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ABSTRACT: Simulating chemically reactive phenomena such as proton transport on nanosecond to microsecond and beyond time-
scales is a challenging task. Ab initio methods are unable to currently access these timescales routinely, and traditional molecular 
dynamics methods feature fixed bonding arrangements that cannot account for changes in the system’s bonding topology. The Mul-
tiscale Reactive Molecular Dynamics (MS-RMD) method, as implemented in the Rapid Approach for Proton Transport and Other 
Reactions (RAPTOR) software package for the LAMMPS molecular dynamics code, offers a method to routinely sample longer 
timescale reactive simulation data with statistical precision. RAPTOR may also be interfaced with enhanced sampling methods to 
drive simulations towards the analysis of reactive rare events, and a number of collective variables (CVs) have been developed to 
facilitate this. Key advances to this methodology, including GPU acceleration efforts and novel CVs to model water wire formation 
are reviewed, along with recent applications of the method which demonstrate its versatility and robustness.

I. Introduction 
Molecular dynamics (MD) simulations of chemically reac-

tive phenomena present significant challenges for conventional 
simulation techniques. On one hand, quantum mechanical 
methods such as ab initio MD (AIMD) or quantum mechan-
ics/molecular mechanics (QM/MM) that directly compute the 
electronic structure at each MD timestep of a simulation are too 
expensive to access the timescales needed to describe the dy-
namics of the larger system.1-3 On the other hand, standard MD 
utilizes forcefields with a fixed bonding topology4 that cannot 
readily account for the dynamic nature of reactive events. 
QM/MM methods, which compute the electronic structure for 
only a small portion of reacting atoms and couple that quantum-
mechanical region to a larger classical region, have proven val-
uable for the study of these systems.5-7 However, they are still 
generally limited to tens (or at most hundreds ) of picosecond 
timescales for reactive regions on the order of tens to a few hun-
dred atoms, which is often insufficient to capture the full extent 
of reactivity such as proton shuttling via water “wires” and/or 
protonatable amino acids in complex systems. Methods incor-
porating machine learning (ML) approaches, such as neural net-
works (NNs), in some cases offer results comparable to ab initio 
methods at a fraction of the cost.8, 9 However, these methods 
face challenges including the need to train on large amounts of 

ab initio data, and they typically do not offer transferability to 
new chemical spaces. Simulating reactive phenomena on the 
nanosecond and microsecond timescales scales needed to deter-
mine, e.g., how protons Grotthuss shuttle10, 11 over long dis-
tances, for instance, or how protonation behavior impacts pro-
tein conformational change, or how proton transport occurs in 
confined spaces, requires a method that can access longer time 
and length scales possible than with current ab initio methods.7, 

12, 13 
A promising approach is provided by ‘multiconfigurational’ 

classical molecular dynamics methods. The first of these to be 
developed was the empirical valence bond (EVB) model of 
Warshel and coworkers.14, 15 In the EVB method, one describes 
a system as a linear combination of ‘diabatic states’, with the 
possible bonding topologies the system may assume. It is im-
portant to note that the ‘diabatic states’ referenced are in fact 
entirely classical objects, and do not reflect quantum states with 
their corresponding nonadiabatic dynamics. They are instead 
more akin to the resonance forms one is familiar with from or-
ganic chemistry. Each of these diabatic states is modeled with a 
forcefield and a potential is defined to allow for transitions be-
tween the states. This ‘fixed-state’ EVB approach, however, is 
unable to account for the dynamic transport of excess protons 
through a hydrogen bonding network, where protons will 
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rapidly ‘hop’ between waters in via Grotthuss shuttling.10, 11 To 
correctly model Grotthuss shuttling, a generalization to 
Warshel’s EVB model was required. This was developed inde-
pendently, albeit with some differences, by the Voth and Borgis 
groups in the late 1990s,16-19 which built upon the earlier work 
two-state EVB work of Lobaugh and Voth20 for the hydrated 
excess proton in water. The resulting model, termed Multistate 
EVB (MS-EVB), allows for the diabatic states considered in the 
reaction to evolve dynamically over the course of the simula-
tion, which enables a fuller consideration of proton diffusion 
through a hydrogen bonding network. The Voth group has con-
tinued to build upon this model in the following years, improv-
ing the numerical stability, accuracy, and computational ex-
pense of the approach.21-28 The most recent variant, MS-EVB 
3.2, provides accurate properties for proton transport in bulk 
water. Various MS-EVB models have also been used to de-
scribe the hydrated proton (and proton hole, or hydroxide) in a 
wider number of environments – most notably describing hy-
drated excess protons at interfaces,29-31 as well as proton 
transport through water “wires” in a number of protein environ-
ments13, 32-37 and complex transport in materials such as proton 
exchange membranes.38-44  

The MS-EVB approach can, in principle, be also applied to a 
wide range of chemical reactions. A key advantage is that pre-
viously-developed classical forcefields can be used to describe 
many of the nonreactive parts of the model, which minimizes 
the degree of reparameterization necessary.15, 45 The reactive 
parts of the model are typically fit to ab initio electronic struc-
ture data on the reaction in question.26, 27, 34 The MS-EVB 
method reflects a paradigm where empirical functional forms 
are used to describe the Hamiltonian. More recently, the origi-
nal EVB idea has been generalized –  as Multiscale Reactive 
Molecular Dynamics (MS-RMD), which is an expansion of the 
MS-EVB idea, allowing for the potential to be fit not exclu-
sively with potentially limited empirical functional forms, but 
also with more general, flexible functional forms such as tabu-
lated numerical or neural network-based potentials.27, 46 The 
MS-RMD method emphasizes that the potentials are fit directly 
from first-principles chemical data on the reaction in question. 
In a manner analogous to the construction of a coarse-grained 
potential at the all-atom scale, fitting a MS-RMD potential in-
volves matching forces (and possibly energies) from higher 
level QM/MM calculations or single-point QM calculations 
along the reaction coordinate to fit the coefficients of an empir-
ical forcefield, or to construct a numerical or neural-network 
potential that describes the transition between EVB states. The 
focus of this article will then be on the subsequent efficient eval-
uation of the MS-RMD Hamiltonian and on applications of the 
MS-RMD approach with the Rapid Approach for Proton 
Transport and Other Reactions (RAPTOR) MD package. For 
more information on the fitting of MS-RMD models, the reader 
is referred to Refs.24, 27, 34, 47 

