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Abstract 13 

Enzymes offer a more environmentally friendly and low-impact solution to conventional 14 

chemistry, but they often require additional engineering for industrial settings, an endeavor 15 

that is challenging and laborious. To address this issue, the power of machine learning can be 16 

harnessed to produce predictive models that facilitate in silico study and engineering of novel 17 

enzymatic properties. However, the conversion from the biological domain to the 18 

computational realm requires special attention to ensure the training of accurate and precise 19 

models. In this review, we examine the critical step of encoding protein information to 20 

numeric representations for use in machine learning. We selected the most important 21 

approaches for encoding the three distinct biological protein representations — primary 22 

sequence, 3D structure, and dynamics — to explore their requirements for employment and 23 

inherent biases. Combined representations of proteins and substrates are also introduced as 24 

emergent tools in biocatalysis. We propose the division of fixed representations, a collection 25 

of rule-based encoding strategies, and learned representations extracted from the latent spaces 26 

of large neural networks. To select the most suitable protein representation, we propose two 27 

main factors governing this choice. The first one is the model setup, being influenced by the 28 

size of the training dataset and the choice of architecture. The second factor is the model 29 

objectives, concerning the assayed property, the difference between wild-type models and 30 

mutant predictors, and requirements for explainability. This review is aimed at serving as a 31 

source of information and guidance for properly representing enzymes in future machine 32 

learning models for biocatalysis. 33 
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1. Introduction42 

43 

In the current time of climate change and increasing resource depletion, enzyme technology 44 

has emerged as a more environmentally friendly and potentially low-impact approach to 45 

industrial processes traditionally mediated by conventional chemistry (Buller et al., 2023; 46 

Hauer, 2020; Radley et al., 2023; Reetz et al., 2024; Sheldon and Woodley, 2018; Wu et al., 47 

2021). Instead of complicated pathways with a plethora of reagents, extreme conditions, and 48 

protection groups, enzymes offer a renewable alternative with high selectivity and tunability 49 

(Sheldon and Woodley, 2018; Woodley, 2022; Wu et al., 2021). Early examples consist of 50 

enzyme-based detergents (Kirk et al., 2002) and the employment of nitrile hydratases to 51 

synthesize acrylamide (Yamada and Kobayashi, 1996). Recent advances in bioinformatics 52 

strategies have enabled the discovery of enzymes with specialized activity (Buller et al., 53 

2023; Hon et al., 2020; Oberg et al., 2023), as well as the engineering of enzymes towards 54 

enhanced activity, substrate specificity, enantioselectivity, and thermostability (Galanie et al., 55 

2020; Qu et al., 2020; Renata et al., 2015). Especially the directed evolution (DE) approach 56 

of mimicking Darwinian evolution, which was co-awarded with a Nobel Prize to Frances 57 

Arnold (Arnold, 2018, 1998, 1996) has seen significant use for enzyme engineering 58 

(Bornscheuer and Pohl, 2001; Cherry et al., 1999; Cherry and Fidantsef, 2003; Giver et al., 59 

1998; Stimple et al., 2020; Turner, 2009; Zhao and Arnold, 1999). Enzymatic biocatalysis 60 

has had a profound impact in areas such as pharmaceutical drug discovery (Devine et al., 61 

2018; Savile et al., 2010), the cosmetic industry (Heath et al., 2022; Khan and Rathod, 2015), 62 

and waste degradation (Bilal et al., 2019; Mohanan et al., 2020), and multiple enzymatic 63 

processes have even been developed sequentially to create biocatalytic cascades (France et 64 

al., 2017; Gandomkar et al., 2019; Huffman et al., 2019; Nazor et al., 2021; Santacoloma et 65 

al., 2011; Sperl and Sieber, 2018).  66 

67 

The growing use of enzymes has, nonetheless, revealed several challenges when utilizing 68 

them for industrial catalysis purposes because they did not evolve to perform optimally in 69 

industrial bioreactors where high stability, selectivity, and activity are important to maximize 70 

product yields. Despite improvements in protein engineering, enhancing multiple enzyme 71 

properties such as activity and stability simultaneously is still a difficult endeavor (Acevedo-72 

Rocha et al., 2018; Calzadiaz-Ramirez et al., 2020; Stimple et al., 2020; Tokuriki et al., 73 

2012), as well as the prediction and control of substrate specificity and regioselectivity — 74 

crucial properties for industrial purposes — are often challenging (Harding-Larsen et al., 75 

2023; M. Yang et al., 2018). In this context, machine learning (ML) algorithms have emerged 76 

as powerful tools, capable of modeling complex relationships within protein and enzyme 77 

datasets. In biocatalysis, ML has facilitated the study and engineering of proteins and led to 78 

novel insights for improving enzymatic processes (Kouba et al., 2023; Markus et al., 2023; 79 

Mazurenko et al., 2020; Yang et al., 2019). Notable examples include activity and substrate 80 

specificity predictors (Robinson et al., 2020), deep learning (DL) models for the estimation of 81 

metabolic enzyme activities (Li et al., 2022) and for functional predictions of enzymes 82 

(Gligorijević et al., 2021), models for protein solubility predictions (Yang et al., 2016; Y. 83 

Yang et al., 2021), and numerous approaches for predicting protein stability changes upon 84 

mutagenesis (Blaabjerg et al., 2023; Folkman et al., 2016; Iqbal et al., 2022; Li et al., 2020; 85 

Teng et al., 2010). ML has also enabled a more efficient multiparametric optimization 86 

Abbreviations: BLOSUM, BLOck SUbstitution Matrix; CNN, convolutional neural network; DL, deep learning; 

EC,enzyme commission; ELBO, evidence lower bound; GFP, green fluorescent protein; GNN, graph neural 

network; KNN, k-nearest neighbors; MD, molecular dynamics; MLDE, machine learning-assisted directed 

evolution; MSM, Markov state models; OHE, one-hot encoding; PLM, protein language model; QM/MM, 

quantum mechanics/molecular mechanics; VAE, variational autoencoder, XAI, explainable AI 

https://doi.org/10.26434/chemrxiv-2024-7hwf7 ORCID: https://orcid.org/0009-0001-7800-2669 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-7hwf7
https://orcid.org/0009-0001-7800-2669
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 

strategy (Kunka et al., 2023; Ma et al., 2021), facilitated de novo enzyme design (Yeh et al., 87 

2023), and prediction of non-additive epistatic effects (Cadet et al., 2018, 2022; Li et al., 88 

2021). Finally, ML has been combined with DE in the aptly termed “machine learning-89 

assisted” directed evolution (MLDE), where it has significantly improved the exploration of 90 

the sequence-function landscape in the search for enhanced variants (Bruce J. Wittmann et 91 

al., 2021; Wu et al., 2019; Xu et al., 2020; Yang et al., 2024, 2019). 92 

93 

Traditionally, the focus within ML research has often been to refine the algorithms, whereas 94 

data representation is treated as a secondary concern. This viewpoint posits that given 95 

sufficient data and computational resources, ML models should inherently discern and 96 

leverage the most salient features relevant to the task at hand. However, this view overlooks 97 

the challenge of producing such large protein datasets of high quality (i.e., reproducibility) 98 

and neglects the critical role of data representation in enhancing or limiting a model’s ability 99 

to learn (Bengio et al., 2013; Iuchi et al., 2021). Our work addresses the topic of protein 100 

representations as a critical step for uniting biology and data science. In biology, a protein is 101 

commonly represented by its primary or tertiary structure through categorical or symbolic 102 

information, while ML traditionally requires numeric inputs in the forms of vectors, matrices, 103 

and tensors. This poses an exciting task of representing proteins in a manner that is both 104 

informative for ML models and reflective of the underlying biological properties. 105 

106 

Interestingly, the concept of inductive biases introduces a nuanced understanding of how ML 107 

models approach learning tasks. Inductive biases refer to the assumptions made by a model 108 

about the patterns it expects to find in the data before any data is indeed observed. They 109 

guide the learning algorithm towards certain solutions over others, effectively shaping the 110 

hypothesis space that the model explores (Baxter, 2000). Selecting the right inductive biases 111 

— through the strategic representation of data — can significantly facilitate the learning 112 

process, enabling models to learn more efficiently and effectively from fewer examples 113 

(Baxter, 2000).  114 

115 

In the context of biocatalysis, these inductive biases arise either manually or by 116 

representation learning, and the choices made during the encoding process strongly affect the 117 

information captured in the representations. In this review, we investigate the methodologies 118 

for protein representation utilizing the protein sequence, structure, or dynamics. We also 119 

analyze the assumptions of the inductive biases that are captured in the different 120 

representation techniques. We conclude with a discussion about different factors influencing 121 

the choice of protein representation. 122 

123 

2. Sequence Representations124 

125 

A simple description of a protein is the one-dimensional sequence representation of the 126 

molecular structure using an alphabet of 20 amino acids. This leads to an alphanumeric 127 

expression of the biomolecular components to easily differentiate between proteins. While 128 

simple, the string of single-letter residue codes contains a vast amount of information, from 129 

the physicochemical properties of every amino acid to the evolutionary trace of the protein. 130 

Sequences are even intrinsically linked to 3D structures and functional properties, making 131 

them a rich source of information critical for protein design. However, the development of 132 

ML models for predicting protein functions requires precise feature extraction from those 133 

sequences. A spectrum of methodologies to identify optimal features are available, ranging 134 

from simple to complex ones. This section outlines the evolution of feature extraction 135 

techniques, emphasizing the transition from elementary assumptions to sophisticated models. 136 
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Finally, we will treat a mixed representation where structural insights are used to influence 137 

the sequence representation. 138 

139 

2.1 Fixed Sequence Representations 140 

141 

The methods for capturing biological information stored in the sequence representation are 142 

varied, often focusing on different elements of this information. One category of methods is 143 

the so-called “fixed” representations, a collection of rule-based approaches to convert 144 

between the protein sequence and numerical vectors by incorporating specific parts of the 145 

amino acid characteristics (Figure 1) (Markus et al., 2023). The simplest of all is the one-hot 146 

encoding (OHE) technique, a prevalent method in ML for transforming categorical data into 147 

a binary format. Here, each residue is represented as a vector vi = (0,0,...,1,...,0) with ‘1’ 148 

placed at the ith index corresponding to its lettering, creating a binary 20 × N matrix with a 149 

single non-zero entry in each column, where N is the length of the protein sequence. 150 

Although OHE offers no protein information aside from the amino acid identities, it is used 151 

extensively as a fast and effective method for converting biological information into 152 

numerical vectors (Elabd et al., 2020; Goldman et al., 2022; Greenhalgh et al., 2021; Hsu et 153 

al., 2022; Michael et al., 2023; Raimondi et al., 2019; Bruce J. Wittmann et al., 2021; M. 154 

