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ABSTRACT 21 

Reversed-phase (RP) liquid chromatography is an important tool for the characterization of 22 

materials and products in the pharmaceutical industry. Method development is still challenging in 23 

this application space, particularly when dealing with closely-related compounds.  Models of 24 

chromatographic selectivity are useful for predicting which columns out of the hundreds that are 25 

available are likely to have very similar, or different, selectivity for the application at hand. The 26 

hydrophobic subtraction model (HSM1) has been widely employed for this purpose; the column 27 

database for this model currently stands at 750 columns. In previous work we explored a 28 

refinement of the original HSM1 (HSM2) and found that increasing the size of the dataset used to 29 

train the model dramatically reduced the number of gross errors in predictions of selectivity made 30 

using the model. In this paper we describe further work in this direction (HSM3), this time based 31 

on a much larger dataset (43,329 total measurements) containing selectivities for compounds 32 

covering a broader range of physicochemical properties compared to HSM1. This includes 33 

multiple compounds that are actual active pharmaceutical ingredients and related synthetic 34 

intermediates and impurities, as well as multiple pairs of closely related structures (e.g., geometric 35 

and cis-/trans- isomers). The HSM3 model is based on retention measurements for 75 compounds 36 

using 13 RP stationary phases and a mobile phase of 40/60 acetonitrile/25 mM ammonium formate 37 

buffer at pH 3.2. This data-driven model produced predictions of ln   (chromatographic selectivity 38 

using ethylbenzene as the reference compound) with average absolute errors of approximately 39 

0.033, which corresponds to errors in  of about 3 %. In some cases, the prediction of the trans-40 

/cis- selectivities for positional and geometric isomers was relatively accurate, and the driving 41 

forces for the observed selectivity could be inferred by examination of the relative magnitudes of 42 

the terms in the HSM3 model. For some geometric isomer pairs the interactions mainly responsible 43 

for the observed selectivities could not be rationalized due to large uncertainties for particular 44 

terms in the model. This suggests that more work is needed in the future to explore other HSM-45 

type models and continue expanding the training dataset in order to continue improving the 46 

predictive accuracy of these models.  47 

 48 
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1. Introduction 50 

Reversed-phase liquid chromatography (RPLC) is an essential tool for the analysis of target 51 

analytes in a wide variety of scientific investigations.  RPLC has been for years a predominant 52 

technology in the pharmaceutical industry for stability indicating methods to establish impurity 53 

profiles for drug substances, drug products, intermediates and in-process control samples. 54 

However, it is currently challenging to select appropriate LC method conditions (i.e., stationary 55 

phases and mobile phases) for a target separation without time-consuming method development 56 

studies. 57 

In order to support method development efforts, it is useful to have models for chromatographic 58 

selectivity that are global in scope, such that the model can accommodate both charged and neutral 59 

molecules, large and small molecules, and a diversity of stationary phases. At the same time, it is 60 

desirable to have models that can accurately predict the selectivity for the separation of highly 61 

similar molecules, especially isomeric compounds. These latter separations can be particularly 62 

challenging, but they are critically important in contemporary pharmaceutical analysis. 63 

Quantitative structure retention relationships (QSRRs) have been used for help in the prediction 64 

of retention parameters to reduce method development times [1–3].  These models establish a 65 

relationship between a chromatographic retention parameter and a set of physiochemically relevant 66 

molecular descriptors. Some descriptors can be obtained experimentally, such as octanol-water 67 

coefficients (log P) [4] and Abraham solute descriptors [5–8], but often these descriptors are 68 

obtained from computational molecular geometry optimizations [1].  Some of the most successful 69 

models are obtained when groups of structurally similar compounds are considered and local 70 

models are developed, because a global, mechanistic model for liquid chromatography has not yet 71 

been developed [9]. 72 

The hydrophobic subtraction model (HSM; hereafter, HSM1) for RPLC has been in use for over 73 

20 years now [10–20]. This model can be considered a ‘data-driven’ model, in that the solute and 74 

stationary phase parameters are derived from retention measurements, rather than externally 75 

calculated or measured physicochemical parameters. The HSM1 provides descriptive parameters 76 

for RPLC stationary phases that relate to their hydrophobicities, hydrogen bonding capacities, 77 

capacities for involvement in ionic interactions, and the contributions of steric effects to their 78 

overall selectivities. These characteristics are obtained from the following equation. 79 
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where  is the chromatographic selectivity for a selected solute, x, relative to ethylbenzene (EB) 81 

and ’, ’, ’, ’ and ’ are solute specific parameters for the solute hydrophobicity, steric effects, 82 

hydrogen bond basicity, hydrogen bond acidity, and cation exchange propensity, respectively.  The 83 

H, S*, A, B and C parameters are the corresponding descriptors for the stationary phases relevant 84 

to specific mobile phase conditions (50/50 acetonitrile (ACN)/60 mM potassium phosphate buffer 85 

at pH 2.8). The original model was developed using a set of retention data for 67 solutes on ten 86 

type B silica phases [10,11], with an additional 20 solutes added soon afterwards [12]. Subsequent 87 

work identified a subset of 15 solutes to be used as probe solutes [13] for routine characterization 88 

of stationary phases in different laboratories. To establish the initial HSM1 database, retention 89 

factors for these probes, along with ethylbenzene as the reference solute, were determined for a 90 

total of 87 RPLC columns (mostly alkyl phases) [13]. Since the early 2000’s, these solutes have 91 

been used to establish column parameters for about 750 RPLC stationary phases [21,22].  92 

While the HSM1 has been used widely, it has been recognized that it is not really a global model. 93 

A small number of relatively simple molecules has been chosen for routine stationary phase 94 

characterization, and the initial model was developed based on using stationary phase chemistries 95 

of relatively limited scope (i.e., mainly alkyl phases). Furthermore, we have shown that the model 96 

does not carry the information needed to rationalize changes in the selectivity of cis/trans isomers 97 

in response to changes in the properties of a RPLC column [23]. 98 

Recently, some of us have reevaluated the original dataset as a whole (15 solutes × ~700 stationary 99 

phases), to determine whether or not the HSM1 could be refined to reveal more information about 100 

RPLC selectivity, since the original model was based on a relatively small number of stationary 101 

phases [24].  A revised model, HSM2, based on six parameters, was proposed which takes the 102 

following form 103 

10 10log log x

EB

k
hH bA aB kC vV dD

k


 
= = + + + + + 

 
      (2) 104 

Here, h, b, a, k, v, and d are solute parameters for hydrophobicity, hydrogen bond basicity, 105 

hydrogen bond acidity, cation exchange propensity, size and dipolarity, respectively, and H, A, B, 106 
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C, V and D are the complementary stationary phase parameters. Both the original HSM1 and 107 

HSM2 are ‘data-driven’ models, in that the actual retention data are used to make the parameter 108 

scales.  In the case of HSM1, an iterative subtraction method was used to determine the scales, 109 

while for HSM2, principal components analysis (PCA) was used to find scales that were consistent 110 

with the selectivity data. While HSM2 was based on a large, relatively diverse set of stationary 111 

phases, the 15 solutes used to generate the model were small molecules (i.e., molecular weights 112 

were all less than 280 Da) with a somewhat limited hydrophobicity range (log P ranging from -0.9 113 

to 4.4) that cannot be considered as representative of the range of solutes that can be analyzed by 114 