The evaluation of the MS-RMD Hamiltonian involves at each 
simulation step 1) a ‘state search’ algorithm to determine the 
EVB bonding topologies (diabatic states) one considers at a 
given timestep, 2) evaluation of the energies and forces for each 
diabatic state, 3) evaluation of the off-diagonal terms, and 4) 
diagonalization of the resulting matrix to obtain ground-state 
forces and energies via the Hellmann-Feynman theorem. Steps 
2) and 3) are typically done in parallel for computational effi-
ciency.45 A key challenge in computing the energies and forces 
in the MS-RMD approach is the need to consider a substantial 
number of EVB states, and to dynamically reconsider or 

readjust the EVB states that one is evaluating at each timestep 
(for an example, see ref23). This ‘state search’ algorithm must 
be tuned to consider enough EVB states to ensure, on one hand, 
the energy conservation and stability of the model; and on the 
other hand, the model’s computational tractability. Increasing 
the number of EVB states will significantly increase the com-
putational cost – in the naïve implementation, the evaluation of 
the energies and forces for each diabatic state is the cost of a 
conventional molecular dynamics (MD) timestep. A typical 
simulation of hydrated excess proton transport in water requires 
about 20 EVB states to ensure accuracy and energy conserva-
tion.23 As a result of the high number of EVB states required in 
the MS-RMD approach, techniques to eliminate redundancies 
in the computation of each EVB state and more efficiently par-
allelize the calculation are necessary to access reasonable time-
scales and system sizes. The RAPTOR approach45 and software 
package  for interfacing with the  LAMMPS MD engine48-50 has 
been created with many of these optimizations in mind as an 
efficient, ready-to-use implementation of the MS-RMD 
method. It incorporates, e.g., the MS-EVB 3.2 model for hy-
drated excess proton transport in water,25 models for some pro-
tonatable amino acids, proton transport models for several pro-
teins and in a proton exchange membrane. These models often 
may require only minimal reparameterization in new chemical 
environments, though the development of MS-RMD forcefields 
is not the objective of the RAPTOR package. RAPTOR also 
supports a variety of computational and statistical mechanical 
approaches to accelerate sampling of these reactive systems, al-
lowing for access for multi-nanosecond to microsecond time-
scales. The purpose of this paper is to detail these advances and 
describe how they may be best used in production simulations. 

The methods to access longer timescales with the MS-RMD 
approach may be broadly divided into two categories: the first, 
computational acceleration, directly speeds up evaluation of the 
MS-RMD Hamiltonian via more efficient algorithms, more 
powerful hardware, and well-justified approximations; the sec-
ond, statistical mechanical approaches for enhanced sampling, 
uses tools such as metadynamics,51-55 umbrella sampling,56, 57 
and replica exchange58, 59 to explore the potential energy land-
scape more efficiently. We will begin by describing the MS-
RMD algorithm in detail, before moving on to a discussion of 
computational acceleration approaches, and then statistical me-
chanical ones. We will then review recent application work and 
examples of RAPTOR usage, and conclude with a discussion of 
current and future efforts to further improve RAPTOR and the 
MS-RMD methodology. 

 
II.  The MS-RMD Algorithm 
The MS-RMD forcefield 
The Hamiltonian to describe a reactive system is given by a 

linear combination of the possible diabatic states, and may be 
written as 

𝐻!"# =#|𝑖⟩h$%⟨𝑗|
&'

. (1) 

The diagonal terms, ℎ&&, represent the potential energy of each 
diabatic state, while the off-diagonal terms ℎ&' reflect the cou-
plings between those diabatic states. At each timestep of the 
MS-RMD simulation, the energies and forces of each nonzero 
matrix element are computed, and the ground-state energy may 
be obtained using the secular equation 𝑯()*𝒄& = 𝐸&𝒄&. The 
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eigenvectors 𝒄& may be thought of as representing the different 
‘weights’ associated with each EVB state. 

The MS-EVB 3.2 model for proton transport23, 25 uses diago-
nal terms of the form 

ℎ&& = 𝑉+!,"
&-./0 + # 𝑉+#,

&-./0,2

3$#%

2

+ # 𝑉+!,",+#,
&-.4/,2

3$#%

2

+ # 𝑉+#,
&-.4/,22&

3$#%

252&
.																																									(2) 

Here, 𝑉+#,
&-./0,2 and 𝑉+#,

&-.4/,22& reflect the intra- and intermolecu-
lar degrees of freedom for the water molecules, and the poten-
tials for these terms directly reflect the underlying water model 
– in this case SPC/Fw. SPC/Fw is a three-site, flexible water 
model with an accurate dielectric constant and bulk diffusion 
properties.60 The functional forms in the potential follow the 
traditional representation of terms for bonds, angles, and tor-
sions in the intramolecular potential, and Coulomb and Len-
nard-Jones terms for the intermolecular potential that are famil-
iar from classical nonreactive forcefields. The specific parame-
ters used for the SPC/Fw model may be found in the literature.60 
The term 𝑉+!,",+#,

&-.4/,2  is the function which governs intermolecu-
lar interactions between hydronium and water molecules. It is 
of the form 
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The repulsive terms 𝑉,,(
/4:	𝑎𝑛𝑑	𝑉+,(

/4: are two additional repul-
sive terms which are necessary to correct for an underestimation 
in the repulsive energy between the hydronium oxygen and wa-
ter oxygens in the first case, and between the hydronium hydro-
gen and water oxygen atoms in the second case.23 This allows 
for a more accurate description of the potential between the hy-
dronium ion and its first solvation shell. The terms are given by 

𝑉,,(
/4: = 𝐵𝑒𝑥𝑝L−𝑏N𝑅,,( − 𝑑,,

> OP#𝑒𝑥𝑝 Q−𝑏?𝑅+),(
7 R

;

'

(4) 

and 
𝑉+,(
/4: = 𝐶𝑒𝑥𝑝L−𝑐N𝑅+,( − 𝑑,+

> OP. (5) 
B, b, b’, 𝑑,,> , C, c, and 𝑑,+>  are empirical parameters which 

are fit to higher-level data by iterative force- or energy-match-
ing to ab initio calculations. The repulsive terms vanish beyond 
the first solvation shell, according to a switching function 𝑆(𝑟) 
given by 

𝑆(𝑟) = X
1,

1 − (𝑟@ − 𝑟A)B;(𝑟 − 𝑟A)7(3𝑟@ − 𝑟A − 2𝑟),
0,

			  

𝑟 < 𝑟A
𝑟A < 𝑟 < 𝑟@
𝑟 > 𝑟@

(6) 

where 𝑟A − 𝑟@ is 2.85–3.05 Å for 𝑉,,(
/4:, and 2.3–2.5 Å for 𝑉+,(

/4:. 