Yang et al., 2018). However, the sparse and high-dimensional nature of OHE can lead to 155 

computational inefficiencies, particularly in models dealing with long protein sequences. 156 

Moreover, many ML algorithms require the input of a fixed size throughout their training and 157 

inference, necessitating an additional data pre-treatment step in OHE, e.g., trimming long 158 

sequences or extending short ones with zeros. 159 

160 

161 
Fig. 1. Fixed representations for encoding the protein sequence. OHE (left) is the simplest method and only 162 
uses the amino acid identity. Physicochemical properties (middle left) instead capture the nature of the amino 163 
acids by explicitly using their properties as features. Matrices such as the BLOSUM encoding introduce 164 
evolutionary information to the protein representation (middle-right). Lastly, the sequence can also be used to 165 
calculate structural properties such as SASA (right). 166 
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The simple nature and lack of inherent bias prevent OHE from capturing any relationships 167 

between amino acids before the training. Property-based encoding strategies emerge as a 168 

potential solution to instruct ML algorithms about the physicochemical nature of the 169 

sequences, either global protein descriptors or those at the residue level. The former captures 170 

the behavior of the entire protein chain through properties such as solubility or radius of 171 

gyration, while the latter instead enables the encoding of each amino acid using a set of 172 

properties such as charge, hydrophobicity, volume, or pKa, imposing representation biases 173 

towards certain residue attributes and allowing the model to discern the similarities and 174 

differences between two residues. Various sets of physicochemical residue descriptors exist, 175 

such as the large database of amino acid indices, and AAindex (Kawashima and Kanehisa, 176 

2000), containing over 500 matrices for encoding sequence information. Such a set of indices 177 

for charge, polarity, hydrophobicity, average accessible surface area, and side chain volume 178 

was used to model and predict the donor specificity of fold A glycosyltransferases by Taujale 179 

et al. (Taujale et al., 2020). Another example is the recent pre-print by Xu et al., where the 180 

authors employ physicochemical properties such as volume, hydrophobicity, and π-π 181 

interactions to model and improve enantioselectivity of carboxylesterase AcEst1 from 182 

Acinetobacter sp. JNU9335 (Xu et al., 2024). 183 

184 

Instead of manually choosing between the many similar indices, the inherent patterns of the 185 

physicochemical properties can be extracted through their principle components, such as the 186 

Vectors of Hydrophobic, Steric, and Electronic properties (VSHE) (Mei et al., 2005), z-187 

scales (Hellberg et al., 1987; Jonsson et al., 1989; Sandberg et al., 1998; Wold et al., 2011), 188 

the DL-based amino acid parameter representations by Meiler et al. (Meiler et al., 2001), or 189 

the five factors described by Atchley et al. (Atchley et al., 2005). Using these principal 190 

components enables the incorporation of a wide range of different residue properties without 191 

drastically increasing the dimensionality of the vector representation due to the principal 192 

components containing information from multiple physicochemical properties. An example 193 

is Factor III by Atchley et al. which encompasses bulkiness, residue volume, average volume 194 

of a buried residue, side chain volume, and molecular weight (Atchley et al., 2005). Several 195 

ML models have employed these dimension-reduced physicochemical representations for 196 

different enzymes, including the thiolase activity and substrate specificity predictors 197 

(Robinson et al., 2020), the Sortase A mutagenesis model for ML-guided directed evolution 198 

(Saito et al., 2021), and DeepTM, a DL-based model for predicting the melting temperatures 199 

of proteins such as PET plastic-degrading enzymes (M. Li et al., 2023). Nevertheless, a 200 

potential issue with this approach is the “black box”-like nature, complicating the process of 201 

interpreting the results and discerning the actual residue property contributions when 202 

examining model feature importance. 203 

204 

Aside from introducing residue information and imposing an inherent bias to the protein 205 

representation through physicochemical properties, the encoding method can be based on the 206 

evolutionary information contained in the sequence. These biases force the model to learn 207 

evolutionary important patterns. One such technique, the BLOck SUbstitution Matrix 208 

(BLOSUM) encoding, is generated from alignments of protein sequences and focuses on 209 

evolutionary changes and conservation (Henikoff and Henikoff, 1992; Mount, 2008). Based 210 

on the frequency of amino acid substitutions in these alignments, each entry in a BLOSUM 211 

matrix represents the likelihood of substitution between amino acids, calculated based on 212 

observed substitutions in protein families. In BLOSUM encoding, each amino acid is 213 

replaced by a vector derived from the corresponding row in the BLOSUM matrix, vi = 214 

(xA,xG,...,xY ) where xA is the likelihood score that the ith residue is substituted with alanine, 215 

thus enabling the representation to capture the evolutionary history and functional similarities 216 
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between amino acids. We employed this sequence representation in our model for predicting 217 

glycosyltransferase activity specificity (GASP), which allowed the model to use the 218 

evolutionary information to discern the wide array of different glycosyltransferases (Harding-219 

Larsen et al., 2023). The evolutionary information can also be captured using a Position 220 

Specific Scoring Matrix (PSSM), a method that uses a Multiple Sequence Alignment (MSA) 221 

of a set of proteins to quantify the likelihood pij that an amino acid at a specific position j 222 

mutates into the ith residue. These matrices can be constructed using a sequence similarity 223 

program such as PSI-BLAST (Altschul et al., 1997). 224 

225 

Finally, a fourth approach to extracting biological information from the protein sequences is 226 

to exploit the relationship between the primary sequence and the 3D structure. Secondary 227 

structure elements have long been possible to estimate purely through primary sequence (Y. 228 

Yang et al., 2018),  and also structural properties such as Solvent Accessible Surface Area 229 

(SASA) (Lee and Richards, 1971) and the Half Sphere Exposure (HSE) (Hamelryck, 2005) 230 

can be predicted from sequence alone (Cheng et al., 2005; Fraczkiewicz and Braun, 1998; 231 

Heffernan et al., 2017; Song et al., 2008). Sequence-based structural properties have been 232 

used in tandem with metabolic network properties, reaction thermodynamics, and assay 233 

conditions to predict WT metabolic enzyme turnover numbers (Heckmann et al., 2020, 234 

2018), exhibiting significant importance compared to the other model features. Sequence-235 

based structural properties were also applied in the previously mentioned DeepTM (M. Li et 236 

al., 2023) algorithm, again as part of a larger feature set. 237 

238 

Lastly, it should be noted that the development of AlphaFold2 (Jumper et al., 2021) and 239 

similar sequence-to-structure tools (Ahdritz et al., 2022; Baek et al., 2021; Lin et al., 2023) 240 

has blurred the boundary between sequence- and structure-based protein representations, as 241 

these tools are capable of predicting the entire 3D structure using only the sequence. This 242 

ambiguity is necessary to consider, e.g., for fair comparison of sequence-only encoding 243 

techniques and algorithms. 244 

245 

2.2 Representation learning 246 

247 

An alternative to manually extracting features from sequence information is to learn features 248 

or representations of sequences through machine learning from data (Iuchi et al., 2021; Sinai 249 

and Kelsic, 2020). The key idea is to learn general representations through a machine model 250 

by training on large data sets of unlabeled protein sequences. The obtained representations of 251 

the pre-trained embedding model are then used to train a task-specific (surrogate) model, 252 

requiring less labeled data. The following sections will describe two common approaches for 253 

learning sequence embeddings (Figure 2). 254 

255 

2.2.1 Variational Autoencoders 256 

257 

Variational Autoencoders (VAEs), introduced by Kingma and Welling in 2013 (Kingma and 258 

Welling, 2013), offer a framework for training deep latent variable models that learn 259 

meaningful representations by optimizing a lower bound on the likelihood of the data, 260 

essentially trying to maximize the probability of observing the training data under the model. 261 

This process involves a balance between accurately reconstructing data and enforcing a 262 

structured latent space, making it possible for VAEs to generate new data samples that 263 

resemble the original inputs. This allows VAEs to capture essential features of the data 264 

efficiently. The utility of VAEs is particularly evident in handling high-dimensional and 265 
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sparse data, such as large sets of one-hot encoded (OHE) protein sequences, enabling the 266 

extraction of compact and meaningful representations (Detlefsen et al., 2022). 267 

268 

269 
Fig. 2. Two common approaches for learning sequence embedding. Variational Autoencoders (left) are 270 
latent variable models that utilize an encoder-decoder setup to learn a latent space embedding, z. Protein 271 
Language Models (right) are also used to generate sequence representations but instead employ an attention 272 
mechanism that dynamically weighs the relevance of different parts of a protein and a Feedforward Neural 273 
Network (FFNN). A protein encoding can be obtained by averaging over the neural embeddings. The resulting 274 
representations from both techniques can then be used for fine-tuning task-specific predictions. 275 

276 

The foundation of VAEs is centered around the transformation of input data (e.g. OHE 277 

sequences), x, into a latent distribution, z, through an encoder, 𝑞𝜃(z|x). The latent distribution,278 

typically Gaussian, is characterized by parameters (mean and variance) derived from the 279 

input by a neural network. The decoder of the VAE then attempts to reconstruct the input 280 

data from the latent variables, following the distribution pϕ(x|z). The objective of training a 281 

VAE is to maximize the evidence lower bound (ELBO) on the log-likelihood, which is 282 

expressed as: 283 

284 

ℒ(𝒙; θ, 𝜙) = 𝔼𝑞𝜃(𝒛|𝒙)[log 𝑝𝜙(𝑥|𝒛)] − 𝐷𝐾𝐿(𝑞𝜃(𝑧|𝒙)||𝑝(𝑧))285 

286 

The first term in the ELBO represents the reconstruction loss, promoting similarity between 287 

the decoded samples and the original inputs, and the second term is the Kullback-Leibler 288 

(KL) divergence, serving as a regularization term ensuring that the latent space is well-289 

regularized and continuous, enabling efficient data representation and interpolation 290 

(Tschannen et al., 2018; Vincent et al., 2008). 291 

292 

In the context of protein sequences, VAEs leverage the manifold hypothesis, which suggests 293 

that high-dimensional data can be effectively modeled on a low-dimensional, non-linear 294 

manifold (Vincent et al., 2008). VAEs achieve two critical objectives: (i) reducing the 295 

dimensionality and sparsity to mitigate the curse of high dimensionality (Bellman, 1966) and 296 