LC methods, especially compounds of pharmaceutical interest.  115 

We concluded that HSM2 had a chance of better reflecting the chemical richness present in the 116 

750 stationary phases that comprise the current HSM1 database, which include a much broader 117 

range of chemistries than the alkyl phases that were used to parameterize the original HSM1 [24]. 118 

However, we were still limited to the 15 original solutes, which we were convinced did not capture 119 

the broadest range of solute behavior – these molecules are quite simple. Molecules encountered 120 

in pharmaceutical analysis exhibit a large range of polarity and molecular weight, and often closely 121 

related compounds and isomer pairs must be separated during the drug development process. An 122 

example of a situation where the cis/trans selectivity could not be predicted or rationalized is a 123 

recent study on the effect of column aging on the cis/trans selectivity of a Bristol Myers Squibb 124 

compound, denoted as BMS-A (denoted as Lin-A in this paper). It was found that HSM1 was not 125 

able to help predict or rationalize the changes in the cis/trans selectivity for this compound upon 126 

column aging [23].   127 

Therefore, in the present study, we have attempted to address the primary limitations of the 128 

previous studies: 1) the HSM1 dataset is composed of retention measurements made with just one 129 

mobile phase composition (50/50 ACN/buffer), which precludes any direct application of the 130 

model to gradient elution conditions; 2) the buffer used for HSM1 contains phosphates, which are 131 

incompatible with mass spectrometric detection – an essential tool in the analysis of 132 

pharmaceuticals; and 3) the probe solutes have been limited to a small number of relatively simple 133 

compounds. In this work, we have produced a large set of retention measurements using our high-134 

throughput method for characterizing retention described previously [25–27]. The new dataset 135 

includes 86 solutes and 13 stationary phases, and retention has been measured at multiple mobile 136 
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phase compositions for each compound/column combination, for a total of about 40,000 137 

measurements. The 13 phases were chosen to cover a broader range of the reversed-phase 138 

chemistry reflected in the HSM1 database. The solutes were chosen to include many of the 139 

important probes used in other selectivity tests for RPLC (e.g., Tanaka, Engelhardt, etc.; see Table 140 

3 of refs. [28,29]), and also include several compounds of pharmaceutical importance, including 141 

positional isomers, and isomer pairs with shape variations.  The set also includes molecules with 142 

molecular weights of up to 600 Da, and the logP values range from 0.2 to 6.0. The 13 stationary 143 

phases were selected from the larger set of stationary phases used in the development of HSM2, 144 

with an eye towards the selection of phases with the widest differences in selectivity, as well as 145 

phases of practical use in the pharmaceutical industry. In this work, we describe the analysis of 146 

this dataset that results in a new HSM-type model (HSM3), with a focus on determining whether 147 

we could achieve improvement in the prediction of isomer selectivities.  148 

2. Materials and methods 149 

2.1 Data collection 150 

Retention factors were determined for 89 solutes on 13 stationary phases using mobile phases 151 

composed of ACN and an aqueous buffer containing ammonium formate (25 mM in ammonium 152 

and 105 mM in formate) at pH 3.2. The LC instrument was composed of modules from Agilent 153 

Technologies (Waldbronn Germany): binary pump (G4220A), autosampler (G7167B), 154 

thermostatted column compartment (G7116B), and diode array UV absorbance detector 155 

(G4212A). As described in ref. [26], samples were introduced to the mobile phase stream using a 156 

“feed injection” approach, and the injection volume was 150 nL. The solutes and stationary phases 157 

used are listed in the supplementary materials in Tables S1 and S2. Our high-throughput 158 

measurement approach is based on retention measurements made using very short columns 159 

(typically 5 to 20 mm in length and 2 mm in diameter), and then corrected using the retention 160 

factor of toluene measured using a conventionally sized column (typically 100 mm x 2.1 mm i.d.). 161 

The dimensions of all these columns are given in Table S2. The details associated with the 162 

measurement steps and implementation of correction factors were described previously [25,26]. 163 

Generally, five replicate retention measurements were made for each solute/stationary 164 

phase/mobile phase combination, and mobile phase compositions were chosen so that: 1) retention 165 

data were obtained at five different compositions for each solute/column combination; and 2) the 166 
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lowest retention factor is between 0.5 and 3.0, the highest retention factor is between 15 and 50, 167 

and the other three points are roughly evenly spaced between retention factors of 3 and 15. Meeting 168 

these criteria was not always possible, for example in the case of highly hydrophilic compounds. 169 

When working with a particular column, a set of quality control (QC) measurements were made 170 

to enable monitoring of column (e.g., stationary phase aging and column-to-column variability) 171 

and system changes over time. Such measurements were made using uracil, toluene, ethylbenzene, 172 

4-n-butylbenzoic acid, 4-n-hexylaniline, and nortriptyline as QC solutes. Generally, QC 173 

measurements were made about once per day. While the entire dataset is composed of 174 

measurements made using multiple mobile phase compositions, the model development primarily 175 

involves the use of data from a 40/60 ACN/buffer mobile phase. A more thorough exploration of 176 

the entire dataset set is left for future work.  177 

The sources of the test solutes are shown in Table S1. Stock solutions were prepared at 10 mg/mL, 178 

typically in ACN, or 50/50 ACN/water if they were not soluble in ACN. Then, a working solution 179 

was prepared at either 0.2 or 5.0 mg/mL in either ACN or 50/50 ACN/water. 180 

The full retention dataset used in this work (43,329 measurements) is provided as Supplemental 181 

Information in the file “WC_second_kernel_database.xlsx”, along several files containing quality 182 

control (QC) data as outlined in the Supplemental Information. Note that a subset of the full dataset 183 

shared here was published previously (12,319 measurements) [26], and we provide them again 184 

here simply for the convenience of the reader.  185 

 186 

2.2 Parameter estimates 187 

Calculated parameters for each of the examined solutes were obtained from several sources. 188 

Octanol/water partition coefficients (P), Connolly solvent-excluded volumes (V), molar refraction 189 

(MR) and ovality (O) parameters were calculated using Chem3D (Revvity Signals, v. 20.1.1.125) 190 

after MM2 geometry optimization. The shortest dimension of each solute molecule was calculated 191 

from the volume and ovality by assuming an oblate spheroid shape. Linear solvation energy 192 

relationship (LSER) parameters [5] were obtained from the LSER2017 calculation engine [30]. 193 

These parameters included the dipolarity-polarizability (S), the polarizability (E), the hydrogen 194 

bond acidity (A) and hydrogen bond basicity (B). Acid/base ionization constants for the ionizable 195 
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solutes were calculated using ACD/Percepta Ver. 2022.2.3 (Advanced Chemistry Development, 196 

Inc., Toronto, ON, CA). 197 

2.3 Data analysis 198 

As is discussed in Section 3.1, the HSM3 model was developed using retention factors determined 199 

in a mobile phase of 40/60 ACN/buffer. However, experimental measurements were not feasible 200 

in this mobile phase for all solute/column combinations because they were impractically large (i.e., 201 