The functional forms used for the amino acid models are es-
sentially identical, except the classical forcefield parameters for 
the amino acid residues,24, 34, 47, 61 which are procured from the 
CHARMM forcefield.62-66 

The off-diagonal elements characterize the strength of cou-
plings between diabats. Due to differences in electronic struc-
ture and protonation behavior between amino acids and water, 
these terms assume different forms when the coupling is be-
tween hydronium and water and between amino acid and water. 
Since the coupling is determined largely by the geometry near 
the average proton position, they both include a geometry-de-
pendent term. In the case of amino acids, the coupling may be 
expressed solely by the donor-acceptor distance and follows a 
Gaussian form. For example, in glutamates and aspartates, this 
distance is the distance between the donor oxygen and the ex-
cess proton 𝑟,+  , and the off-diagonal term can be easily com-
puted as 

𝐻&' = 𝑐6 𝑒𝑥𝑝[−𝑐7(𝑟,+ − 𝑐;)7] (7) 
Here, c1, c2, and c3 are pre-fit parameters unique to each 

amino acid type. The water-water coupling involves a more 
complicated functional form. For instance, consider the hydro-
nium and water involved in the two diabats forming an H5O2

+ 
Zundel ion complex: it can be conceptualized as two water mol-
ecules “sharing” an excess proton in between them. Two pa-
rameters define the geometry of this complex—the distance be-
tween the two oxygens 𝑅,,, and a vector 𝒒 pointing from the 
center of the two oxygens to the shared proton. Hence, the off-
diagonals can be written as 

𝐻&' = N𝑉@C-A.
&' + 𝑉4D

&'O ⋅ 𝐴(𝑅,,, 𝒒) (8) 
Here, the geometry-dependent factor 𝐴(𝑅,,, 𝒒) depends 

solely on the two abovementioned quantities. It can be written 
in closed forms of these two parameters and is facile to com-
pute. Details of this geometric factor can be found in the MS-
EVB literature.23 The prefactor includes a fitted constant 𝑉@C-A.

&'  
and an exchange term 𝑉4D

&'. This exchange term represents the 
Coulomb interaction between the Zundel (H5O2

+)complex and 
the environment. 

𝑉4D
&' = # #

𝑞9𝑞-
𝑅9--∈4-F

	
9∈@C9:G4D

(9) 

Given the emergence of neural-network forcefields, recent 
work has also considered fitting the off-diagonals in the EVB 
Hamiltonian to a neural network that is trained on ab initio data 
from the transition state region.46, 67 A neural network reflects a 
universal approximator for the off-diagonal potential that may 
better capture effects that are not considered by a pre-defined 
analytic form. This provides a key alternative to empirical func-
tional forms for when the nature of the interaction potential is 
not well-known, or is poorly described by a simple analytic 
form. However, there do remain important questions to practi-
cal implementation of neural network forcefields in the MS-
RMD method. One particular concern is that, while still much 
faster than explicitly computing the electronic structure, neural 
network inference times are typically on the order of a millisec-
ond, which becomes appreciable when evaluating a large num-
ber of terms. This could significantly impact the computational 
tractability of the model. Additionally, neural network models 
may not generalize as well as current approaches, or require ex-
ponentially more data to provide accurate, problem-specific re-
sults.34 It remains unclear precisely how much training data 
would be required to parameterize an accurate neural network 
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forcefield in a biomolecular context, and this is a key question 
that must be answered to allow for the routine exploration of 
complex chemical spaces with a neural network-enhanced var-
iant of MS-RMD. 
 
Evaluation of the MS-RMD Hamiltonian 

A crucial component of the multistate EVB scheme is the 
state-search algorithm which determines how many EVB states 
to consider at a given timestep. At the start of the simulation, a 
‘pivot state’ is chosen by considering the proton bound to the 
closest water molecule. At each timestep in the MD simulation, 
the ‘pivot state’ is reevaluated by considering which state had 
the largest contribution to the MS-EVB Hamiltonian by its am-
plitude at the prior timestep. The pivot state is then considered 
as the reactant state, and EVB states are generated, e.g., with 
each proton from the hydronium ion transferred to each water 
within 2.5 Å of the respective proton. Each of these EVB states 
is then considered as a potential reactant state, and the same 
process is repeated, up until the third solvation shell of the orig-
inal pivot hydronium is considered. This results in a well-con-
verged EVB state vector – beyond the third solvation shell, a 
large number of negligible states will be included. This typi-
cally results in 15–20 EVB states being considered at each 
timestep for a bulk water excess proton simulation – enough to 
ensure adequate sampling of reasonable EVB states that the ex-
cess proton may occupy, while also maintaining computational 
tractability. Confined environments typically require far fewer 
EVB states to model through the third solvation shell. A key 
insight inherent in this approach to simulating a reactive system 
is the idea of charge defect delocalization. By simultaneously 
considering a linear combination of the relevant EVB states, 
one is able to account for the delocalized nature of the excess 
charge defect and thus explicitly model the Grotthuss shuttling 
process.10, 11 The key features enabled by MS-RMD modeling 
of proton transport are presented in Figure 1 – firstly, charge 
delocalization; and secondly, Grotthuss shuttling. 

The evaluation of the Hamiltonian matrix elements at each 
timestep comprises a majority of the computational cost of the 
algorithm. Naively, each diagonal in the matrix is roughly a 
standard MD cost to evaluate, and the matrix can consist of 20+ 
nonzero elements in a typical simulation of proton transport in 
bulk water. Additionally, computing the  off-diagonal terms re-
quires summation of the long-range Coulomb interactions. As 
the number of the diabatic states 𝑛 increases, the computation 
cost of this exchange term can quickly become significant, 
given that the number of off-diagonals grows as 𝑂(𝑁7). Tradi-
tionally, evaluation of this summation may be accomplished 
with Fourier space methods, such as particle-particle, particle 
mesh (P3M) Ewald summation,68, 69 just like in the diagonal 
terms. 