(ii) incorporating domain-specific knowledge through the model architecture and sequence297 

preprocessing and sequence alignment (Detlefsen et al., 2022). Choices made when building298 

the architecture and constructing the MSA not only facilitate more efficient learning but also299 

enhance the model’s ability to support transfer learning by introducing inductive biases that300 

align with the tree topology of the evolutionary history underlying the protein family (Ding et301 

al., 2019). For these among other reasons, latent variable models such as VAEs have seen302 

widespread adoption for predicting the mutational effect on protein fitness and in MLDE.303 

Notable examples are the mutational effect predictor EVE by Frazer et al. (Frazer et al.,304 

2021) or applications in MLDE studies conducted by Wittmann et al. (Bruce J Wittmann et305 
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al., 2021; Bruce J. Wittmann et al., 2021). Giessel et al. utilized Variational Autoencoders to 306 

engineer therapeutic enzyme variants with improved stability and activity, showcasing the 307 

model’s ability to generate novel ornithine transcarbamylase sequences with enhanced 308 

therapeutic potential, marking a significant advancement in the application of VAEs for 309 

therapeutic enzyme engineering (Giessel et al., 2022). Hawkins-Hooker et al. successfully 310 

employed Variational Autoencoders to generate novel, functional variants of the luxA 311 

bacterial luciferase, demonstrating VAEs’ capacity to explore protein sequence space and 312 

manipulate biophysical properties such as solubility, thereby presenting a valuable 313 

complement to traditional protein engineering methods (Hawkins-Hooker et al., 2021). 314 

Kohout et al. leverage VAEs to design novel variants of haloalkane dehalogenases for 315 

biocatalysis, demonstrating the applicability to generate sequences with stability and activity 316 

comparable to wild types while addressing challenges in maintaining protein solubility 317 

(Kohout et al., 2023). Finally, Hsu et al. highlighted the versatility of VAEs by augmenting 318 

evolutionary density scores extracted from the DeepSequence VAE model (Riesselman et al., 319 

2018) with the simplistic OHE (Hsu et al., 2022). The augmentation approach achieved high 320 

performance across 19 different datasets — even models trained on as few data points as 42. 321 

322 

2.2.2 Protein Language Models 323 

324 

Another common method for generating protein sequence representations is Protein 325 

Language Models (PLMs), which nowadays increasingly employ the Transformer 326 

architecture (Vaswani et al., 2017). The Transformer is an ML architecture originally 327 

popularized in the domain of natural language processing to learn general patterns of 328 

language by predicting the missing words intentionally removed from sentences by their 329 

context. PLMs are trained on large protein sequence databases containing sequences sampled 330 

across different organisms. The training objective of PLMs is to reconstruct the sequence of a 331 

protein after it has been partially corrupted through the masked language modeling objective 332 

(Devlin et al., 2018). Similar to VAEs, PLMs can be used to extract latent representations of 333 

protein sequences, by forward passing sequences through the trained model and averaging the 334 

final layer output over the sequence length (Rao et al., 2020). A major difference between 335 

PLMs and VAEs is the attention mechanism at the core of PLMs, which allows the network 336 

to build up complex representations that incorporate context from across sequences (Rives et 337 

al., 2021): 338 

339 

Attention(𝑸, 𝑲, 𝑽) = softmax (
𝑸𝑲𝑇

√𝑑𝑘

) 𝑽 340 

341 

The attention mechanism used in Protein Language Models (PLMs) dynamically weighs the 342 

relevance of different parts of a protein sequence by calculating a weighted sum of values 343 

(V). The weights are determined by the compatibility of queries (Q) and keys (K), which is 344 

scaled by a constant, the square root of the dimension of the keys (dk) in the original 345 

transformer implementation (Vaswani et al., 2017), and normalized through a softmax 346 

function. Analysis of PLM representations has revealed that PLMs intrinsically learn 347 

biologically relevant features. For instance, their attention maps have been shown to bear a 348 

close resemblance to contact maps in proteins, indicating their capability to capture essential 349 

biological insights (Rives et al., 2021). PLM representations have demonstrated great 350 

flexibility in domain-specific tasks, such as function prediction, protein localization, and 351 

mutational effect prediction (Brandes et al., 2022; Elnaggar et al., 2021; Ferruz et al., 2022; 352 

Goldman et al., 2022; Rives et al., 2021; Thumuluri et al., 2022). PLMs offer a robust way to 353 

generate highly effective representations for domain-specific applications, making them a 354 
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popular choice when creating ML models for biocatalysis. Examples of PLMs for 355 

biocatalysis include the study by Yu et al. utilizing contrastive learning for the precise 356 

annotation of enzyme functions by Enzyme Commission (EC) numbers, outperforming 357 

conventional tools in accuracy and capability to annotate underexplored and mislabeled 358 

enzymes (Yu et al., 2023). Hoffbauer and Strodel introduce TransMEP, a tool employing 359 

transfer learning from protein language models to accurately predict the effects of mutations 360 

on proteins, demonstrating the efficacy of leveraging pre-trained models like ESM-2 (Lin et 361 

al., 2023) for mutation effect prediction in protein engineering (Hoffbauer and Strodel, 2024). 362 

The pre-trained model of ESM-1b (Rives et al., 2021) has also seen extensive use in 363 

biocatalysis, either directly employed as protein representations for supervised tasks 364 

(Goldman et al., 2022; Hou et al., 2023; Bruce J. Wittmann et al., 2021; Xu et al., 2022), or in 365 

the form of a fine-tuned task-specific encodings (Kroll et al., 2023a, 2023b). 366 

367 

2.2.3 Comparing VAEs with PLMs 368 

369 

Both PLM and VAE representations frequently rank as the state of the art in task-specific 370 

application benchmarks, such as mutational effect prediction (Livesey and Marsh, 2023) or 371 

MLDE studies (Bruce J. Wittmann et al., 2021). When comparing VAEs to PLMs for 372 

applications in protein engineering, some general rules can be drawn. There are some 373 

indications that VAEs show greater performance for task-specific applications (Bruce J. 374 

Wittmann et al., 2021). VAEs are also smaller than PLMs, which makes them faster at 375 

inference and easier to run without large computational resources. Furthermore, VAEs are 376 

superior during sampling, due to their ability to easily sample from the latent distribution by 377 

passing latent variables through the decoder. VAEs can be highly customized, for example, 378 

allowing the creation of latent variables with fewer dimensions to facilitate data visualization 379 

or fine-tuning (Detlefsen et al., 2022). On the other hand, VAEs have to be trained 380 

individually for each protein family, whereas PLMs can be used across all protein families 381 

without further training, even generalizing beyond naturally observed proteins (Verkuil et al., 382 

2022). Interestingly, nowadays ML developers are exploring the possibility of combining 383 

PLMs and VAEs (Sevgen et al., 2023). 384 

385 

2.3 Structure-Informed Sequence Representations 386 

387 

Some methods incorporate structural information when producing a sequence representation. 388 

Here, the protein structure is employed as a selection filter for the identification of important 389 

residues, delimiting the sequence encoding to a curated list of amino acids and circumventing 390 

the issue of information dilution where redundant features dominate the informative ones. For 391 

biocatalysis, these structure-informed sequence representations ensure that the focus is 392 

directed towards important parts of the enzyme, such as the active site, remote binding sites, 393 

or other areas believed to be important for the enzymatic property to be modeled (e.g., dimer 394 

interfaces). 395 

396 

In structure-informed sequence representations, a 3D structure is combined with an MSA to 397 

identify and encode specific residues in every protein of interest. Generally, two different 398 

approaches exist for this identification: manual selection and spherical extraction. The former 399 

method entails examining the template structure and choosing the residues important for the 400 

area in focus such as the residues lining the active site as described by Röttig et al. in their 401 

Active Site Classification (ASC) strategy to model the protein families of kinases, nucleotidyl 402 

cyclases, trypsins, malate/lactate dehydrogenases, and decarboxylating dehydrogenases 403 

(Röttig et al., 2010). The list of manually curated residues is then mapped onto every protein 404 
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in the MSA through the aligned positions of the identified residues. In the spherical 405 

extraction method, the list of important residues is instead acquired automatically by 406 

constructing a spherical boundary around the area in focus, e.g., the catalytic residues, and 407 

then extracting all amino acids encompassed by this boundary using protein structure analysis 408 

programs such as MDTraj (McGibbon et al., 2015) or BioPython (Cock et al., 2009). This 409 

automated selection approach was employed by Robinson et al. to model and predict the 410 

substrate specificity of OleA thiolases; aligning all 73 sequences to the OleA thiolase from 411 

Xanthomonas campestris (Goblirsch et al., 2016) and extracting the active site residues from 412 

a crystal structure of the before-mentioned protein using a 12 Å sphere centered around the 413 

Cα of the active site cysteine (Robinson et al., 2020). Another example is Goldman et al. who 414 

examined the activity and substrate specificity of multiple protein families including 415 

glycosyltransferases and halogenases using spheres ranging from 3 to 30 Å (Goldman et al., 416 

2022). 417 

418 

Both selection strategies have their merits and deficiencies: while manual selection ensures a 419 

significant degree of control over the choice of residues, it ultimately requires expert curation 420 

and is highly protein-specific. The spherical extraction technique sacrifices some of this 421 

control to alleviate these issues by only needing the centroid and radius to be defined, making 422 

the process faster than the manual selection. 423 

424 

Importantly, the structure-informed approach currently requires an MSA to map the identified 425 

residues to the entire set of proteins, which might cause problems for poor alignments with 426 

many gaps that offer minimal protein information. Furthermore, while the strategy can be 427 

used to bias the representation to focus on specific areas of the protein, discarding a 428 

significant portion of the sequence is also an inherent limitation of the method. If a distant 429 

part of the protein is important for a property, e.g., due to allostery influencing protein 430 

activity (Calvó-Tusell et al., 2022a), this information will be lost when only focusing on a 431 

specific site. Furthermore, if an ML model targets global properties such as protein fitness 432 

scores (Fox, 2005; Michael et al., 2023; Bruce J. Wittmann et al., 2021; Wu et al., 2019) or 433 

melting temperature (M. Li et al., 2023), it is unlikely to benefit from focusing the protein 434 

representation on a particular part of the protein. 435 

436 

3. Structure Representations437 

438 

The biological structure representation contains information about the relative 3D positions 439 

and chemical identities of every atom and bond of the protein, x = ℝ3×N, with N being the 440 

length of the sequence. Increasing the information complexity from a 1D amino acid 441 

sequence to a 3D structure thus introduces additional challenges for the encoding, especially 442 

when working with simpler ML architectures requiring an abstraction of the protein structure 443 

into a one-dimensional representation vector. Encoding the protein structure can either be 444 

done by extracting fixed features directly from the structure or by converting the highly 445 

detailed 3D protein into a simpler representation for producing learned representations. 446 