> 50).  In those cases, the experimental retention factor data we did have were fit to the Neue Kuss 202 

(NK) model describing the retention as a function of the volume fraction of organic solvent in the 203 

mobile phase (ϕ). 204 

2 1
2

2

(1 ) exp
1

w

S
k k S

S






 
= + − 

+ 
     (3) 205 

where kw, S1 and S2 are solute/condition-specific model parameters. The fitting was carried out 206 

using a re-parameterization of the NK model where the model parameters were calculated based 207 

on the retention factor at  = 0.30 as a reference point (kref) instead of the more conventional kw, as 208 

described in a recent publication [31].  The model is then given in revised form as 209 

( )( )
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ref ref ref
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S
k k S

S
   (4) 210 

Here, ref is taken as 0.30, and kref, S1,ref and S2,ref are the re-parameterized model parameters.  Fits 211 

to this equation were carried out using the fitlm function in the Statistics and Machine Learning 212 

Toolbox in Matlab (Mathworks, Natick, MA). 213 

All other data analyses were carried out in Microsoft Excel and using standard functions in Matlab.  214 

 215 

3. Development of model 216 

3.1 Initial construction of dataset 217 

The original HSM1 model and HSM2 were based on retention measurements made using 50/50 218 

ACN/60 mM potassium phosphate at pH 2.8. In this work we have elected to focus on data 219 
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obtained using a mobile phase containing 40% ACN, because many compounds that we think are 220 

important to model are simply not retained well enough in 50% ACN to use the data reliably. Also, 221 

our high throughput retention measurement approach makes it more feasible to measure retention 222 

factors up to 50 than in the past when the use of 150 mm x 4.6 mm i.d. columns was the norm. 223 

Additionally, we elected to use a more ‘mass spectrometry friendly’ buffer of ammonium formate. 224 

The complete dataset of retention values in 40/60 ACN/buffer consists of 89 x 13 = 1157 retention 225 

factors (this corresponds to 86 unique compounds, because of three duplicate measurements.). 226 

However, in 72 of the 1157 cases, the retention factor at 40% ACN was not measured 227 

experimentally, in most cases because the retention factor was too large to be practically 228 

determined at this mobile phase composition.  Therefore, these missing values were estimated by 229 

fitting the available data for those column/solute combinations to the NK model as described above 230 

[31].  This methodology allowed for the rejection of outliers [31], and provided stable estimates 231 

for the NK parameters.  For three solutes – 2,2’-dinaphthyl ether, glecaprevir and o-terphenyl – 232 

more than 50% of the retention factors on the 13 columns were missing, because of very high 233 

retention, and these solutes were eliminated from further analysis. Furthermore, eight additional 234 

solutes showed very low retention on some of the columns. These solutes are (with the median 235 

retention factors for the 13 columns shown in parentheses) 2-nitrobenzoic acid (0.32), 4,4’-236 

dipyridyl (0.31), benzyltrimethylammonium chloride (0.14), caffeine (0.26), dasatinib (0.61), N-237 

benzylformamide (0.62), pyridine (0.15) and risperidone (0.70). These low retention factors lead 238 

to very high standard deviations in ln  of 1.5 to 31. Because the PCA analysis and subsequent 239 

linear regression modeling are based on the data having similar variances, we elected to remove 240 

these solutes from the dataset as well. The distribution of the remaining 78 x 13 = 1014 retention 241 

factors (in terms of ln k) is shown in Fig. 1A and the corresponding box and whisker plot is shown 242 

in Fig. 1B. Fig. 1B also shows the box and whisker plot for the pharmaceutical compounds only. 243 

Similar plots are shown for the distribution of the ln  values in Figs. 1C and 1D. The values in 244 

red in Figs. 1A and 1C are those values estimated from the NK model. The mean standard deviation 245 

of the ln  values is 0.0528 and the median standard deviation is 0.0174. The final 78 solutes are 246 

shown in the supplemental material in Table S1, and the 13 selected stationary phases are shown 247 

in Table S2.  248 
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 249 

Figure 1. (A) Histogram of ln k values in entire 78x13 data set. Values in red indicate those values that 250 

were estimated from the NK equation. (B) Box plot for ln k for all compounds, and for just the 251 

pharmaceutical compounds. Whiskers indicate the data range and the boxes indicate the interquartile range.  252 

The center line is the median and the dot is the mean. (C) Histogram of ln  values in entire 78x13 data set. 253 

(D) Whiskers indicate the data range and the boxes indicate the interquartile range.  The center line is the 254 

median and the dot is the mean. 255 

 256 

This dataset now contains several compounds of interest to the pharmaceutical industry, including 257 

some common active pharmaceutical ingredients (APIs) and a set of process impurities and 258 

geometric isomers for the API Linrodostat [23,32].  The structures of these pharmaceutical 259 

compounds are shown in Fig. 2. The original 15 solute HSM1 dataset did include four 260 

pharmaceutical compounds, denoted by the boxes in Figure 2. It can be seen that the structural 261 
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variability of these compounds is much greater than in the original data set.  The physicochemical 262 

properties are also highly variable, and several of these properties are given in Table S1. 263 

 264 

 265 

Figure 2. Pharmaceutical compounds in dataset. Compounds boxed in red were in the original HSM1 266 

dataset. 267 
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 268 

While it is useful to have models that can accommodate compounds with a wide range of 269 

physicochemical properties, in the pharmaceutical industry it is often the case that the API must 270 

be resolved and analyzed in mixtures containing many similar compounds (e.g., starting materials, 271 

intermediates, process impurities and degradants).  To this end, the data set also includes a number 272 

of compounds of this nature that are related to the API Linrodostat. The structures of these 273 

compounds are shown in Fig. 3. Most of these compounds contain a core (6-fluoroquinolin-4-274 

yl)cylclohexyl structure, giving them a moderate to high degree of structural similarity. The 275 

inclusion of these compounds in the dataset allowed us to evaluate whether the model can lead to 276 

insights into the chromatographic selectivity for the types of closely related compounds that need 277 

to be resolved and analyzed in pharmaceutical drug development research. 278 

 279 
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 280 

Figure 3. Structures of linrodostat and related compounds. 281 
 282 

 283 
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3.2 Development of parameter scales 284 

An initial PCA of the 78 x 13 dataset indicated that 6-7 PCs could be justified, based on a minimum 285 

in the root-mean-square error of cross validation (RMSECV) (via leave-one-out cross validation).  286 

The RMSECV for 6 PCs was 0.383, and the RMSECV for 7 PCs was slightly higher, at 0.389.  287 

Note that these errors are significantly higher than the root-mean-square error of calibration 288 

(RMSEC), which were 0.0390 and 0.0330, for 6 and 7 PCs respectively. This is because at least 289 

one of the 13 columns (Bonus RP) exhibited unique selectivity relative to the other 12 columns. 290 