A variety of schemes have been implemented to remove re-
dundancy and efficiently parallelize the calculation of the ma-
trix elements, which will be detailed in the next section. With 
an evaluation of the Hamiltonian elements in hand, one may di-
agonalize the matrix to obtain ground-state energies, and use 
the Hellmann-Feynman theorem to compute the forces on each 
atomic nucleus: 

𝐹'+HI = −⟨𝜓>|
𝜕𝐻
𝜕𝑟'

|𝜓>⟩ =#𝑐9𝑐-𝐹'9-
9,-

(10) 

which may then be integrated by the MD engine to propagate 
the simulation forward in time. P3M Ewald summation as 

implemented in LAMMPS is used to decompose the Coulombic 
interaction into a short-range and long-range piece and facilitate 
efficient evaluation.68, 69 Scaling properties for a single-proton 
simulation of the ClC-ec1 protein33, 70 in the 2022.3 release of 
RAPTOR is presented in Figure 2. 

 

Figure 1. An illustration of the key features of the MS-RMD ap-
proach for the excess proton in water. (A) The hypothetical diabatic 
states considered in an Eigen cation H9O4

+. By considering the total 
system to be a linear combination of these localized charge states, 
the charge defect is effectively delocalized over those states. (B) 
Grotthuss shuttling in a water wire. The Grotthuss mechanism al-
lows for the excess proton to rapidly shuttle large distances via 
charge transport in the hydrogen bond network. 

 
Multiple proton simulations with SCI-MS-EVB 

With RAPTOR, it is also possible to simulate multiple pro-
tons (or other reactive species) simultaneously at near-linear 
scaling.71 This is achieved with the self-consistent iterative MS-
EVB (SCI-MS-EVB) algorithm, which divides the full MS-
EVB Hamiltonian with multiple excess protons into complexes 
whose energies and forces may be solved for independently and 
then reconciled via an iterative self-consistent process. This is 
possible, in part, because the reactive complexes make up a rel-
atively small portion of the system at relevant pH values. 

Consider a system with two excess protons, partitioned into 
complex A (containing the first excess proton) and complex B 
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(containing the second). We may describe the Hamiltonian for 
complex A as follows: 

𝐻J = 𝐻JJ +𝐻J*& +𝐻J! (11) 
where 𝐻JJ reflects the internal interactions of EVB complex A, 
HJ*’ reflects the interactions between particles in complex A 
and complex B, and 𝐻J! reflects the interactions of complex A 
with the nonreactive system.71 The Hamiltonian for 𝐻* follows 
as expected. A self-consistent solution may be found by solving 
for 𝐻J given an educated guess for 𝐻*, and then solving for 𝐻* 
in consideration of that solution, and iterating until convergence 
is achieved. As with single-proton simulations, the EVB state 
with the largest weight from the prior timestep is used as the 
initial guess for each complex—for the first timestep, a likely 
hydronium configuration is chosen by considering the excess 
proton bound to the nearest water. The total system energy is 
given by 
𝐸.C.0G = ⟨𝑎>|𝐻JJ +𝐻J!|𝑎>⟩ + ⟨𝑏>|𝐻** +𝐻*!|𝑏>⟩
+ ⟨𝑎>𝑏>|𝐻J*|𝑎>𝑏>⟩ + 𝐸!!
= 𝐸JJ + 𝐸** + 𝐸J* + 𝐸J! + 𝐸*!
+ 𝐸!!																																																																																														(12)	 
where |𝑎>⟩	and |𝑏>⟩ are, respectively, the ground-state solutions 
for complex A and B. The ground-state forces may then be ob-
tained as usual using the Hellmann-Feynman theorem, and the 
system propagated as shown for the single-proton case. This 
formalism readily extends to systems with more than two EVB 
complexes. The SCI algorithm restricts EVB complexes from 
overlapping, which is a reasonable approximation at dilute to 
moderate acid concentrations. Scaling properties for the SCI-
MS-EVB approach in Nafion proton exchange membrane sys-
tems of various sizes are presented in Figure 2. While SCI-MS-
EVB scales linearly in cost with respect to the number of excess 
protons, parallelization properties are worse across multiple 
nodes than the single-proton case. Scaling properties improve 
in the larger Nafion systems; however, this is because the gen-
eral computational load is significantly higher, which better 
masks the communication overhead. 
 

III. Computational Enhancements to MS-RMD 
A number of approaches to improve the computational per-

formance of MS-RMD have been developed. The primary com-
putational expense of the RAPTOR algorithm is the computa-
tion of the matrix elements at each timestep. Domain decompo-
sition and multiple program (MP) parallelization schemes have 
eliminated substantial redundancies in the evaluation of the 
MS-RMD matrix elements, which have drastically reduced the 
cost of evaluating them. These improvements have substantially 
enhanced the computational performance of RAPTOR, grant-
ing it near-empirical MD throughput while remaining accurate 
enough to provide quantitative estimates of proton transfer rates 
and pKa values. Recent efforts have also focused on GPU accel-
eration and coarse-graining of the electrostatics calculations in 
the off-diagonal terms. 

 
 

The CGIS method 
In 2008, Izvekov et al. introduced the Coarse-Graining in In-

teraction Space (CGIS) method, which force-matched long-
range electrostatics into effective short-range potentials with a 
specified cutoff distance.72 This approach transforms the k-

space summation from an O(NlogN) scaling to a linear scaling 
based on the system size. Building on this, Yamashita et al. ap-
plied the CGIS approximation to compute the exchange term in 
the off-diagonal elements.45 They found that substituting the k-
space sum in the off-diagonal terms with CGIS short-range 
forces does not compromise key observables, such as the struc-
ture and diffusion of hydrated excess proton in water, radial dis-
tribution functions (RDFs) of various atom pairs, and the prob-
ability distribution of the RMD coefficients. 