Alternatively, it can be done by utilizing a novel structure alphabet. 447 

448 

3.1 Fixed Features Extracted from the Protein Structure 449 

450 

Similar to describing the sequence through a set of fixed properties, fixed structure 451 

representations can be constructed by quantifying different aspects of the protein structure. 452 

While the use of these structural features has been limited in ML for biocatalysis, several 453 

approaches exist for extracting features from the 3D structure of a protein. Many enzymes 454 
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utilize a binding pocket to tailor the catalytic environment, which can be converted to 455 

numerical descriptors through tools such as Fpocket (Le Guilloux et al., 2009), a program for 456 

detecting and describing ligand-binding pockets. Features from Fpocket have seen use in 457 

allosteric site prediction (Xiao et al., 2022). Accurate van der Waals surface area descriptors, 458 

moments of inertia, electrostatics, and thermodynamic values can be calculated through 459 

programs such as ProtDCal (Ruiz-Blanco et al., 2015), and those features have seen use in 460 

models predicting the substrate specificity of nitrilases (Mou et al., 2021) or estimating the 461 

kinetic parameters of glycoside hydrolases (Carlin et al., 2016). 462 

463 

3.2 Simplification of the 3D Protein Structure for Representation Learning 464 

465 

Instead of distilling the structural information into a set of descriptors, the structural data can 466 

be converted into simplified representations that retain more information than fixed structure 467 

features. This can be done with a cubic grid (voxel), protein graph representations, or protein 468 

surface representations. These methods can then be employed in DL architectures to 469 

construct learned protein representations (Figure 3) (Isert et al., 2023). 470 

471 

472 
Fig. 3. Three common structure representations for DL architectures and their process towards a learned 473 
1D vector representation x ∈ ℝd. Top: the protein structure is approximated using a 3D voxel grid 474 
representation. This grid is processed using a 3D CNN, where voxels are sequentially convoluted to reach the 475 
desired dimensions. Middle: the protein graph is a non-linear representation of the structure using nodes and 476 
edges. In the GNN, the properties of each node are passed through the edges to update the node information. 477 
Bottom: Triangulation creates a protein surface representation with each vertex containing physicochemical 478 
information. The mesh is usually deformed to a polar coordinate system and processed using a convolutional 479 
network. 480 

481 

3.2.1 Grid Representations 482 

483 

The continuous protein structure can be converted to a discrete representation by dividing the 484 

molecular space into individual grid sections. Volumetric cubes — so-called voxels — 485 

represent 3D data by an assembly of course-grained cubes, drastically reducing the 486 

dimensions of the encoding (Isert et al., 2023). This can either be implemented by dividing 487 

the structure into smaller “microenvironments” and then encoding each of these 488 

microenvironments individually (Paik et al., 2023; Shroff et al., 2020; Torng and Altman, 489 

2017), or by encoding the entire protein into a single arrangement of cubes based on a regular 490 

3D grid (Amidi et al., 2018). 491 

492 
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MutCompute is a tool that utilizes the former strategy of microenvironments (Paik et al., 493 

2023; Shroff et al., 2020). For every residue in each protein, a cubic 20Å microenvironment 494 

is represented by 1Å voxel cubes containing information about atom labels, partial charges, 495 

and solvent accessibility of each atom within the voxel cube. The microenvironment 496 

representation is then processed by a 3D convolutional neural network (CNN) and later a 497 

fully connected neural network (FCNN). This allows the authors to evaluate the chemical and 498 

steric suitability of each of the 20 natural amino acids. This can be used as the basis for 499 

mutagenesis, such as highlighted by the study achieving an improved thermostability of the 500 

Bacillus stearothermphilus DNA polymerase (Paik et al., 2023). Novel work has expanded 501 

upon the model of MutCompute, introducing information about phosphorus and grouped 502 

halogens and thereby facilitating the training on heterogeneous microenvironments 503 

(d’Oelsnitz et al., 2024). The new model, MutComputeX, was employed for the engineering 504 

of activity-enriched variants of methyltransferase. 505 

506 

Instead of dividing the protein structure into smaller segments, Amidi et al. employed the 507 

entire protein structure in their encoding strategy (Amidi et al., 2018). The protein backbone 508 

is converted into a binary voxel grid with a predefined resolution and processed by a 3D 509 

CNN. The model was trained to predict EC numbers, achieving an accuracy of 78.4%. The 510 

authors furthermore highlighted the versatility of this approach, as the model’s binary voxel 511 

representation can be replaced by physicochemical properties such as hydrophobicity and 512 

isoelectric points. This allows future models to include inductive biases tailor-made for a 513 

specific task. It should be noted that while the voxel representation can directly capture the 514 

3D nature of proteins, it is not without limitations. For example, it is sensitive to rotations and 515 

translations of a 3D structure in space and does not directly capture information about 516 

chemical bonds. 517 

518 

3.2.2 Protein Graphs 519 

520 

An alternative approach to grid representations is to collapse the 3D protein structure to a 521 

graph representation where the structural information of the protein is encoded as elements 522 

and connections, designated as “vertices”/“nodes” and “edges”, respectively (Fasoulis et al., 523 

2021). Different detail levels can be employed when creating protein graphs, e.g., for 524 

atomistic resolution, features of each node consist of atom type and charge, while the edges 525 

represent the molecular bonds (Fasoulis et al., 2021). A more coarse-grained approach is the 526 

residue-level description where the nodes represent entire amino acids and the edges specify 527 

both the covalent and non-covalent interactions between the residues. For residue-level 528 

protein graphs, the node features can include physicochemical properties such as polarity and 529 

hydrophobicity (Fasoulis et al., 2021), or more advanced residue encodings such as 530 

evolutionary information or secondary structure (M. Li et al., 2023). Importantly, a graph is a 531 

non-linear data structure. The node connections can be represented using adjacency matrices 532 

where the ith element in the jth row describes the edge between the ith and the jth node, with the 533 

ordering of the nodes being arbitrary. The protein contact map is an example of an adjacency 534 

matrix. 535 

536 

Due to the non-linearity of graph representations, it is often infeasible to combine them with a 537 

classical ML architecture, such as logistic regression or tree-based models. This processing 538 

issue is solved by employing Graph Neural Networks (GNNs), a network architecture that 539 

directly implements the graph representation in model construction. In contrast to traditional 540 

neural networks where the information is passed through a series of hidden layers, GNNs 541 

utilize the edges as channels for information transfer between the individual nodes. This 542 
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ensures that only information originating from neighboring nodes within a pre-defined 543 

proximity is used to update each node (Zhou et al., 2020). 544 

545 

An exciting example of a GNN-based enzyme predictor is DeepFRI, a model leveraging both 546 

sequence and structure representations to model Gene Ontology (GO) terms and EC numbers 547 

(Gligorijević et al., 2021). Here, the sequence embeddings of a pre-trained PLM are used as 548 

residue nodes while a protein contact map is utilized as graph edges. A recent pre-print also 549 

proposed to combine the ESM2 sequence embeddings with graph-based structure 550 

embeddings for downstream tasks, such as predicting EC numbers, introducing the Protein 551 

Structure Transformer (PST) architecture, outperforming previous state-of-the-art models 552 

(Chen et al., 2024). 553 

554 

It should be noted that while building GNNs requires a significant amount of data, pre-trained 555 

structure embeddings can be utilized as protein encodings, drawing a parallel to the pre-556 

trained sequence embeddings. This was highlighted by the authors of PST, exhibiting high 557 

performance using pre-trained protein embeddings extracted from the model (Chen et al., 558 

2024). Another example is the Masked Inverse Folding (MIF) model (K. K. Yang et al., 559 

2022), a GNN trained on the sequences and structures of 19.000 proteins in the CATH4.2 560 

dataset (Dawson et al., 2019, 2017) to reconstruct a corrupted protein sequence using 561 

backbone information. The MIF embeddings have seen use as a representation of the protein 562 

structure (Hou et al., 2023), where the power of GNNs is harnessed to process structural 563 

information without requiring either a large dataset or computationally costly model training. 564 

565 

3.2.3 Surface Encodings 566 

567 

Finally, the protein can be modeled using a mesh-based variant of the molecular surface, a 568 

continuous sheet describing the accessibility trace of the molecule using a probe of a given 569 

radius (Richards, 1977). An example is the surface used for calculating the previously 570 

mentioned SASA, where the contact surface is the parts of the atomic van der Waals spheres 571 

in contact with the probe. The continuous surface can be discretized using triangulation, 572 

where the curvature is converted into a protein polygon mesh using tools such as MSMS 573 

(Sanner et al., 1996). These surface meshes are often encoded with the physicochemical 574 

information of the residues or atoms, allowing them to function as protein representations in 575 

ML models. 576 

577 

Notable examples of models harnessing surface representations include molecular surface 578 

interaction fingerprinting MaSIF (Gainza et al., 2019). In this example, the surface is here 579 

segmented by assigning radial patches to every vertex in the protein mesh and generating an 580 

overlapping collection of surface vertices. Geometric features and chemical properties are 581 

calculated for each vertex within the patches, and the mesh is mapped to a polar coordinate 582 

system. This representation is passed through a convolutional architecture that produces 583 

learned fingerprint descriptors. The authors utilized these fingerprints to classify ligand-584 

binding pockets, predict protein–protein interaction sites, and estimate the structural 585 

configurations of protein–protein complexes. While not inherently targeting biocatalysis, 586 

Gainza et al. consequentially highlight the advantage of surface presentation learning for 587 

understanding protein interactions. 588 

589 

In SURFMAP, the reduced surface generated by the MSMS tool (Sanner et al., 1996) is 590 

employed to generate a set of particles, each 3Å away from the protein surface (Schweke et 591 

al., 2022). After mapping the particles with a feature such as hydrophobicity or stickiness 592 
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related to the closest residue, their spherical coordinates are projected onto a 2D map using 593 

the Sanson-Flamsteed 2D projection. The authors employed this simplified representation to 594 

construct a hierarchical clustering model of superoxidase dismutases. This allowed them to 595 

distinguish between enzymes with different oligomerization states and metal ion binding 596 

preferences. Lastly, the HoloProt model combined structure- and surface-based graphs in 597 

multi-scale graph representation to predict enzyme classifications and protein-ligand binding 598 

affinities (Somnath et al., 2021). 599 

600 

3.3 Alternative Structure Representations 601 

602 

While we have generally categorized protein structure representation as either fixed 603 

descriptors or geometrical simplifications for learned representations, some approaches fall 604 

outside of this division. Recently, a novel technique for representing the protein structure 605 

using a string of letters has emerged in Foldseek (van Kempen et al., 2023). Originally 606 

designed as a tool to efficiently align a query structure against large databases, Kempen et al. 607 

developed an intriguing structure encoding. An artificial alphabet — denoted 3Di — 608 

describing the tertiary interactions of the protein is generated using a VAE. Each protein is 609 

encoded using this 3Di alphabet, and the resulting sequences are parsed through the prefilter 610 

modules of MMseqs2 (Steinegger and Söding, 2017), a protein sequence searching tool, to 611 

use in alignment queries. The Foldseek structure-to-sequence approach facilitates the use of 612 

traditional sequence representation architecture to process structural information (Heinzinger 613 

et al., 2023; Sledzieski et al., 2023; Su et al., 2023; Waksman et al., 2024). While no enzyme 614 

models have been trained using these 3Di representations as of the writing of this review, we 615 

envision this to be an exciting area for future utilization of structural information. 616 