To better evaluate the performance of the PCA model, we elected to split the data into training and 291 

validation sets. Several methods have been proposed for the selection of training and validation 292 

sets [33,34]. On one hand, the training set should be representative of the variability in the original 293 

data set, but if this leaves only compounds in the validation set that are highly similar to the training 294 

set, the validation set metrics will be too optimistic. Alternatively, the selection of the training set 295 

and validation sets can be done completely randomly, but the process must be repeated multiple 296 

times, because some of the training sets chosen will inevitably not sample the whole model space. 297 

The solutes were allocated to the two sets to make sure that molecules with the same general 298 

structural features were included in both the training and validation sets. The training set contained 299 

a little more than twice as many compounds as the validation set (56 compared to 22); these sets 300 

are denoted in Table S1. We first focused our attention on the 56 solute training set. A plot of the 301 

first two PCs for this data set is shown in Fig. 4; the solutes corresponding to the numbered points 302 

are given in Table S1. The general trends in this plot are interesting – the points that bracket the 303 

sloping group of points at the bottom of the figure correspond to N,N-dimethylbenzamide (39, 304 

pink) and triphenylene (56, blue-green), a relatively hydrophilic and a relatively hydrophobic 305 

compound, respectively. The log P for N,N-dimethylbenzamide is 0.62 and the log P for 306 

triphenylene is 5.23. The points clustered at the top left of the figure (shown in blue) correspond 307 

to amitriptyline (18), aripiprazole (20), berberine (22), nicardipine (42), nortriptyline (44) and 308 

reserpine (52). These are all ionized or ionizable bases. Interestingly, three points deviate below 309 

the hydrophobic trend line, 2,4-dinitrophenol (9), 4-n-butylbenzoic acid (11) and mefenamic acid 310 

(38) (shown in red) and have pKas of 4.2, 4.1 and 4.3, respectively. These acidic solutes are likely 311 

partially ionized under these separation conditions (although it is difficult to quantify the effect of 312 

acetonitrile on the degree of ionization). Therefore, the first PC approximately correlates with 313 

https://doi.org/10.26434/chemrxiv-2024-mt2fp ORCID: https://orcid.org/0000-0002-4070-9132 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-mt2fp
https://orcid.org/0000-0002-4070-9132
https://creativecommons.org/licenses/by-nc/4.0/


15 
 

hydrophobicity, while the second PC approximately correlates with the likelihood of a solute 314 

interacting with the stationary phase via ionic interactions.  This is consistent with the development 315 

of the original HSM1 which found that the primary and secondary contributions to the selectivity 316 

were hydrophobicity and ionic interactions, respectively. The RMSEC values for the training and 317 

validation sets for 6, 7 and 8 PCs are shown in Table 1 [10]. An F-test shows that the validation set 318 

RMSEC is not significantly greater than the training set RMSEC for the 7 PC model, while the 319 

validation set RMSEC is significantly greater than the training set RMSEC for the 8 PC model. 320 

Thus, we proceeded with model development using a 7-component model. A plot of the predicted 321 

ln  vs. the actual ln  values is shown in Fig. 5A, and the residuals are shown in Fig. 5B, with 322 

the training set points represented by the red circles, and the validation set points represented by 323 

the blue squares. 324 

 325 

 326 

Figure 4. Plot of the first 2 PC’s for the 56 x 13 training set ln  dataset. Point 39 is N,N-dimethylbenzamide 327 

(pink), point 56 is triphenylene (blue-green), points 18, 20, 22, 42, 44, and 52, amitriptyline, aripiprazole, 328 

berberine, nicardipine, nortriptyline, and reserpine, respectively (blue), and points 9, 11, and 38, 2,4-329 

dinitrophenol, 4-n-butylbenzoic acid and mefenamic acid, respectively (red).  See Figure S1 for the number 330 

correspondence for the other solutes. 331 

 332 

 333 

 334 
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Table 1. RMSEC values for training and validation sets. 335 

Model Training Validation Fa 

6 PCs 0.0396 0.0389 0.965 

7 PCsb 0.0333 0.0339 1.036 

8 PCs 0.0264 0.0298 1.274 

Raw 

parameters 

0.627 --- --- 

aFcrit = 1.173 (p = 0.05). bThese are the RMSEC values  336 
for the final HSM3 model as well. 337 
 338 

 339 
Figure 5. (A) Predicted ln  from 7 PC model vs. the actual  ln . (B) ln  residuals. Red circles are the 340 

training data, and blue squares are the validation data. 341 
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While we could use this PCA model for prediction of ln , we wanted to find a model that provided 342 

some chemical rationale for the observed selectivities.  Although the first two PCs were found to 343 

roughly correspond with hydrophobicity and ionic interactions, respectively, the remaining PCs 344 

showed no obvious correlations with known chemical behavior. We wanted to find directions in 345 

the 7-dimensional PC space that better represented known chemical behavior, while still relying 346 

on a data-driven model to have the best predictive accuracy. However, we wished to avoid using 347 

more chemically relevant parameters at the expense of the model stability. A PCA model is 348 

inherently the most stable model, in that there are no collinearities between the PCA axes, by 349 

definition.  Mathematically, this corresponds to the solute PC matrix having a condition number 350 

of 1. Any model other than the PCA model will have a condition number greater than one. Models 351 

with high condition numbers will not allow for precise parameters to be calculated for new 352 

stationary phases/solutes. 353 

We evaluated several candidate solute parameter scales as targets to ‘rotate’ the PC axes toward 354 

more chemically interpretable parameters.  The final candidate scales chosen are shown in Table 355 

2. Each of these parameter scales was fit to a linear regression model of the 7 PCs. The resulting 356 

fitted predictions were used to form each of the corresponding solute parameter scales.  Note that 357 

we also considered using robust linear regression (used in the HSM2 model development) for this 358 

step [24] as opposed to classical linear regression, but there were only minor differences in the 359 

outcomes from the two approaches, so classical regression was used. The training and validation 360 

RMSEC values for the final parameter scales initiated from those shown in Table 2 fit to the ln  361 

values were identical to the values shown in Table 1 (0.0333 and 0.0339 for the training and 362 

validation sets, respectively) for the 7 PC model, because the final parameter scales are simply a 363 

rotation of the PC values.  The parameter values for all 78 solutes and for all 13 stationary phases 364 

are shown in the Excel spreadsheet provided in the Supplemental Information, as well as Tables 365 

S3 and S4. The final model is therefore given as 366 

ln ln x

EB

k
hH kC aB bA dD eE sS

k


 
= = + + + + + + 

 
     (5) 367 

 368 

 369 

 370 
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Table 2. Final target parameter scales 371 

Target Scale Source Physicochemical Effect Solute 

Parameter 

r2 (7 PCs) 

Training 

Set 

r2 

Final 

Model 

Log Pcd/2 Chem3Da Hydrophobicity h 0.7902 0.8321 

(+ − 30 -)MR/100 ACD/Labsb ( 

values from pKas); 

MRc (Chem3D) 