 
Figure 2. CPU scaling efficiency of several systems simulated us-
ing RAPTOR with MS-RMD and with multiple protons using the 
SCI-MS-EVB approach. Simulations were run on Cascade Lake 
Intel CPUs with the 3Nov2022 release of LAMMPS and 2022.3 
release of RAPTOR. 

 
However, CGIS off-diagonals were not previously tested 

with amino acid models. Here, we expanded the method to an 
“amino acid in water” system, employing the same setup as in 
Li and Voth.34 The system includes one glutamate molecule, 
241 water molecules, and one excess proton, and the simulation 
was conducted using 16 Intel Xeon Gold 6248R CPUs. Figures 
3A and B illustrate the performance of this system in a well-
tempered metadynamics simulation with various k-space sum-
mation cutoffs. As the required P3M accuracy increases from 
10–4 to 10–6, the costs for off-diagonal computations escalate 
rapidly, both in absolute time (Figure 3A) and as a percentage 
of the total cost (Figure 3B). At a force accuracy of 10–6, calcu-
lating off-diagonal terms with P3M can take 43.4% of the total 
time used by RAPTOR, while the time on CGIS remains rela-
tively constant. At various accuracies, switching from P3M to 
CGIS off-diagonals can save from 24.8% to 43.1% of the over-
all time consumed by RAPTOR. 

Figure 3C shows the proton dissociation PMFs in water 
computed from both glutamic acid models. All curves were 
shifted to ensure that the free energy decays to zero at large 
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distances. The curves show similar profiles, both in terms of 
well depth and asymptotic behavior. When using P3M with 
10–4 accuracy (the conditions under which the glutamate 
model was parametrized) the well depth is 10.7 ± 0.2 
kcal/mol (pKa = 3.95), and when using CGIS with the same 
accuracy, the well depth is 10.4 ± 0.3 kcal/mol (pKa = 3.65). 
Both the well depth and pKa compare favorably with each 
other and with experiments (pKa = 4.07). Over the course of 
the metadynamics simulations, 5 PMFs were extracted to cal-
culate the standard error. These detailed uncertainties are 
shown in Figure S1 of the Supporting Information (SI). We 
note that the MS-RMD model using GCIS could be easily 
reparametrized to give a more accurate pKa value.  

 

Figure 3. Impacts of RAPTOR off-diagonal evaluation settings. 
(A) The total time spent on the RAPTOR module using P3M- and 
CGIS-based off-diagonal calculations at difference k-space accura-
cies. (B) The percentage of the time dedicated to off-diagonal cal-
culations. (C) Proton dissociation PMF from CGIS- and P3M-based 
MS-RMD off-diagonals for a glutamic acid in water system at dif-
ferent accuracies. The accuracies of the two treatments of the off-
diagonals are comparable. A more detailed look at the well depths 
and associated uncertainties is available in Figure S1. 

 

Parallelization via domain and state decomposition 
The primary parallelization method available in LAMMPS is 

domain decomposition, in which the simulation box is divided 
into non-overlapping domains whose interactions may be com-
puted in parallel. Each domain is assigned to a unique Message 
Passing Interface (MPI) process which updates the atom posi-
tions, velocities, and forces at every time step. The domain de-
composition approach is highly efficient for short-ranged inter-
actions because atom information is communicated between 
neighboring MPI processes. Based on the outcome of the EVB 
state search process, the full system is partitioned into an ‘envi-
ronment’ region, containing all atoms not involved in an EVB 
state, and a ‘complex’ region, containing the atoms involved in 
EVB complexes. The environment-environment interactions 
are only computed once per timestep by LAMMPS. As a result, 
the major computational overhead of RAPTOR concerns envi-
ronment-complex and complex-complex interactions. As the 
complexes concern a small portion of the system, the bonded 
interactions are relatively cheap, so the primary computational 

cost comes from the electrostatics. The neighbor lists that 
LAMMPS builds to handle the electrostatics may be reused, 
with appropriate sorting, to reduce the cost of re-computing the 
electrostatics for each EVB complex. 

Domain decomposition comprises a substantial source of 
RAPTOR’s parallel efficiency – as the computations for the 
bonded and short-range nonbonded interactions are truncated, 
they need only be computed once per timestep for the nonreact-
ing atoms which comprise the majority of the simulation vol-
ume and do not change between the diabats. This dramatically 
reduces the overall computational cost of MS-RMD compared 
to the naïve case by rendering the scaling of the intramolecular 
and short-range nonbonded interaction computations with re-
spect to the number of diabatic states essentially linear. The ex-
tent of parallelization possible with this approach is primarily 
limited by evaluation of the long-range electrostatics. 

Efficient parallelization of the long-range nonbonded inter-
actions remains a major challenge, as the 1/𝑟 Coulomb sum de-
cays too slowly to make reasonably small domains viable. De-
spite formally scaling as O(NlogN), the reciprocal space com-
ponent scales poorly at high processor counts as expensive all-
to-all comm operations are required to communicate the elec-
trostatic information from the P3M grid to each processor. This 
cost degrades performance significantly at high state counts, 
such that the reciprocal space portion begins to dominate the 
overall compute time.45 This comprises the main computational 
bottleneck to RAPTOR’s performance and parallelization at 
high state and MPI rank counts. As a result, additional parallel-
ization schemes at the MPI and OpenMP levels are also consid-
ered, in addition to approximations of the long-range electro-
statics which reduce the number of long-range FFTs required. 

The suboptimal scaling of the long-range electrostatics com-
putation may be limited by considering a multiple program 
(MP) scheme. In the MP scheme, a small subset of the proces-
sors are assigned the communication-intensive long-range elec-
trostatics computation, while the rest of the processors handle 
the real-space bonded and short-range electrostatics terms.73 
This contrasts the more conventional single program, multiple 
data (SPMD) parallelization paradigm, where the same set of 
tasks are performed on different sets of data. An MP scheme 
has been implemented for RAPTOR in LAMMPS, resulting in 
significantly improved parallel scaling at high processor 
counts.74 The primary advantage of the MP scheme is that one 
significantly reduces the number of MPI ranks involved in the 
required all-to-all FFT broadcast. A 3:1 ratio between the real-
space and reciprocal-space partitions is typically used.75 The 
primary overhead cost of this approach is that communication 
is required between partitions that are computing the real-space 
and reciprocal-space terms for the same simulation volume, so 
MPI rank reordering is needed to ensure that those communica-
tions are intra-node. The cost of this load balancing scheme is 
typically only worthwhile at high processor counts – the MP 
scheme typically begins to see improved performance at >128 
cores.45, 73 