617 

4. Dynamics Representation618 

619 

At the heart of enzymology lies the dynamic nature of enzymes (Henzler-Wildman and Kern, 620 

2007), a realm where static structural protein models meet their limits (Lane, 2023). Enzyme 621 

dynamics are becoming a key ingredient to understanding and engineering enzyme function, 622 

yet the incorporation of dynamic representations in ML remains in its infancy. Enzyme 623 

dynamics is observed as the collective movements at time scales of femtosecond bond 624 

vibrations, nanosecond side-chain fluctuations, and millisecond domain motions. Together, 625 

these motions are termed conformational dynamics and are critical for understanding 626 

enzymes (Agarwal et al., 2020; Corbella et al., 2023; Henzler-Wildman and Kern, 2007). 627 

628 

4.1 Dynamics as a Tool to Understand, Predict, and Engineer Enzymatic Activity 629 

630 

Dynamics are important and offer explanations to why distal mutations accumulate during 631 

directed evolution campaigns (Osuna, 2021), why conformational changes such as lid 632 

opening/closing rates can be rate-limiting (Wolf-Watz et al., 2004), and how conformational 633 

heterogeneity is linked with evolvability of enzyme function (Campbell et al., 2016, 2018; 634 

Corbella et al., 2023; Kim and Porter, 2021). Enzyme dynamics form a foundation on which 635 

enzymes have been studied rationally, ranging from the canonical β-lactamase (Galdadas et 636 

al., 2021), to halogenases (Ainsley et al., 2018), transferases (Tian et al., 2024), lipases 637 

(Behera and Balasubramanian, 2023), luciferases(Schenkmayerova et al., 2021), 638 

dehalogenases (Vasina et al., 2022), and dehydrogenases (Acevedo-Rocha et al., 2021; 639 

Calzadiaz-Ramirez et al., 2020). Dynamics often explain the evolution of enzymes, as they 640 

seemingly evolve dynamic networks and freeze out unproductive motions to increase 641 

catalytic activity (Bunzel et al., 2021; Campbell et al., 2016). 642 
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643 

Predictions of mutant effects on dynamics using statistical tools and algorithms are currently 644 

enabling the challenging task of conformationally driven enzyme design (Osuna, 2021). The 645 

approaches are, however, not limited to computational tools. Experimentally driven design of 646 

dynamics is also underway, enabled by advances in NMR, room-temperature and time-647 

resolved X-ray crystallography, facilitating experimental studies of enzyme dynamics and 648 

elucidating its link to activity (Bhattacharya et al., 2022; Broom et al., 2020; Weinert et al., 649 

2017). 650 

651 

What remains are ML/DL-driven end-to-end solutions for predicting changes in catalytic 652 

activity based on dynamic representations. This necessarily requires numerical 653 

representations that are well-suited for available architectures. The next frontier of 654 

computational biology is to predict the correlation between conformational dynamics and 655 

specific mutations, and their effect on activity, work which is well underway. This includes 656 

recent works on multi-state design, including simple dynamic representations to predict 657 

changes in activity, and ensemble-based enzyme design (Broom et al., 2020; Elia Venanzi et 658 

al., 2024; St-Jacques et al., 2023). 659 

660 

4.2 A Primer on Conformational Dynamics 661 

662 

Utilizing the temporal dimension of structural biology implies moving from a single structure 663 

parameterized computationally by Euclidean coordinates x ∈ ℝ3n to a set of structures X = 664 

{x1,x2,.....,xn}. The temporal perspective (ℝ𝑥,𝑦,𝑧
3𝑛 × ℝ𝑡) is challenging for biologists and665 

computational scientists alike, as relevant collective movements must be extracted and 666 

correlated with enzymatic properties. It is a significant challenge for both communities to 667 

represent these movements efficiently. The task of dynamic representations is thus finding a 668 

map between the high-dimensional input using a collection of structures X to a lower-669 

dimensional representation f : X → ℝm, without losing essential information. 670 

671 

Reflecting contemporary opinions (Vani et al., 2023), it is pertinent to clarify the dynamics of 672 

enzymes, which can be defined as a hierarchy of information (Figure 4). While the simplest 673 

protein dynamics examination is short-timescale sampling around one conformational state, 674 

for systems populated by multiple conformational states, e.g., A, B, and C, conformational 675 

diversity is defined as all accessible conformations without any order {C, A, B}. 676 

Conformational ranking implies that the order of relative population is known {A, B, C}. 677 

Boltzmann diversity orders all conformational states with correct Boltzmann weights (relative 678 

populations). Lastly, conformational dynamics are all accessible conformational states with 679 

correct Boltzmann weights and inter-conversion timescales (arrows in Figure 4). Using these 680 

definitions, many approaches do not rigorously describe conformational dynamics, but only 681 

aspects on low rungs of the information hierarchy. 682 
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683 
Fig. 4. The hierarchy of information for dynamics. Conformational Diversity is all accessible conformations 684 
without any order, while the order of the relative population is known in Conformational Ranking. Boltzmann 685 
Diversity orders all conformational states according to their Boltzmann weights. Lastly, Conformational 686 
Dynamics contains all accessible conformational states with correct Boltzmann weights and inter-conversion 687 
timescales (arrows). 688 

689 

4.3 Dimensionality Reduction of MD Simulations 690 

691 

Enzyme dynamics is typically studied computationally using long-duration molecular 692 

dynamics (MD) simulations in silico, based on Newtonian dynamics using small time steps to 693 

propagate a system forward a small unit in time (typically femtoseconds, 10−15 s). Often, this 694 

is carried out for millions of time steps resulting in a high-dimensional representation, and the 695 

challenge then lies in reducing dimensionality while conserving relevant dynamics 696 

information (Figure 5). These reductions are termed collective variables (Bhakat, 2022). 697 

698 

Collective variables were conventionally geometric measures between key catalytic residues 699 

and the ligand (Bhakat, 2022). These may represent the temporal fluctuation of distances, 700 

angles, or dihedral angles, thus summarising key interactions. The measures are selected 701 

based on domain knowledge of enzyme function and mechanism and have been successfully 702 

used to predict and engineer enzymes (A.Maria-Solano et al., 2018; Elia Venanzi et al., 703 

2024). 704 

705 

Modern collective variables are learned, finding a collective coordinate system that retains 706 

crucial information of the dynamic system. Briefly, a linear/non-linear map (E) is estimated 707 

which projects the high-dimensional data X to a lower dimensional space y = E(X) (See 708 

Figure 5) (Noé et al., 2020). Common examples include principal component analysis (PCA), 709 

and time-lagged independent component analysis (tICA) (Bhakat, 2022; Schultze and 710 

Grubmüller, 2021), or a more advanced variational approach for Markov processes 711 
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(VAMPnets) (Ghorbani et al., 2022; Mardt et al., 2018), These are frequently used to 712 

represent the dynamic enzyme system and can help with visualizing the relative population of 713 

conformational states (Acevedo-Rocha et al., 2021; Agarwal et al., 2020; Curado-Carballada 714 

et al., 2019; Romero-Rivera et al., 2017). 715 

716 

717 
Fig. 5. Procuring protein representations from dynamics. Dynamics are often studied using high 718 
dimensional MD simulations, with X containing both multidimensional spatial and temporal information. Using 719 
a map, E, lower-dimensional collective variables that summarise the relevant dynamics of the system can be 720 
extracted. The dimensions can be further reduced by averaging over the temporal dimension, Z( y ), obtaining 721 
time-averaged variables. 722 

723 

In analogy with collective variables, many dynamic representations often remain a function 724 

of time, and time-averaged measures are thus beneficial to further reduce the dimensionality 725 

(Z(y) in Figure 5). For example, root-mean-square deviation (RMSD, ℝn(t)) is a time-726 

dependent measure, but root-mean-square fluctuation (RMSF, ℝn) is not. Time-averaged 727 

measures are popular as they can reduce geometric collective variables (e.g. distance 728 

fluctuations) to a single scalar value. While this summarises the entire time series, it is 729 

inherently coarse-grained, thus potentially losing the representation of key dynamic behavior. 730 

Nevertheless, the time-dependent and independent measures (RMSD and RMSF, 731 

respectively) and their variance remain key representations of rigid and mobile regions in 732 

enzymes as well as or indicators of whether catalytically conducive conformations are 733 

sampled. These features can be thought of in the context of the aforementioned map f, in this 734 

case, Z( E(X) ), which produces a low-dimensional representation ℝn by summarising the 735 

variability of a collection of structures X across a simulation (Ainsley et al., 2018; 736 

Audagnotto et al., 2022; Kamerlin and Warshel, 2010). 737 

738 

4.4 Multi-state Design 739 

740 

Another state-of-the-art strategy is to employ energy-centric methods. These methods cannot 741 

explain anything past the Boltzmann diversity on the conformational information hierarchy 742 

and assume that hinge motions or other major conformational states can be slightly perturbed 743 

in their stability by mutation to favor a desired conformation. These major conformational 744 

states may be contributing to substrate specificity and activity, thus a multi-state design 745 

accounts for the relevant ∆∆G of mutations with respect to the change in conformation (St-746 

Jacques et al., 2023). This energy-centric representation associates an energy value with each 747 

mutant and conformational state, which may be used to assess the relative stability of 748 

conformational states. In terms of f, each structure x is assigned an energy which drastically 749 

reduces the dimensionality of the representation. 750 

751 

4.5 Shortest Path Map; A Dynamic Representation 752 
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753 

At equilibrium, a more informative representation of dynamics may instead be derived from 754 

long-duration MD simulations. These representations elucidate allosteric networks 755 