Ionic interactions k 0.6674 0.6831 

E LSER 2017 

calculationd 

Polarizability e 0.8063 0.8080 

S − mE −b LSER 2017 

calculationd,e 

Dipolarity d 0.6123 0.2580 

A LSER 2017 

calculationf 

Hydrogen bond acidity a 0.4964 0.5416 

B LSER 2017 

calculationg 

Hydrogen bond basicity b 0.6078 0.6633 

Oblate spheroid 

minor axis, 

truncated so that 

values <0.04 are set 

to zero 

Ovality and V 

(Chem3D)h 

Steric exclusion s 0.6123 0.6915 

alog P of octanol water partition coefficient calculated in Chem3D (Revvity Signals, v. 20.1.1.125); bpKa values of 372 
ionizable acids and bases from ACD/Labs ACD/Percepta Ver. 2022.2.3 (Advanced Chemistry Development, Inc., 373 
Toronto, ON, CA), + = [H+]/([H+] + Ka), + = Ka/([H+] + Ka); cmolar refraction calculated in Chem3D (Revvity 374 
Signals, v. 20.1.1.125); dLSER polarizability (E) calculated from LSER 2017 [30]; eLSER dipolarity/polarizability 375 
(S) calculated from LSER 2017 [30]; fLSER hydrogen bond acidity (A) calculated from LSER 2017 [30]; gLSER 376 
hydrogen bond basicity (B) calculated from LSER 2017 [30]; gDimension of the minor axis assuming an oblate 377 
spheroid shape based on ovality and Connolly solvent-excluded volumes calculated in Chem3D (Revvity Signals, v. 378 
20.1.1.125). 379 

 380 

 381 

As we explored different scales and different combinations of scales, we sought to find final 382 

parameter scales with a condition number as close to one as possible. During this process, we 383 

found condition numbers as high as 200-300. The condition number for the final solute parameter 384 

matrix expressed by Eq. (5) is 16.8. This is a satisfactory result, especially because by their very 385 

nature, we expected some degree of correlation in the various solute parameter scales. 386 

It is instructive to pause and examine the correlation between the initial target parameter scales 387 

and the final parameter scales obtained from fitting to the PCs. The correlations for the original 388 

parameter scales to the parameter scales for the training set and for the final model parameters are 389 

shown in Table 2. None of the correlations are particularly strong. This lack of correlation indicates 390 

that the original scales do not entirely capture the physicochemical properties revealed from the 391 
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data-driven model. Additionally, the average standard error of the training data set fits based on 392 

the raw parameter scales was 0.627 – this is more than 15-fold worse than the RMSEC values for 393 

the PCA model and the final model shown in Table 1.  The likely reasons for this much larger error 394 

are (1) that the ‘true’ model may not be a linearly additive model, as assumed here, (2) that even 395 

for those scales that are derived from measured parameters (e.g., log P) the parameters are derived 396 

from a different physicochemical partitioning process (i.e., different pHs, solvents and 397 

temperatures), (3) that some of the parameters are based on structures optimized in the gas phase 398 

(e.g., volume, ovality and Ka), and (4)  that many of the parameters are estimated from linear 399 

regression models themselves (e.g., the LSER parameters). It is clear that simply using pre-400 

established physicochemical parameters does not produce an adequate model, whereas the data-401 

driven model gives very promising results. 402 

From the signs of the solute and column parameters, we can make some generalizations as to the 403 

effects of the physicochemical properties on retention (at least for the subset of columns studied 404 

here).  Solutes with larger hydrophobicity (h), that are more polarizable (e), that are hydrogen 405 

bases (b) and that are larger molecules (s) all will be retained more strongly on these stationary 406 

phases (the column parameters for these properties are all positive, see Table S4, except for 407 

negative values for A for the Bonus RP and Eclipse PAH phases). The increase in retention with 408 

increasing size was not what we expected, as we thought that this term might reflect lesser retention 409 

for the largest molecules because of steric exclusion from the stationary phase [35–38]. However, 410 

this parameter does show differences between the sizes of the cis- and trans- geometric isomers, 411 

which reflects what can be seen in the 3D representation of these molecules. Visually, the cis- 412 

structures of the Lin-A, Lin-B, Lin-C and Lin-D compounds appear to have a more compact 413 

structure than the corresponding trans isomers, and the s parameters for the cis structures are 414 

smaller than those for the trans isomers. There are only minute differences in the Connolly solvent-415 

excluded volumes of the isomers calculated by Chem3D, so this parameter would not help in 416 

distinguishing the size differences that are captured by the s parameter. More dipolar molecules 417 

will be retained less, as indicated by the negative D parameter coupled with positive d values for 418 

molecules that are more dipolar than ethylbenzene. The effect of solute hydrogen bond acidity is 419 

mixed – on some columns hydrogen bond acids are more retained and on others, less. This latter 420 

effect may be due in part to this parameter being mixed with other unidentified physicochemical 421 

effects. 422 
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Negatively charged molecules (negative k values with negative C values) are also slightly more 423 

retained. These molecules are ionizable acids, such as 2,4-dinitrophenol, 4-n-butylbenzoic acid 424 

and mefenamic acid, as mentioned above. In contrast, positively charged species (positive k values 425 

with negative C values) are retained less. This implies that at this pH (3.2) and mobile phase 426 

conditions, the stationary phase has a positive charge.  While it is well-known that at higher pHs 427 

the residual silanols will have a negative charge the possibility of the surface having a positive 428 

charge at lower pHs has not been widely recognized [39,40]. Neue et al. noted that one positively 429 

charged analyte (the bretylium ion), eluted before the dead volume marker on XTerra RP18 430 

stationary phases [39]. Additionally, Méndez et al. reported anion exchange-based retention based 431 

on the retention of the nitrate anion at lower pHs on a Symmetry C18 phase [41].  432 

The overall prediction of the ln  values from the present model (Eq. (5)) vs. HSM1 and HSM2 433 

can be compared by regression of the HSM1 and HSM2 column parameters to the experimental ln 434 

 values used in this study.  These predictions are shown in Fig. 6.  The corresponding standard 435 

errors for HSM1, HSM2, and the present model are 0.134, 0.158 and 0.0337, respectively. 436 

Interestingly, the HSM2 predictions are not as good as those of the original HSM1 model. Note 437 

also that no correction has been made for the fact that the HSM1 and HSM2 column parameters 438 

are based on retention measurements where the aqueous buffer was pH 2.8 and 50% ACN, but the 439 

retention measurements described here were obtained at pH 3.2 and 40% ACN. Because of these 440 

differences in pH and mobile phase composition, this is not an entirely fair comparison. Some of 441 

the largest residuals from the HSM1 and HSM2 models are for compounds with larger k 442 

parameters, as expected because of the difference in pH; this can be seen in Figures 6A and 6B, 443 

where those solutes with larger k parameters are shown in red. 444 

 445 

https://doi.org/10.26434/chemrxiv-2024-mt2fp ORCID: https://orcid.org/0000-0002-4070-9132 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-mt2fp
https://orcid.org/0000-0002-4070-9132
https://creativecommons.org/licenses/by-nc/4.0/


21 
 

 446 

Figure 6. Predicted ln  values vs. actual ln  for (A) HSM1, s
E
 = 0.135; (B) HSM2 , s