A similar principle to domain decomposition may be applied 
to achieve state decomposition, where the computations for 
each diabatic state are conducted in parallel. This is imple-
mented as an additional layer of parallelism on top of domain 
decomposition and OpenMP multithreading. State decomposi-
tion simply involves exploiting the obvious source of parallel-
ism inherent in the MS-RMD approach: it computes the inter-
actions for different diabatic states on separate MPI ranks. 
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Specifically, LAMMPS is run in partitioned mode, which uses 
MPI_Split operations to create new MPI sub-communicators 
for each partition. The partitions are given the same particle co-
ordinates and velocities, so that they obtain the same MS-EVB 
states after independently running the state search algorithm. A 
static load balancing algorithm determines which state each par-
tition will compute. Following evaluation, an all-to-all MPI 
communication process produces the Hamiltonian, which is di-
agonalized by each partition to give the ground state MS-EVB 
energy and the corresponding eigenvectors. Forces are then ob-
tained via the Hellmann-Feynman theorem as discussed previ-
ously. Following force evaluation, an all-to-all MPI synchroni-
zation is required, as each partition only has access to the matrix 
elements it has evaluated. However, the spatial decomposition 
may be leveraged here by performing the communication 
within a MPI communication group that contains the same spa-
tial domains.73 The forces can then be propagated by the MD 
integrator, providing new coordinates and velocities for the next 
timestep. Compared with the domain decomposition scheme, 
state decomposition is not especially productive at low node 
counts, owing to the dynamic evolution of the number of states 
and the high overhead associated with load balancing. State de-
composition also inherently reduces the number of MPI ranks 
available to domain decomposition, which is a more efficient 
source of parallelization in most cases. State decomposition 
does, however, yield significant performance improvements for 
SCI-MS-EVB simulations.42 

Parallel performance at the shared-memory level is imple-
mented with the OpenMP API as a force decomposition 
scheme. This allows for a variety of loop-level parallelisms to 
be implemented – for instance, the pairwise additive force com-
putations may be distributed across multiple threads, as well as 
the bonded interactions and certain portions of the long-range 
electrostatics computation, such as interpolating charges onto 
the P3M mesh. The implementation of this parallelism for 
RAPTOR uses LAMMPS’s implementation for the diagonal 
matrix elements, and is adapted to the RAPTOR-specific eval-
uation of the off-diagonal elements. Typically, this paralleliza-
tion is only effective at extremely high MPI rank counts.73 

 
GPU acceleration of MS-RMD 

The fine-grained, automatic-scaling parallelism available in 
general-purpose graphics processing units (GPGPUs) allows 
for additional performance gains on top of what is possible with 
the domain and state decompositions. Efforts to accelerate 
RAPTOR with GPGPUs in LAMMPS have been active since 
the MS-EVB2 version. Our implementation is based on the 
framework of the GPU package,76-79 where the bottlenecks of a 
MD timestep, that is, non-bonded force and energy evaluations, 
are performed on the GPU. The long-range electrostatic solvers 
and bonded interactions are computed concurrently on the CPU. 
This hybrid MPI/GPU approach proves efficient for computa-
tionally expensive force fields since it allows multiple MPI pro-
cesses to saturate the computing capacity and memory band-
width of the GPUs. 

Our findings for optimizing the performance of the GPU-
accelerated MS-RMD in the RAPTOR package can be summa-
rized as follows. First, we found that it is beneficial to off-load 
only the nonbonded and real-space electrostatic forces and en-
ergies that involve the environment atoms to the GPU. The 
short-range contribution to the electrostatic energy of the diag-
onal elements of the Hamiltonian matrix remains on the CPU. 

This partial offloading strategy significantly reduces the num-
ber of host-device data transfers required for the atom neighbor 
lists corresponding to individual bonding states. Further reduc-
tion in the host-device transfers comes from the fact that we 
only need to update the neighbor list of the environment atoms 
on the device when the host counterpart is modified upon enu-
merating over the bonding states. To compute the force of each 
atom on the device, we distribute the iteration over its neighbor 
list across multiple GPU threads to ensure that all the streaming 
processors are occupied and to reduce the number of iterations 
per thread. 

Second, the reciprocal space contribution to the electrostatic 
energy of the bonding states of a given complex can be evalu-
ated with a separate mesh rather than with the original grid that 
spans the whole simulation box. As suggested by Yamashita et 
al.,45 it is possible to use a coarser mesh for the complex atom 
charge density without noticeable changes in the accuracy. Be-
cause the P3M relative error is estimated based on the sum of 
the squared charges, we notice that the number of grid points 
needed for quite a few reactive atoms for a given accuracy can 
be smaller than that of the grid for the whole system. This is 
important because the computational cost for the long-range 
contribution to the bonding state energies can be reduced. 

Third, the reciprocal space contribution to off-diagonal ma-
trix elements can be approximated by damped shifted force, De-
bye screening, or similar truncation schemes. This is possible 
because the off-diagonal terms are smaller than the diagonal 
terms by an order of magnitude and a careful treatment of the 
approximation such as the Wolf summation is sufficient for cap-
turing the long-range contribution. 

To demonstrate the performance gain with GPU acceleration, 
we chose a system that is representative of biological simulation 
studies in practice: a solvated Cl–/H+ antiporter protein from E. 
coli (ClC-ec1) with an excess proton, consisting of 200,894 at-
oms in total. The CHARMM22 force field was employed. The 
electrostatic interactions were computed with a short-range cut-
off of 12 Å, with the long-range contributions treated by the 
P3M method with a relative accuracy of 10–5. Both systems were 
first equilibrated for 500 ns in the canonical ensemble at T = 
300 K using a Nosé-Hoover chain thermostat.80 The benchmark 
simulations were conducted for 100 MD steps with a time step 
of 1 fs. The atom neighbor list was rebuilt every 5 timesteps 
with a buffer of 2 Å. 

