  
 
Under photochemical conditions, our experiments suggest 
that the dbabh subunit is a spectator in the first stage of the 
mechanism. Aldehyde 12 is isolated as a mixture of E/Z iso-
mers as a major product when photolysis is conducted in 
THF (or other non-protic solvents) in place of methanol 
(Fig. 5A). Moreover, 12 is observed as an intermediate dur-
ing the photolysis in methanol, supporting photochemical 
Norrish cleavage as the first stage of this reaction.59 Con-
sistent with aryl ketone photochemistry, the consumption 
of 3 is accelerated by triplet sensitization (e.g., by TXO), in-
dicating a triplet-mediated ring cleavage. A Norrish mecha-
nism is further supported by an intramolecular competition 
kinetic isotope effect (KIE) experiment; the primary KIE 
supports a hydrogen atom transfer (HAT) process and the 
retention of total D incorporation (as well as lack of D incor-
poration when unlabeled substrate reacts in CD3OD) sug-
gests solvent is not involved (Fig. 5B).60,61 As evidence that 
Norrish cleavage product (12) is relevant to the isoquino-
line synthesis, it can be resubjected to the reaction condi-
tions to give 6. However, under otherwise identical condi-
tions, 12 remains unreacted in the dark, indicating that 12 
is photoactivated en route to 6. To determine the nature of 
this photoactivation, we monitored the photolysis of (E)-12  
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Figure 5. A) Isolation of aldehyde intermediate in aprotic solvent. B) Intramolecular KIE study. C) Aldehyde E/Z ratio and 
product formation kinetics under sensitized and unsensitized conditions. D) Proposed mechanism for photochemical ring 
expansion. 

  

 
Figure 6. Comparison of primary amine and azide reactivity under thermal and photochemical reaction conditions. 
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by NMR in the presence and absence of TXO. In each case, 
the E olefin quickly isomerizes to a mixture of E and Z 
(~3:1). However, 6 is formed >3x faster in the presence of 
thioxanthone, indicating that C-N bond cleavage likely pro-
ceeds via the triplet excited state of 12 (Fig. 5C). While these 
studies cannot offer a definitive characterization of the pho-
tosolvolysis nor its relative timing with condensation, we 
suspect an SN1-like process on the basis of the lack of stere-
ospecificity in the formation of 7(Fig. 5D).62,63  
 
Finally, the reactivity of 3 was compared with other nitro-
gen atom sources (Fig. 6). Under thermal conditions, pri-
mary amine 13 reacts to give 3,4-dihydroisoquinolone 14.58 
Notably, neither oxygen nor dimethoxydihydroanthrancene 
7 were sufficient to oxidize 14, discrediting a mechanism by 
which 3 is first solvolyzed to give 14 and is then re-oxidized 
to form 4. Under photochemical conditions, 13 reacts to 
give an unidentified mixture of products, again discrediting 
its intermediacy in the photochemical ring expansion of 3. 
Azide 15 reacts under photochemical conditions as ex-
pected to give the nitrenoid ring expansion product 4a. Sur-
prisingly, 15 underwent thermal retro-Dieckmann ring 
cleavage with maintenance of the azide to afford 16. The di-
vergent reactivity of 13 and 15 relative to 3 underscores the 
complementarity of DNIBX as a nitrogen atom synthon.  
 
In conclusion, we have demonstrated the synthesis and ap-
plication of DNIBX as a reagent for the preparation of valu-
able heterocycles under multiple reactivity regimes. In re-
actions with indanones, the transferred dbabh moiety 
serves as a unique nitrogen-atom surrogate, resulting in 
thermally induced ring expansion reactivity to give isoquin-
olones. Moreover, it allows photochemical ring expansion of 
indanones to give isoquinolines – reactivity that is only ob-
served with dbabh-functionalized indanones. We anticipate 
that DNIBX’s distinctive nitrogen-atom transfer properties 
will serve to enable a wide range of skeletal editing trans-
formations.  
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