(communication paths between distal residues and the active site) and can be obtained by 756 

considering the dynamic cross-correlation matrix made of elements 757 

758 

𝐶𝑖𝑗 =
〈Δ𝑟𝑖 ⋅ Δ𝑟𝑗〉

√〈𝑟𝑖
2〉〈𝑟𝑗

2〉

759 

where Cij is the dynamic cross-correlation between residue i and j, ⟨∆ri · ∆rj⟩ is the time-760 

averaged displacement from the mean coordinate of residue i and j, and ⟨r2
i ⟩⟨r2

j⟩ is a 761 

normalization factor. This representation was developed by the group of Silvia Osuna and 762 

recently deployed as a web server (Casadevall et al., 2024), conferring accessibility of 763 

dynamic representations. The measure lies one rank above residue-independent measures 764 

such as RMSF, as it treats pairs of residues in a dynamic, but time-averaged, context (Morra 765 

et al., 2012). One obtains a representation of ℝn×n, where n is the number of atoms, a square 766 

matrix with information about the covariance of residues. The allosteric networks derived 767 

from this representation have been strongly correlated with distal mutations and subsequent 768 

effects on catalytic activity. In fact, many directed evolution campaigns accumulate 769 

mutations along allosteric networks in retro-aldolase, tryptophan synthase, cytochrome P450 770 

oxygenase, imidazole glycerol phosphate synthase, and protein tyrosine phosphatase 771 

(Acevedo-Rocha et al., 2021; Calvó-Tusell et al., 2022b; Crean et al., 2021; Gergel et al., 772 

2023; Maria-Solano et al., 2021; Romero-Rivera et al., 2022, 2017). Alternatively, 773 

asymmetric measures have also become prevalent, describing the directionality in coupling 774 

and thus elucidating residues controlling dynamics (Kazan et al., 2023). 775 

776 

During catalytic transformation, non-equilibrium dynamics have been observed using 777 

advanced MD tools. This so-called D-NEMD method is an alternative but complimentary 778 

way of representing allosteric networks from which one obtains a time-dependent vector, 779 

Rn(t), that carries information about communication pathways in the catalytic cycle (Castelli 780 

et al., 2024; Oliveira et al., 2021). 781 

782 

4.6 Learned Dynamic Representations and Future Directions 783 

784 

Finally, to address conformational transitions using a full description of conformational 785 

dynamics, Markov state models (MSM) are critical as they capture both relative populations 786 

and inter-conversion timescales between conformational states (Chodera and Noé, 2014). 787 

Despite their initial challenges (Konovalov et al., 2021), MSMs have successfully been 788 

applied to explain the dynamic behavior of many enzymes, e.g., polymerases, isomerase, 789 

glycosylases, and synthase (Gordon et al., 2016; Konovalov et al., 2021; Wapeesittipan et al., 790 

2019). With subsequent advances in ML, the collective variables are learned and extracted to 791 

form a thermodynamic and kinetic basis for understanding the enzyme in question (Ghorbani 792 

et al., 2022; Mardt et al., 2018). They are typically represented by a transition probability 793 

matrix (ℝ|S|×|S| where |S| is the number of discrete states) and a stationary distribution (π = 794 

[π1,...,π|S|]) describing the relative population of states, which are obtained from long-duration 795 

MDs. 796 

797 

The representations above are often derived from long-duration MD simulations, and thus 798 

limit the use of dynamics data in ML due to their computational cost. This tension lies in the 799 

discrepancy between the femtosecond time step of MDs and the microsecond-millisecond 800 
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timescales at which large conformational changes occur that are important for enzymatic 801 

catalysis. 802 

803 

In principle, however, MD is not the only approach for obtaining a collection of structures X. 804 

The field is currently addressing this through the use of ML tools and DL generative models, 805 

where X is considered as being derived from a probability distribution p(x). Generating X is 806 

thus a question of sampling from p(x). It has been shown that AlphaFold2 can be used to 807 

obtain various conformational states of proteins by feeding shallow MSAs (Casadevall et al., 808 

2023; Sala et al., 2023; Wayment-Steele et al., 2024). These methods only obtain 809 

conformational diversity on the information hierarchy but have subsequently been extended 810 

toward Boltzmann diversity using seeded MD simulations (Audagnotto et al., 2022; Vani et 811 

al., 2023). Alternatively, a combination of AlphaFold2 and generative models has also been 812 

developed to enable the generation of conformational ensembles (Jing et al., 2024). Thus, a 813 

rapidly expanding toolkit with which conformational ensembles can be generated is being 814 

established (Arts et al., 2023; Bose et al., 2023; Mansoor et al., 2023; Noé et al., 2020), 815 

enabling dynamic representations to be used for in biocatalysis. 816 

817 

5. Protein-Substrate Representations818 

819 

In previous sections, the emphasis has been on the featurisation of the protein. However, 820 

those strategies do not consider the possible interactions with the protein environments, e.g., 821 

solvents, ligands, substrates, or cofactors. This is an integral part of biocatalysis and 822 

constitutes a treasure trove of information that could prove beneficial in the training of ML 823 

models. The inclusion of protein-substrate interactions would, in most cases, include 824 

molecular docking, but could also involve protein dynamics, QM/MM simulations, or even 825 

crystallized complexes (Bonk et al., 2019). This could, in turn, assist in addressing tasks such 826 

as predicting substrate specificity or elucidating the structure-function of enzymes (Berselli et 827 

al., 2021). Within the realm of ML, features extracted from substrate-docking have yet to be 828 

fully leveraged (Ao et al., 2024) and are possibly challenged by difficulties in translating 829 

protein-substrate complexes into a numerical and general representation. However, some 830 

studies have successfully included information harvested from protein-substrate complexes 831 

for ML models employing different strategies which will be introduced in this section (Figure 832 

6). 833 

834 

5.1 Molecular Docking-based Descriptors and Binding Energies 835 

836 

One strategy to generate descriptors of the protein-substrate binding involves the use of 837 

scoring functions derived from the docking. For example, the scoring functions from Rosetta 838 

(Davis and Baker, 2009; Meiler and Baker, 2006) can be combined with physicochemical and 839 

active site descriptors to train a model that can predict the substrate scope of bacterial 840 

nitrilases (Mou et al., 2021). The scoring functions described interfacial interaction energy 841 

terms including full-atom van der Waals attraction, electrostatics, van der Waals repulsion, 842 

hydrogen bonding terms, and solvation energy. From all the features used to train the random 843 

forest model, the attractive part of the Lennard-Jones potential obtained from the molecular 844 

docking scoring functions was revealed to be the most consistently important variable for the 845 

model’s performance. A similar approach has been employed to predict the site of 846 

metabolism for cytochrome P450 monooxygenases and their substrates in multiple instances 847 

(Feng et al., 2023; Huang et al., 2013; Zaretzki et al., 2013, 2011). One example included the 848 

use of substrate interaction-based descriptors derived from Autodock Vina (Eberhardt et al., 849 

2021; Trott and Olson, 2010) along with chemical reactivity descriptors to train a multiple-850 
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instance ranking algorithm (Huang et al., 2013). The model was then used to predict the site 851 

of metabolism of the substrates of two cytochrome P450 enzymes, yielding an accuracy of 852 

the top two predicted rank positions of 86 % and 83 %, respectively for the two isoforms. 853 

854 

855 
Fig. 6. Approaches for encoding the protein-substrate complexes. The protein-substrate complex can be 856 
encoded based on the intermolecular interactions into a binary string commonly denoted as a fingerprint (left). 857 
The complex can also be represented by the dihedral angles and distances between catalytic residues along with 858 
the angles and distances between catalytic residues and the substrate (middle). Lastly, the protein-substrate 859 
complex can be converted into a graph representation where the nodes represent the atoms and the edges 860 
represent the interaction between two atoms (right). Notably, while not shown, the complexes can also be 861 
represented using scoring functions. 862 

863 

A slightly different route was taken in a study of the bile acid specificity in a single bile acid 864 

hydrolase (WT and two mutational variants) (Karlov et al., 2023). Here, a previously 865 

published complex of the bile acid hydrolase and a bile acid was used as a template to model 866 

the complex with other bile acid substrates with MD simulations. The last nanosecond of a 867 

100 ns simulation was used for binding energy calculations employing molecular mechanics 868 

Poisson-Boltzmann surface area and molecular mechanics generalized Born surface area 869 

methods implemented in AmberTools (Case et al., 2023). The calculated binding energies 870 

were then correlated with the corresponding activity data using linear regression which led to 871 

the identification of structural determinants of substrate binding and specificity. 872 

873 

5.2 Interaction fingerprinting 874 

875 

Another way of representing protein-substrate interactions is through interaction 876 

fingerprinting which captures the protein-substrate interactions in one-dimensional binary 877 

representations (Figure 6) (Desaphy et al., 2013). This method was utilized for predicting 878 

kinase inhibitors by comparing models trained on ligand-interaction fingerprints with models 879 

trained on molecular fingerprints of the substrates (Witek et al., 2014). Here, the models 880 

trained on the interaction fingerprints outperformed the models trained on molecular 881 

fingerprints in discriminating between active and inactive compounds. The use of interaction 882 

fingerprints was also explored in a model trained to predict the ligand affinity of HIV-1 883 
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protease inhibitors (Leidner et al., 2019). The authors extracted interaction fingerprints from 884 

crystallized protein-substrate complexes harvested from the Protein Data Bank (Berman et 885 

al., 2000), adapting the binary encoding into continuous features describing selected non-886 

covalent interactions. These interaction fingerprints were used to train a gradient-boosting 887 

model achieving an RMSE of 1.48 kcal/mol. The study also demonstrated the interpretability 888 

of the model using Shapley values which elucidated that van der Waals interactions were 889 

critical for model performance. 890 

891 

5.3 Distance and Angle-based Representations 892 

893 

An alternative encoding strategy for protein-substrate complexes is the use of distances and 894 

angles between the substrate and surrounding residues (Figure 6). This was leveraged in a 895 

study of hydrolases for the breakdown of several classes of substrates (Ran et al., 2023). 896 