Figure 4A shows the strong scaling performance of the GPU 
accelerated version vs the non-GPU version on a single node. 
The CPU-only and GPU-accelerated versions exhibit good scal-
ing, indicating that the parallel performance within a node is 
computation bound for the system size under investigation. The 
GPU speedup vs. the MPI-only version increases with the num-
ber of atoms per processor. The GPU speedup is significant at 
the lower MPI counts because the number of atoms per process 
is high, and thus the workload is primarily due to the computa-
tion of the real-space contribution that is done to the GPUs. By 
tuning the buffer size of the neighbor list and the number of 
GPU threads used for tallying atom forces and energies, we ob-
serve a significant boost in the performance.  Specifically, using 
an increased buffer size of 3 Å and 32 GPU threads per atom 
(the whole SIMD vector length, or CUDA warp size) the timing 
for the short range and real-space interactions between the en-
vironment atoms is reduced by orders of magnitude when of-
floaded to the GPUs: e.g., from 26.0 seconds to 0.3 seconds on 
8 MPI processes sharing a GPU. The adjustment in the neighbor 
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list buffer size and GPU threads per atom is motivated by the 
need to reduce the host-device neighbor list transfers and the 
fact that the average number of neighbors per atom is around 
650 for the real-space cutoff of 12 Å. 

As the number of MPI processes increases, the number of at-
oms per process decreases while the communication overhead 
for gathering the charge densities on the grid between the pro-
cesses increases. For the full-node 32-MPI runs without the 
GPUs, the timing due to the reciprocal space calculation, and 
more precisely, the communication overhead of the forward and 
backward FFTs used, accounts for approximately 24% of the 
total simulation time. With GPU acceleration, this non-GPU 
part becomes the bottleneck, reaching 90% of the total simula-
tion time. Consequently, the GPU-accelerated runs deviate 
from linear scaling, maintaining 78% parallel efficiency. 

 
Figure 4. GPU acceleration of RAPTOR. (A) Strong scaling per-
formance of the RAPTOR code with and without GPU acceleration 
on a single node with up to 32 CPU cores of a solvated protein and 
single-site proton transfer. (B) GPU speedup vs. MPI-only version 
as a function of the number of atoms per processor. The GPU-
accelerated data is collected from the optimal setting at a given 
number of MPI processes. 

 

The effects of using a coarser grid for the P3M solver for the 
long-range contribution to the electrostatic interactions between 
reactive atoms are shown in Figure 4B. For the benchmark sys-
tem, the simulation box dimensions are 118 × 115 × 237 Å. 
With the relative RMS force error of 10–5, we need a P3M grid 
composed of 72 × 72 × 128 points along the x, y, and z dimen-
sions. This full P3M grid is employed to evaluate the long-range 
force and energy for the environment atoms. A coarser grid of 
36 × 36 × 72 points is needed for 28 reactive atoms to give the 
same order of magnitude relative error given the box dimen-
sions. Using this coarse grid for the reactive atoms, we found a 
strong boost in performance across all the number of CPU 

cores: from 50% speedup at low atom counts to 100% speedup 
at high atom counts. 

The reasonable GPU speedup at intermediate MPI counts (4 
–8 processors) provides opportunities to obtain higher aggre-
gate throughput at the node level. By packing independent sim-
ulations each occupying a subset of CPU cores and GPUs, one 
can harvest higher aggregate simulated times as compared with 
using a non-GPU full-node simulation or using a single simula-
tion with 4 GPUs. We found that by packing 4 simulations each 
using 8 CPU cores and 1 GPU into one node, the aggregate 
timesteps are 4.5X higher than using a single simulation with 
32 CPU cores without the GPUs, and 2X higher than using a 
single simulation with all the 4 GPUs in the node. The ability to 
accelerate individual runs in parallel is also important for en-
hanced sampling that involves replica exchange. 

 
IV. Enhanced Sampling with MS-RMD 
Collective variables for proton transport 

It is commonly the case that computational acceleration alone 
is not enough to access the reactive pathways of interest in MS-
RMD simulations, particularly if such a pathway reflects an en-
ergetically unfavorable rare event. In this case, statistical me-
chanical biasing along a collective variable (CV) that describes 
the reaction pathway is required. RAPTOR and LAMMPS may 
be interfaced with the PLUMED software package to conduct 
such enhanced sampling, just as one might do with a typical 
classical molecular dynamics simulation.81, 82 However, differ-
ent rules and constraints apply when choosing CVs for MS-
RMD simulations. Additionally, there are differences between 
the various common enhanced sampling techniques (metady-
namics, umbrella sampling, and replica exchange) which are 
worth discussing in a MS-RMD specific context. 

Given the delocalization of the charge defect amongst multi-
ple EVB states in the MS-RMD framework, it is essential to 
define a variable that best reflects the effective position of the 
excess protonic net positive charge. This is given by the center 
of excess charge, or CEC, defined as 

𝑟L(L =#𝑐&7𝑟L,L&
3

&

(13) 

where 𝑐&7 is the magnitude of the ith EVB state vector, and 𝑟L,L&  
is the position vector of the center of charge of the hydronium 
for the respective EVB state.22, 83 This allows for one to readily 
compute a mean squared displacement (MSD) that tracks the 
position of the excess proton over time. It also provides an ave-
nue to bias the simulation, via a path-dependent CV that de-
scribes the distance of the CEC from a key protonatable residue. 
In a simple situation, such as that of a glutamic acid residue in 
bulk water, the reaction coordinate can simply be described by 
the distance between the CEC and the closer glutamic acid ox-
ygen,34 

ξL(LMGN = −
1
κ 𝑙𝑜𝑔L𝑒𝑥𝑝N−κ

(𝑟6 − �̅�)O + 𝑒𝑥𝑝N−κ(𝑟7 − �̅�)OP
+ �̅�.																																																														(14) 

For this CV, κ is a constant equal to 40 Å-1, 𝑟6 and 𝑟7 describe 
the separation between the CEC and the two respective carboxyl 
oxygens, and �̅� is the average separation. 