E
 = 0.158; (C) 447 

current model , s
E
 = 0.0337. Red points are for solutes with |k| > 0.2. 448 

 449 

The solute parameters determined here are fully ‘data-driven’ parameters, in that the model 450 

expressed by Eq. (5) has the same predictive capability as the 7 PC models.  However, the rotation 451 

carried out by regression of the PCs to the selected raw parameter scales should provide parameters 452 

that are more consistent with chemical intuition and are at least approximately correlated with the 453 

physicochemical parameters used to develop the model. The last column of Table 2 shows the 454 

correlation of the final model parameters with the physicochemical scales used to initiate the 455 

model.  The strongest correlation is the h parameter with the logP value, at 0.83, therefore it is fair 456 

to conclude that the h parameter represents the hydrophobicity of the solutes. It is noteworthy that 457 

the solute (h) and column (H) parameters are not particularly well correlated with the HSM1 ’ 458 

and H parameters (data not shown). This is not particularly surprising, as the HSM1 ’ is based 459 

on the retention of solutes on the SB-C18 column, whereas the HSM3 h parameter is initialized 460 

based on log P. ‘Hydrophobicity’ is inherently a mix of multiple physicochemical interactions, and 461 

it is expected that the two scales could have a fundamentally different mix of these interactions. 462 

The polarizability parameter e is correlated with the LSER E at 0.81. In contrast, the dipolarity 463 

parameter d is not well correlated with the initiating scale, which was the LSER S 464 

(dipolarity/polarizability) corrected for the polarizability (LSER E), in an attempt to remove 465 

polarizability contributions from the scale. Interestingly, the parameter d is more strongly 466 

correlated with the original LSER S parameter, at 0.53 (data not shown). We are not too surprised 467 

that these correlations are not stronger, because these scales either are calculated from gas-phase 468 
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structures that do not represent condensed phase properties, or are from computer-generated 469 

parameters secondary to actual measured properties, as discussed above. 470 

Figures S1-S7 in the Supplemental Information provide the structures and parameters for each of 471 

the solutes with the largest and smallest values in the corresponding parameter scale. In general, it 472 

can be seen for most parameters there is a reasonable correlation between the structure and the 473 

resulting parameter value, at least from chemical intuition.  474 

Within the 78 x 13 dataset we also have three sets of duplicates. These duplicates were from 475 

different lots of the same compounds that were measured independently during dataset collection.  476 

These compounds are Linrodostat (labeled Linrodostat 1 and Linrodostat 2, compounds 23 and 69 477 

in Table S3), Lin-cis-B (Lin-cis-B 1 and Lin-cis-B 2, compounds 62 and 63) and Lin-cis-D (Lin-478 

cis-D 1 and Lin-cis-D 2, compounds 24 and 25). (Structures of these compounds are shown in Fig. 479 

3, and compound numbers are shown in Table S3.) These duplicates allowed us to evaluate the 480 

reproducibility of the resulting parameters. The values for the parameters for these duplicates are 481 

shown in Table 3.  The agreement in the parameters for the duplicates are all better than 5 %, 482 

calculated relative to the range of each parameter scale. 483 

 484 

Table 3. Parameter values for duplicatesa 485 

 Lin-cis-D Lin-cis-B Linrodostat (Lin-cis-C) 

h 0/0.002 (0.39 %) 0.240/0.233 (1.5 %) 0.247/0.224 (4.8 %) 

k 0.143/0.126 (3.0 %) 0.172/0.156 (3.0 %) 0.137/0.121 (2.9 %) 

a 0.159/0.169 (1.6 %) 0.102/0.107 (1.2 %) 0.149/0.155 (1.4 %) 

b 0.159/0.169 (2.6 %) 0.217/0.224 (1.6 %) 0.120/0.128 (2.0 %) 

d 0.211/0.220 (2.7 %) 0.130/0.134 (1.2 %) 0.082/0.085 (0.90 %) 

e 0.133/0.148 (4.2 %) 0.201/0.216 (4.1 %) 0.182/0.195 (3.6 %) 

s 0.212/0.214 (0.4 %) 0.384/0.378 (1.0 %) 0.257/0.259 (0.36 %) 
aValue in parenthesis corresponds to the % difference between the duplicates relative to the full range of the 486 
parameter scale. 487 

 488 

The results of the regression analysis also permit the evaluation of the precision of the column and 489 

solute parameters. For the column parameters, the percent relative errors in each parameter for 490 

each column were calculated from the standard errors of the parameters. The average percent 491 

relative error was less than 5% for the H, C, E, D, and S parameters. The column A and B 492 

parameters are less certain. The B coefficient for the Agilent SB-C8 column was not significant 493 
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(i.e., the parameter is not significantly different from zero), as well as the A coefficient for the 494 

Agilent 300SB-C3, the Varian/Agilent C18-A. the Agilent Eclipse Plus C18 and the Agilent SB-495 

C8 columns. After omitting these columns from the percent relative error calculations, the percent 496 

relative error for the A parameter was 5.9% and the relative error for the B parameter was 12.3%. 497 

This latter relative error is consistent with the previous observation that the effect of solute 498 

hydrogen bond acidity on retention is mixed (vida supra).  Overall, less significance should be 499 

given to the aB term in Eq. (5). In general, these results suggest that the column parameters can be 500 

reported to two digits past the decimal point, and the final column parameter scales are provided 501 

in the Supplemental Information as an Excel spreadsheet, along with the standard error of the 502 

column parameters calculated as described above. 503 

To evaluate the precision of the solute parameters, normally distributed random errors were added 504 

to the column parameters, using the standard error as described above as the scaling factor over 505 

500,000 repetitions. For each repetition, the solute parameters were calculated, and the means and 506 

standard deviations of the parameters over the repetitions were determined. The average percent 507 

relative standard deviations for each parameter relative to the range of the parameters are shown 508 

in Table 4. The e parameter has the largest average error at 5.8%.  In general, these results suggest 509 

that the solute parameters can be reported to three digits past the decimal point, and the final 510 

parameter scales and the corresponding standard errors are provided in the Supplemental 511 

Information as an Excel spreadsheet (“Final Parameters for HSM3.xlsx”). 512 

 513 

Table 4. Average % relative standard deviations of the solute parameters relative to the range of each 514 
parametera 515 

Parameter % RSD 

h 1.5 

k 2.9 

e 5.8 

d 4.0 

a 2.3 

b 3.4 

s 2.7 
aCalculated from 500,000 Monte Carlo iterations as described in the text. 516 

 517 

 518 

https://doi.org/10.26434/chemrxiv-2024-mt2fp ORCID: https://orcid.org/0000-0002-4070-9132 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-mt2fp
https://orcid.org/0000-0002-4070-9132
https://creativecommons.org/licenses/by-nc/4.0/


24 
 

3.3 Isomer selectivity 519 

One goal of the present work was to examine how well the model of Eq. (5) (or equivalently, the 520 

7 PC model), was able to predict the chromatographic selectivity of positional and geometric 521 

isomers. Figure 7 shows the predicted selectivity for four positional isomer pairs. The retention 522 

order is always predicted correctly.  The standard errors for the selectivity predictions over the 13 523 

columns for each isomer pair are shown in Table 5, along with predictions based on HSM1 and 524 