Here, the authors aimed to construct a model that could predict the hydrolytic activation free 897 

energy for the reactive complexes of hydrolase-catalyzed reactions along with the favored 898 

enantiomer of the product. The ability to predict the enantiomeric outcome was enabled by 899 

including an atomic distance map consisting of atomic distances between a docked substrate 900 

and the Cα atoms of the surrounding catalytic residues transformed into a tensor by a single-901 

layer CNN. This map was concatenated with the dihedral angles of the docked substrate 902 

converted into sine and cosine values. Combined with sequence-based representations and 903 

substrate SMILES, this model could classify reactive and unreactive poses achieving an AUC 904 

of 0.87 and a good Pearson R value of 0.72. The model predicted the enantiomeric preference 905 

with an accuracy of 55 %. Distances and angles between substrate and enzyme were also 906 

employed in a study of ketol-acid reductoisomerases (Bonk et al., 2019). The 68 generated 907 

features, consisting of distances and angles between catalytic residues, substrate, cofactor, 908 

and active site waters, and magnesium ions, were regularised using LASSO regression, fed to 909 

a logistic classifier, and subsequently clustered. The trained model could differentiate 910 

between reactive and almost-reactive trajectories with >85 % accuracy. Furthermore, ranking 911 

the features from LASSO enabled the identification of a subpart of the reactive site to be 912 

particularly important in describing the activity of the enzyme. 913 

914 

5.4 Graph Neural Networks for Protein-Substrate Interactions 915 

916 

Lately, GNNs have been readily employed to capture detailed information from the protein-917 

substrate complex by converting the docking pose into a graph representation where the 918 

nodes represent the atoms and the edges represent their interaction (Yang et al., 2023). This 919 

could include the interaction between protein and substrate, between protein and protein, and 920 

between substrate and substrate (Figure 6) (Lu et al., 2023; Xia et al., 2023). While not in the 921 

realm of biocatalysis, this technique has been used to improve the accuracy of scoring 922 

functions of molecular docking (Wang et al., 2022; L. Yang et al., 2021) and to predict 923 

protein-ligand affinities (Mastropietro et al., 2023; Wang et al., 2023), especially within drug 924 

discovery (Z. Yang et al., 2022). Since enzymes do not solely rely on binding affinity for 925 

their functionality, one cannot draw direct parallels between the use of GNNs in these cases 926 

and in the case of predicting/understanding the substrate scope of enzymes. However, one 927 

study used a GNN-based model to predict and interpret the substrate specificity of multiple 928 

mutational variants of two model proteases (Lu et al., 2023). This was achieved by 929 

developing a protein graph convolutional network that could model protein structures and 930 

their complexes as fully connected graphs where each node corresponded to an amino acid 931 

from either the protein or the peptide-substrate while the edges represent the pairwise residue 932 

interactions between the nodes. The generated model could ultimately predict protease 933 

https://doi.org/10.26434/chemrxiv-2024-7hwf7 ORCID: https://orcid.org/0009-0001-7800-2669 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-7hwf7
https://orcid.org/0009-0001-7800-2669
https://creativecommons.org/licenses/by-nc-nd/4.0/


22 

activity with a given substrate achieving an accuracy >85 % across protease variants. In 934 

addition, the authors also displayed how node and edge ablation tests provided insights into 935 

the feature importance of the models. In a model that only included sequence-based features, 936 

the edges did not affect the model accuracy, and the peptide nodes played a leading role. 937 

However, when energy-based features were included, ablating edge-based features 938 

significantly impacted the model accuracy with the intermolecular edges being particularly 939 

important. 940 

941 

Overall, the use of protein-substrate complexes to generate representations holds great 942 

promise within ML for biocatalytic systems. Many of the described methods capture 943 

interpretable information which is useful in cases where explainability is an important factor. 944 

However, one should still keep in mind that obtaining protein-substrate complexes is 945 

computationally demanding when using molecular docking, making the method realistic for 946 

smaller datasets, at least until the ML-based docking methods significantly accelerate the 947 

process (Buttenschoen et al., 2024). In addition, molecular docking is not an accurate method, 948 

especially without manual inspection of poses, which could directly impact the accuracy of 949 

the model. 950 

951 

6. Choosing a Suitable Representation952 

953 

Selecting the most appropriate representation approach when constructing models can be a 954 

challenging task, and although several attempts have been made to examine the efficacies of 955 

different encoding techniques (Elabd et al., 2020; Goldman et al., 2022; Michael et al., 2023; 956 

Bruce J. Wittmann et al., 2021), no consensus exists for determining the best representation 957 

for a new protein ML model. Consequently, finding a suitable protein representation remains 958 

case-dependent. To address this issue, we propose two general factors to consider (Figure 7). 959 

The first factor is the model setup, determining the overall design of the predictive tool. This 960 

includes the size of the training dataset, defining the ease of discovering hidden patterns, and 961 

the choice of ML architecture, imposing requirements for the input representation. The 962 

second factor is the model objective, describing the type of task envisioned for the resulting 963 

model. Linking the choice of representation with project objectives such as the assayed 964 

property, wild type vs. mutational predictor, and explainability may eventually increase the 965 

chances of achieving these objectives. We expect that these two factors can be used as a 966 

source of inspiration and guidance when creating new ML models for biocatalysis. 967 

968 

6.1 Model Setup 969 

970 

When developing an ML model, design decisions are often made based on element harmony, 971 

where the size of the dataset matches the model architecture. This is also applicable to the 972 

choice of a suitable protein representation, and selecting a harmonious encoding strategy 973 

based on the model setup is extremely important. In this section, we will discuss how model 974 

design can influence the appropriate representation approach. 975 

976 

6.1.1 Size of Dataset 977 

978 

An important feature of the model setup is the size of the dataset. Here, a protein 979 

representation approach that produces a large feature set might be problematic when 980 

encoding smaller data sets due to a poor data-to-feature ratio, as the high dimensionality 981 

introduces sparsity and higher chances of finding patterns in feature noise. This can lead to 982 

significant overfitting, thus hindering the identification of hidden patterns and trends in the 983 
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data which is crucial for an efficient and accurate predictive model (Bellman, 1961; 984 

Theodoridis and Koutroumbas, 2008). The low-to-medium-throughput nature of experiments 985 

is a common issue in biocatalysis, which imposes significant restrictions on the choice of 986 

suitable representations for ML to ensure only informative features are incorporated. 987 

988 

989 
Fig. 7. Factors influencing the choice of a suitable protein representation. The first main factor is “model 990 
setup” (colored blue), which concerns the size of the dataset due to small datasets potentially preventing the 991 
discovery of patterns contained in sparse representations. The choice of ML architecture might instead impede 992 
the use of certain representations due to incompatibility. The second main factor is “model objective” (colored 993 
beige), as specialized representation might enhance models for predicting assayed enzyme properties such as 994 
activity, while full representations will likely better suit global properties, e.g., thermostability. Furthermore, 995 
WT models impose different requirements on the encoding strategy than mutant predictors due to the disparity 996 
in representation similarity. Finally, any explainability task will benefit from a clear connection between the 997 
model features and protein features. 998 

999 

A promising strategy to circumvent this problem is to leverage the large pre-trained models 1000 

for self-supervised representation learning (Ferruz and Höcker, 2022; Notin et al., 2023; Qiu 1001 

and Wei, 2023). A notable example of this is the approach introduced by Biswas et al., which 1002 

involved fine-tuning the deep neural network UniRep by using the sequences evolutionarily 1003 

related to their protein of interest, GFP, thus adapting the resulting latent vector embeddings 1004 
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to better encode protein information crucial to the evolution of GFP (Biswas et al., 2021). 1005 

The resulting ML models were capable of identifying mutants with increased fluorescence 1006 

using as few as 24 mutants as training data. Biswas et al. observed a large sequence diversity 1007 

in the new model-based variants, suggesting that the increased density of evolutionary 1008 

important information contained in the protein representation due to the fine-tuning 1009 

procedure allowed for a greater exploration of the sequence-to-function space. 1010 

 1011 

Related to utilizing knowledge from pre-trained embeddings, insights obtained from a 1012 

mutational study of a single enzyme can be transferred to homologues with little 1013 

characterization. This is known as transfer learning which entails training models on large 1014 

datasets to study scarce datasets (Yosinski et al., 2014). This could eliminate the requirement 1015 

of conducting a thorough mutational assay every time a new enzyme is examined and 1016 

facilitate Low-N modeling, though this is yet to be explored for biocatalysis. 1017 

 1018 

Alleviating the issue of a low amount of data can be done with the previously mentioned 1019 

approach of augmenting a VAE-based evolutionary density score with a simple OHE (Hsu et 1020 

al., 2022). Models trained on as few as 48 proteins exhibited good performance when 1021 

utilizing this augmentation technique. This finding highlights how combining representations 1022 

containing different protein information can be beneficial. 1023 

 1024 

Notably, while a low amount of data is a significant hindrance for most encoding strategies, a 1025 

large dataset might instead hinder the use of representations requiring significant processing 1026 

power. This includes methods for QM calculations or MD simulations, as their computational 1027 

demands make them infeasible for datasets with a large selection of proteins. This might be 1028 

especially relevant for predictive models trained on dynamics representations, as the 1029 

acquisition of such protein encodings is often computationally expensive, introducing a 1030 

question of balance between a larger dataset and an increased usage of computational 1031 

resources. 1032 

 1033 

Lastly, while the size of the training dataset is extremely influential for the choice of suitable 1034 

representation, another important related step is the split between test and training data. Here, 1035 

the choice of representation influences the preferred approach for cross-validation due to the 1036 

different types of information bias(Corso et al., 2024; Kanakala et al., 2022; Kroll and 1037 

Lercher, 2023; J. Li et al., 2023). It is important to harmonize the dataset validation strategy 1038 

with the protein representation. 1039 

 1040 

6.1.2 Choice of Architecture 1041 

 1042 

Even though the choice of model architecture is often related to the amount of training data 1043 

available due to how the performance of ML algorithms often depends on the size of the 1044 

dataset (Beleites et al., 2012; Raudys and Jain, 1991), the architecture imposes different 1045 

requirements to the representation than those described in the previous section. While 1046 

innumerable ML architectures have been developed, researchers are more likely to build 1047 

models inside of their field of expertise. Therefore, the model architecture is often determined 1048 

before the encoding approach, and the choice of protein representation is therefore strongly 1049 

influenced by the model architecture. Classical ML methods, such as logistic regression, 1050 

KNN, and random forest, usually require a 1D vector with numerical values. Consequently, 1051 

any multidimensional information must either be flattened or reduced in dimensions before 1052 

use in these models, potentially losing the important data structure contained in the 1053 

representation. Employing a representation with a large feature set together with the simplest 1054 
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of architectures might also cause problems due to their limited capacity to discover the 1055 

patterns in the feature set. 1056 

 1057 

Some protein representations might require the use of advanced DL architectures such as 1058 