HSM2, as described above.  Interestingly, selectivities for the cresol isomers and the naphthol 525 

isomers are predicted quite well for all three models, with a standard error in  on the order of 526 

0.01.  None of these compounds are in the original training set for HSM1 and HSM2. These are 527 

relatively simple compounds, with the cresols having a methyl and hydroxyl substitution on the 528 

benzene ring, and the naphthols with a hydroxyl substitution on naphthalene. In contrast, the 529 

dinitrophenols have two nitro and one hydroxyl groups, and the dihydroxy naphthalenes have two 530 

hydroxyl groups.  In this case, selectivities predicted by the HSM3 model are improved relative to 531 

the HSM1 and HSM2 models (see Table 5). 532 

 533 
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 534 

Figure 7. Predicted  value vs. actual  value for (A) 1,2-dihydroxynaphthalene relative to 1,3-535 

dihydroxynaphthalene; (B) 1-naphthol relative to 2-naphthol; (C) 2,5-dinitrophenol relative to 2,4-536 

dinitrophenol; (D) o-cresol relative to p-cresol. The blue point in (C) corresponds to the selectivity on Bonus 537 

RP, the green point corresponds to the selectivity on CSH Phenyl-Hexyl and the orange point corresponds 538 

to the selectivity on SB-C18. 539 

 540 

Table 5. Positional isomer selectivity standard errors 541 

Selectivity HSM1 HSM2 HSM3 

a1,2-DHN/1,3-DHN
a 0.0440 0.0568 0.0319 

a1-naphthol/2-naphthol 0.0135 0.0145 0.0137 

a2,5-DNP/2,4-DNP
b 0.103 0.175 0.0530 

ao-cresol/p-cresol 0.0110 0.00942 0.0118 

Overall 0.0565 0.0922 0.0322 
aDHN – dihydroxynaphthalene; bDNP – dinitrophenol 542 

 543 
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Of these isomer pairs, the 2,5-dinitrophenol/2,4-dinitrophenol (2,5-DNP/2,4-DNP) pair has an 544 

interesting selectivity pattern, as seen in Fig. 7C. The 2,5-DNP is always retained longer than the 545 

2,4-DNP, except on the Bonus RP column. To examine this effect more closely, we compared the 546 

contribution of each of the linear terms in Eq. (5) to the calculated ln  for the Bonus RP column 547 

(2,5-DNP/2,4-DNP = 0.45), the CSH Phenyl-Hexyl column (2,5-DNP/2,4-DNP = 1.04) and the SB-C18 548 

column (2,5-DNP/2,4-DNP = 1.51).  This comparison is shown in Fig. 8. The signs and magnitudes of 549 

the hH, kC, eE, dD, bA and sS terms are not significantly different for the three columns.  In 550 

contrast, the aB term is very different on these three columns. The biggest difference in the isomer 551 

parameters relative to the parameter range is in the a hydrogen bonding parameter (a = 0.223 for 552 

2,5-dinitrophenol vs. a = 0.349 for 2,4-dinitrophenol, a 29 % difference). This can be rationalized 553 

by noting that the nitro groups para and meta to the phenolic oxygen increase the hydrogen bond 554 

donating ability of the phenolic group in 2,4-dinitrophenol. To the best of our knowledge, the 555 

Bonus RP stationary phase is the only phase of the 13 phases that contains an embedded amide 556 

that can serve as a hydrogen bond acceptor (see Table S4).  It also has the highest B parameter of 557 

all the columns studied (B = 3.15). Thus, the present model and parameters can help us to 558 

rationalize selectivity of this positional isomer pair. 559 

 560 

Figure 8. Sign and magnitude of the terms in eq. (5) contributing to the selectivity of 2,5-DNP relative to 561 

2,4-DNP for Bonus RP (
2,5-DNP/2,4-DNP 

= 0.45 ± 0.11), CSH Phenyl-Hexyl (
2,5-DNP/2,4-DNP 

= 1.04 ± 0.18) and 562 

SB-C18 (
2,5-DNP/2,4-DNP 

= 1.51 ± 0.33). 563 
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The selectivities for the cis- and trans- isomers of stilbene and chalcone are shown in Fig. 9A and 564 

9B. For the stilbenes, we have highlighted the two columns with the largest differences in 565 

selectivity, BEH-C8 (blue point in Fig. 9A) and HSS-PFP (orange point in Fig. 9A). The 566 

comparison of the contributions of linear terms of Eq. (5) to the selectivity for each column is 567 

shown in Fig. 9C.  The largest contributor to the difference in selectivity on these two columns is 568 

the eE term. This can be understood because the e parameter for cis-stilbene (e = 0.080 ± 0.011) is 569 

less than that of trans-stilbene (e = 0.134 ± 0.013), which is due to the distortion of the double 570 

bond in the cis- structure (see 3D structure in Fig. 9E). The polarizability parameter (E) for the 571 

BEH C8 column is 1.274 ± 0.059, while the E parameter for the HSS PFP column is 3.136 ± 0.092. 572 

For the chalcones, the two columns with the biggest difference in trans/cis selectivity are again the 573 

BEH-C8 (blue point in Fig. 9B) and HSS-PFP (orange point in Fig. 9B). The corresponding 574 

comparison of the linear terms of Eq. (5) is shown in Fig. 9D. In contrast to the stilbenes, several 575 

terms make contributions to the selectivity differences for the trans/cis isomers on the BEH-C8 576 

and HSS-PFP columns. In this case, the hH, kC, dD, and sS terms all seem to be important 577 

contributors. The enhanced trans/cis selectivity on the HSS-PFP column relative to the BEH-C8 is 578 

driven by the hH, kC and sS terms, and the dD term cancels out some of this selectivity. In this 579 

case, it is not as easy to rationalize the difference in selectivities. The differences in solute 580 

parameters between the cis- and trans- isomers are quite small, and there are not large differences 581 

between their 3D structures as shown in Fig. 9F. It is not expected that either isomer will participate 582 

in charge-based interactions, and yet the kC term for both columns is significantly different from 583 

zero.  584 

 585 
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 586 

Figure 9. Predicted  value vs. actual  value for (A) trans-stilbene relative to cis-stilbene (blue point is 587 

selectivity on BEH C8 and orange point is selectivity on HSS PFP); (B) trans-chalcone relative to cis-588 

chalcone (blue point is selectivity on BEH C8 and orange point is selectivity on HSS PFP); (C) Sign and 589 

magnitude of the terms in eq. (5) contributing to the selectivity of trans-stilbene relative to cis-stilbene on 590 

BEH C8 (
trans-/cis-stilbene

= 0.920 ± 0.023) and HSS PHP (
 trans-/cis-stilbene 

= 1.202 ± 0.009) (D) Sign and 591 

magnitude of the terms in eq. (5) contributing to the selectivity of trans-chalcone relative to cis-chalcone 592 

on BEH C8 (
trans-/cis-chalcone 

= 1.125 ± 0.037) and HSS PHP (
 trans-/cis-chalcone 

= 1.378 ± 0.013); (E) Structure 593 

comparison of cis-stilbene (left) to trans-stilbene (right); (F) Structure comparison of cis-chalcone (left) to 594 

trans-chalcone (right). 595 
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The present dataset also includes four pairs of cis/trans isomers related to the Linrodostat 596 

pharmaceutical compound (see structures in Fig. 3). The trans/cis selectivities for these compounds 597 

are shown in Fig. 10. Note that the retention orders are generally predicted correctly for the 598 