GNNs and CNNs as highlighted in the description of structure representations. If a 1059 

researcher’s field of expertise is mainly CNNs, combining these ML architectures with a 1060 

protein voxel representation is likely more beneficial than attempting to employ protein 1061 

graphs and GNNs. Consequently, the generalisability of fixed descriptors is quite 1062 

advantageous. 1063 

 1064 

Finally, some ML models have shown dispositions towards memorization instead of 1065 

generalization (Buttenschoen et al., 2024; Corso et al., 2024; Kroll and Lercher, 2023; 1066 

Wallach and Heifets, 2018). Rather than learning a fundamental relationship between the 1067 

proteins and their function through the model features, they memorize all individual 1068 

representations in the training set which leads to a high degree of overfitting. If the chosen 1069 

architecture tends to achieve high validation accuracy due to such memorization, we propose 1070 

to employ fixed encoding strategies instead of learned representation. This is due to the latter 1071 

often behaving as a fingerprint with few similarities between two representations, while a set 1072 

of proteins encoded with fixed representations often has the same values across different 1073 

descriptors. In consequence, the model will be less likely to turn towards memorization when 1074 

these fixed features are used. 1075 

 1076 

6.2 Model Objective 1077 

 1078 

The second factor that influences the choice of suitable protein representation is the objective 1079 

envisioned for the ML model. Certain enzyme properties might benefit from using 1080 

specialized representation methods. Another important distinction comes from the contrast 1081 

between training models on WT and mutational data. Finally, we will discuss tasks in which 1082 

explainability is essential. 1083 

 1084 

6.2.1 Assayed Property 1085 

 1086 

If the objective of the model is to examine the activity or specificity of the enzymes, it is 1087 

crucial to encode the active site — potentially only focusing on the area of the protein 1088 

containing this site. In our recent model for glycosyltransferase acceptor specificity 1089 

predictions, we limited the representation to contain only the N-terminal domain which 1090 

contains the acceptor binding site (Harding-Larsen et al., 2023). The structure-informed ASC 1091 

method also allowed Röttig et al. to focus the representation on the active site (Röttig et al., 1092 

2010). Other examples of the representations targeting task-specific parts of the protein 1093 

include the domain embeddings of Domain-PFP for predicting Gene Ontology (GO) 1094 

annotations (Ibtehaz et al., 2023), the site embeddings and encoding of neighbouring regions 1095 

N-linked glycosylation site predictions in EMNGly (Hou et al., 2023), and the 1096 

microenvironments of MutCompute used for identifying position where mutations can 1097 

stabilize the local environment (Paik et al., 2023; Shroff et al., 2020). 1098 

 1099 

However, as previously described, limiting the representation to specific areas of the protein 1100 

can potentially remove important information, such as for allostery or protein fitness. To 1101 

capture this information, a more general protein encoding will be more suitable to allow the 1102 

resulting ML model to explore the entire sequence and structure landscape. 1103 

 1104 
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6.2.2 Wild Type vs Mutational Data 1105 

 1106 

Aside from predicted property, the type of enzymes, be it mutants or wild-type (WT) 1107 

proteins, will also significantly influence the choice of representation as two variants of the 1108 

same enzyme are inherently more similar than two WT proteins from the same family. An 1109 

ML model trained on mutant data can thus utilize more specialized protein representations 1110 

than a model trained on WT data due to a significant portion of the sequence being constant 1111 

across every variant. This strategy was employed by Saito et al. to encode variants of Sortase 1112 

A for use in MLDE by only encoding five positions known to result in a high-activity variant, 1113 

ultimately achieving an improved variant of the enzyme (Saito et al., 2021). Such an 1114 

approach will not be possible for a WT predictor, as not only will large portions of the 1115 

proteins potentially differ, but the length of each protein is unlikely to be equal. 1116 

 1117 

Due to the limited variance contained in the sequences of mutant datasets, the representation 1118 

strategies require higher sensitivity to the minute changes between each variant. Otherwise, 1119 

the resulting ML model will be unable to discern top-performing variants from those of poor 1120 

nature. Unfortunately, no gold standard has been established for the sensitivity of encoding 1121 

techniques, and it is therefore difficult to determine the best representation strategy in this 1122 

endeavour. Wittmann et al. proposed that learned embeddings obtained from models trained 1123 

on MSAs will result in representations containing a higher density of information important 1124 

for mutational tasks due to highlighting which mutations are evolutionarily feasible (Bruce J. 1125 

Wittmann et al., 2021). Nevertheless, they only observed small performance increases when 1126 

using embeddings from MSA Transformer (Rao et al., 2021), highlighting how a suitable 1127 

representation can be highly case-dependent. Consequently, new representation learning 1128 

models should be benchmarked through large collections of diverse datasets such as the deep 1129 

mutational scans collected in ProteinGym (Notin et al., 2023). 1130 

 1131 

WT models do not have the same sensitivity issue due to the larger variance between the 1132 

training sequences. This is of course by design, as WT models often remove proteins within a 1133 

preset similarity cutoff. Instead, the representation of WT proteins introduces a question of 1134 

compatibility across all proteins in both the training and test data. Methods requiring 1135 

sequence alignments, such as OHE, BLOSUM encodings, or structure-informed approaches, 1136 

will not work with sequences of low similarity. Here, graph models trained on structurally 1137 

heterogeneous enzymes might be superior. 1138 

 1139 

6.2.3 Explaining Protein Representations 1140 

 1141 

In some studies, the model objective is mainly to produce a predictive model that can be 1142 

utilized for future in silico scoring of potential variants or WT enzymes for a given reaction. 1143 

In that case, the representation strategy producing the highest accuracy is likely desired. 1144 

However, if the purpose of the model is instead to obtain a fundamental understanding of the 1145 

forces governing the protein function and the modeled process, the explainability of the 1146 

model is crucial. 1147 

 1148 

Recently, the notion of Explainable AI (XAI) has gained momentum, with terms such as 1149 

explainability, interpretability, and justification being regarded as increasingly valuable for 1150 

new models (Novakovsky et al., 2022; Vilone and Longo, 2020; Wellawatte et al., 2023; 1151 

Wojciech Samek et al., 2019). In ML for biocatalysis, the ability to explain model decisions 1152 

actively allows a more thorough understanding of enzyme features and phenotypes. However, 1153 

as XAI mainly addresses the model features, the accuracy of said explanations depends on the 1154 
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connection between model features and protein properties — a connection, that is defined by 1155 

the encoding strategy. 1156 

 1157 

If the model features represent inherent amino acid characteristics such as physicochemical 1158 

properties, incorporation of XAI can help pinpoint which of these residue features are 1159 

important for model predictions. This knowledge may lead to novel insights as well as 1160 

potentially assist in choosing targets for the rational design of new variants with enhanced 1161 

enzymatic properties. XAI was utilized by Robinson et al. to elucidate the essential residues 1162 

for the activity of thiolase members of the OleA enzyme family (Robinson et al., 2020) and 1163 

by Taujale et al. to discover a buried residue important for the donor specificity of fold A 1164 

glycosyltransferases (Taujale et al., 2020). 1165 

 1166 

If coarse-grained protein properties are implemented in the model features, the ability to 1167 

identify important amino acid attributes is reduced. Here, the implementation of XAI can 1168 

instead be utilized to compare the influence of the different protein characteristics, an 1169 

approach taken by Heckman et al. to highlight the importance of structural properties for the 1170 

activity of metabolic enzymes at the genome scale (Heckmann et al., 2020, 2018), as well as 1171 

by Mou et al. (Mou et al., 2021) and Carlin et al. (Carlin et al., 2016) to identify key ligand 1172 

binding-related features for nitrilase substrate specificity and glycoside hydrolase kinetics, 1173 

respectively. 1174 

 1175 

Finally, encoding the protein using learned embeddings introduces some interesting 1176 

challenges in XAI, as the abstract representation often does not translate directly to specific 1177 

properties in the protein. Consequently, explaining the protein properties based on the 1178 

importance of the model features is even more complicated than for the coarse-grained 1179 

representations. One solution is to use an attention mechanism when constructing the protein 1180 

embeddings, as implemented by Li et al. when examining the positional importance with 1181 

regard to the kcat of WT metabolic enzymes (Li et al., 2022). Due to the DL nature of their 1182 

model architecture, they would have been unable to directly extract the feature importance of 1183 

their model (Wellawatte et al., 2023; Wojciech Samek et al., 2019). Here, the authors 1184 

incorporated an additional sub-architecture, the attention mechanism, that allows the model to 1185 

“remember” the connection between input properties and embedding features (Bahdanau et 1186 

al., 2014; Li et al., 2022; Wellawatte et al., 2023). 1187 

 1188 

Instead of changing the architecture, the model decisions can also be elucidated using input 1189 

perturbation such as in silico mutagenesis, where the input sequence is perturbed by changing 1190 

a single amino acid and then examining the difference between the model prediction of the 1191 

original and new sequence (Novakovsky et al., 2022; Zhou and Troyanskaya, 2015). This 1192 

difference, also known as the attribution score (Novakovsky et al., 2022), can then be 1193 

calculated for a large number of perturbations, ideally, all possible ones, resulting in a 1194 

thorough sequence-function landscape of the ML model. This landscape can be examined to 1195 

determine the key residue properties, thus introducing explainability to an inherently abstract 1196 

protein representation and modeling approach. 1197 

 1198 

7. Summary & Outlook 1199 

 1200 

In this review, we have presented a diverse selection of the most prominent strategies for 1201 

encoding enzyme information for ML modeling. The representation approaches are capable 1202 

of utilizing varying levels of protein information, from primary sequence to temporal 1203 

dynamics, and their complexities range from fixed descriptors with little inherent bias to 1204 
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learned presentations extracted from complex DL models. To navigate this ever-growing 1205 

field, we introduced two main factors for choosing the most suitable encoding strategy: 1206 

“model setup”, especially concerning the training dataset size and ML architecture, and 1207 

“model objective”, relating to the assayed enzyme property, the differences between a WT 1208 

model and mutant predictor, and explainability of the model. We believe that this review 1209 

serves as both a source of information and a guide for future researchers in biocatalysis when 1210 

determining a suitable encoding strategy for their own ML models. The field is rapidly 1211 

expanding, and we envision a promising future for the development and use of more 1212 

sophisticated protein encodings. Solving the Low-N objective is a pressing objective, and 1213 

future approaches should build on the pioneering work of fine-tuning pre-trained PLM 1214 

embeddings or the combination of representations containing distinct information and 1215 

inherent bias. Another vital task is to efficiently incorporate protein dynamics representations 1216 

due to their ability to capture crucial aspects of enzymatic behavior. Lastly, we hope that 1217 

future ML projects for biocatalysis will ensure a better alignment between the choice of 1218 

protein representation and model design. 1219 
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