Linrodostat related compounds, however the selectivities for the 300SB-C3 (red circles) and SB-599 

C8 (blue squares) columns have larger errors. We did note that for all four isomer pairs, the trans 600 

isomer had a larger s parameter than the cis isomer, and the 3D models of the cis- isomers showed 601 

a more compact structures as compared to the trans- isomers (see Table 6).  Two examples of the 602 

selectivities observed for these highly similar compounds are shown in Fig. 11. Figure 11A shows 603 

the selectivities for Lin-trans-C and Lin-cis-C, and the columns with largest difference in 604 

selectivity are highlighted in orange (SB-Phenyl) and blue (Eclipse Plus C18). The linear terms 605 

contributing to the selectivity for these two stationary phases are shown in Fig. 11C. For these two 606 

isomers, it is not clear what really drives the selectivity because the uncertainties in the individual 607 

terms are so large.  Figure 11B shows the selectivities for Lin-cis-B and Lin-cis-C, with the 608 

selectivities for the Bonus RP and SB Phenyl phases highlighted in blue and orange, respectively. 609 

These two compounds share a 6-fluoroquinolin-4-yl)cyclohexyl) core structure (see Fig. 3). The 610 

Lin-cis-B molecule contains a tertiary amide, whereas the Lin-cis-C molecule has a secondary 611 

amide.  This difference is reflected in the a parameter, which shows that Lin-cis-C is a stronger 612 

hydrogen bond donor (a = 0.104) than cis-B (a = 0.152). In contrast, Lin-cis-B is a stronger 613 

hydrogen bond acceptor (b = 0.224) than cis-C (b = 0.124). Because the signs of the A and B 614 

parameters are opposite for the Bonus RP (A = -6.98, B = 2.07) and the SB-Phenyl columns (A = 615 

2.07, B = -1.03), this results in Lin-cis-B being more retained than Lin-cis-C on the SB-Phenyl 616 

column, and being less retained than Lin-cis-C on the Bonus RP column, as shown in by the aB 617 

and bA terms in Fig. 11D. 618 

 619 

Table 6. Steric parameters (s) for Linrodostat and related compounds 620 

 Lin-A Lin-B Lin-C Lin-D 

trans isomer 0.451 ± 0.030 0.429 ± 0.028 0.343 ± 0.025 0.248 ± 0.022 

cis isomer 0.393 ± 0.027 0.381 ± 0.035 0.258 ± 0.028 0.213 ± 0.030 

 621 

 622 
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 623 

Figure 10. trans/cis isomer selectivities for Linrodostat related compounds. (A) Isomer pair Lin-A; (B) 624 

Isomer pair Lin-B; (C) Isomer pair Lin-C; (D) Isomer pair Lin-D. The red circles correspond to the 300SB-625 

C3 column and the blue squares correspond to the SB-C8 column. 626 

 627 

 628 
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 629 
Figure 11. Predicted  value vs. actual  value for (A) Lin-trans-C relative to Lin-cis-C (blue point is 630 

selectivity on Eclipse Plus C18 and orange point is selectivity on SB-Phenyl); (B) Lin-cis-B relative to Lin-631 

cis-C (blue point is selectivity on Bonus RP and orange point is selectivity on SB-Phenyl); (C) Sign and 632 

magnitude of the terms in eq. (5) contributing to the selectivity of Lin-trans-C relative to Lin-cis-C on 633 

Eclipse Plus C18 (
Lin-trans-C-/Lin-cis-C

 = 0.88 ± 0.31) and SB-Phenyl (
 Lin-trans-C/Lin-cis-C 

= 1.25 ± 0.19) (D) Sign 634 

and magnitude of the terms in eq. (5) contributing to the selectivity of Lin-cis-B relative to Lin-cis-C on 635 

Bonus RP (
Lin-cis-B/Lin-cis-C 

= 0.68 ± 0.33) and SB-Phenyl (
 Lin-cis-B/Lin-cis-C 

= 1.52 ± 0.31. 636 

 637 

 638 

 639 

4. Conclusions 640 

Our recent development of a high throughput approach for acquisition of retention data for liquid 641 

chromatography has enabled the collection a large dataset of retention measurements for a varied 642 

set of small molecules, many of pharmaceutical significance. The dataset studied here is comprised 643 
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of 43,329 total measurements made across 13 stationary phases, 89 compounds, and multiple 644 

mobile phase compositions. Using a subset of these data, we developed a data-driven model of 645 

reversed-phase selectivity based on isocratic retention factors (40% ACN). We refer to the resulting 646 

model as HSM3 because it has qualitative characteristics that are similar to the original 647 

Hydrophobic Subtraction Model developed by Snyder and coworkers [14]. 648 

Our major conclusions drawn from this work follow: 649 

1) Using root-mean-square error of cross validation (RMSECV) to guide development of the 650 

model, we found that seven terms were warranted without overfitting the data. Each is a 651 

simple linear term composed of a solute property parameter, and a corresponding stationary 652 

phase parameter (e.g,. hydrogen bond acidity of the solute paired with hydrogen bond 653 

basicity of the stationary phase). Although the parameters originate from a principal 654 

components analysis, we have rotated the PCA axes so that they correlate with 655 

physicochemical properties that are believed to influence selectivity in RPLC, such as 656 

solute hydrophobicity, charge state, and dipolarity. 657 

2) The retention dataset was divided into training and validation subsets. The standard errors 658 

in ln α for the fits of the model to these subsets were about 0.033, which roughly 659 

corresponds to an average residual from the fit of about 3% in α. 660 

3) The predictive accuracy of HSM3 for the selectivities for a number of isomer pairs appears 661 

to be much better than previous models (HSM1 and HSM2). 662 

4) Perhaps most interestingly, an examination of the quantitative contributions of each of the 663 

terms in the HSM3 model to the selectivity showed that in some cases the major driver of 664 

a separation of closely-related compounds can be identified (e.g., hydrogen bonding). This 665 

is a very exciting result in that it may provide a means to de-risk method development by 666 

focusing on stationary phase properties that are critical to method robustness, and 667 

monitoring those over time.  668 

In our view this work highlights the point that a more detailed understanding of selectivity in liquid 669 

chromatography can be realized if we have access to large datasets that span multiple stationary 670 

phase and solute chemistries. The ability to use the HSM3 model to rationalize the 671 

physicochemical drivers for the separation of specific closely-related solute pairs is very 672 
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promising, however this work also shows that there most definitely are currently limits to this kind 673 

of analysis, as indicated by large uncertainties in some of the terms in the model (i.e., Eq. 5) for 674 

specific solute/stationary phase pairs. Much more work is needed to understand the drivers of this 675 

uncertainty (e.g., stationary phase drift over time [26]) so that we can work to minimize it in the 676 

future. 677 
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