MS-RMD simulations of amino acids almost always require 
biasing along a CV similar to the one described above, which 
drives the simulation towards sampling the relatively rare 
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protonation and deprotonation events. In bulk water, a CV 
based on the CEC distance is typically sufficient to describe 
sampling of these events. However, in many systems of chemi-
cal interest, additional CVs are needed to fully sample the rele-
vant free energy space.32-34, 84, 85 

In confined environments, such as in protein channels, mem-
branes, and pores, water connectivity is starkly different, and a 
CEC-based CV is alone insufficient to approximate the reaction 
coordinate. Confined environment water connectivity has often 
been described according to ‘water wires’: single-file arrange-
ments of water molecules that enable the Grotthuss shuttling of 
protons through confined spaces.84 Under these conditions, a 
novel CV – one which accurately describes water wire connec-
tivity – may be required. The resulting CV should be continu-
ously differentiable, and derived directly from a structural as-
sessment of water wire connectivity in the presence of an ex-
plicit excess proton, given that the presence of the excess proton 
will considerably distort the water lattice.84 Li and Voth derived 
such a CV from graph descriptions of water wire networks, 
namely by looking at the principal curve connectivity.84 This 
provides an avenue to quantitatively sample the transport ca-
pacity and route of a given water wire structure in the presence 
of an excess proton. This water connectivity CV is implemented 
in a custom modification of PLUMED which is available upon 
request, and described herein below. 

The principal connectivity variable, 𝜙, may be regarded as a 
‘coarse graining’ of the water wire structure. Firstly, a smooth 
water coordination number is determined for each bead, which 
reflects the solvation of all water oxygens (𝑥&): 

𝑠& =#𝑓AO(|𝑥G − 𝑥&|)
3'

G

(15) 

The switching function 𝑓AO is of the form 

𝑓AO =	

⎩
⎨

⎧
1,

)(
(𝑥 − 𝑑>)

𝑟>
− 0.5)3 )(2(

(𝑥 − 𝑑>)
𝑟>

− 0.5)3
7

− 1.5) + 0.5,

0,

				 

𝑥 < 𝑑>
𝑑> ≤ 𝑥 ≤ 𝑟>
𝑥 > 𝑟> + 𝑑>

(16) 

which allows for the water wires to fluctuate somewhat around 
the principal curve, but avoids introducing a change to the final 
value of the CV. The next task is to define a variable that de-
scribes the connectivity of the system, analogous to an adja-
cency matrix in the all-atom case. The occupancies 𝑙&, ranging 
from 0 to 1, may be given by the Fermi relation, 

𝑙& =
1

1 + 𝑒𝑥𝑝 Q−𝑠& − 𝑠Oσ R
(17) 

where 𝑠O and σ reflect the degree of occupancy of a given bead 
based on its coordination number. Given that two adjacent 
beads on the graph will be connected when they are both occu-
pied, the two-body connectivity 𝑓&,&P6 may be described as 
(𝑙& + 𝑙&P6)/2. The curve will be fully connected if all of the two-
body pairs are connected, and so the full principle curve con-
nectivity CV 𝜙 may be written as the product of each respective 
two-body connectivity, 

𝜙 = uv𝑓&,&P6

3B6

&Q6

w

6/(3B6)

. (18) 

CEC-based and water wire-based CVs provide an excellent 
starting point for modeling a reaction coordinate for proton 
transport in proteins, but in many cases system-specific CVs are 
needed to characterize conformational changes that allow for 
protonation events to occur.34, 61 Typically, these CVs are based 
on the conformation of larger protein sub-assemblies or the po-
sitioning of key residues or functional groups. These secondary 
CVs are usually highly system-specific, and are determined 
based on observations from unbiased simulations. 

 
Simulation biasing methods with MS-RMD 

The two most commonly used methods to bias a MS-RMD 
simulation are metadynamics51-54 (MetaD) and umbrella sam-
pling56, 57 (US). Depending on the quality of the CVs available 
and the character of the system’s free energy surface, the two 
methods offer trade-offs which are worth discussing in the con-
text of MS-RMD simulations. 

MetaD is commonly used with MS-RMD simulations when 
there is only one CV of interest and the character of the free 
energy surface is not well known.54 In particular, well-tempered 
MetaD (WT-MetaD)52, 54, 55 and transition-tempered MetaD 
(TT-MetaD)53 have proven to be especially valuable for MS-
RMD given their ability to precisely estimate the free energy 
surface, and in the case of TT-MetaD, converge faster. MetaD 
may also be employed in a multidimensional form if there are 
more than one CVs of interest that describe the reaction coordi-
nate. However, as the number of CVs grows larger, it becomes 
more difficult to converge the free energy surface, so more than 
two CVs are rarely used. 

If all states of reactive interest are known, TT-MetaD pro-
vides a method to more efficiently capture the nature of the free 
energy landscape between those states. TT-MetaD, which was 
formulated by Dama et al. in 2014, is a hybrid approach that 
combines the advantages of both standard and well-tempered 
MetaD. It arises from the recognition that MetaD is essentially 
a two-stage process – in the first, the hills fill the metastable 
basins in the energy landscapes. Once those basins are filled, 
and the energy surface is similar in composition across the land-
scape, the system will diffuse across the free energy surface. 
During the first phase, TT-MetaD functions similarly to con-
ventional MetaD, as gaussian hills of the same size are depos-
ited on the surface. Once the basins of the free energy surface 
are filled, tempering is added to achieve convergence. This min-
imizes the overall time to convergence by combining traditional 
MetaD’s faster basin filling with WT-MetaD’s more efficient 
convergence of the free energy surface. Naturally, this approach 
requires a way to determine when all of the basins are filled, 
and the second phase of MetaD has begun. This is accomplished 
by looking for where the bias potential is linked across all of the 
major basins in the free energy surface – that is, there are no 
points along the free energy surface connecting any states of 
interest where the bias potential is zero.53 As such, successful 
use of TT-MetaD requires some a priori knowledge of the states 
of interest, and the method is primarily useful for providing in-
formation on the transitions between them. Like with WT-
MetaD, the decaying exponential guarantees asymptotic con-
vergence in the second phase. 

Typically, TT-MetaD will converge more rapidly than WT-
MetaD and standard MetaD given a reasonably appropriate CV 
or set of CVs. As with any enhanced sampling method, the con-
vergence of the free energy surface is essential, and in many 
cases it can be challenging to achieve convergence with any 
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form of MetaD. A common problem that arises in MS-RMD 
simulations where one has two linked CVs is that one CV will 
often be much faster converging than the other, if for instance 
one CV is related to CEC position and the other is related to 
protein conformation. The timescale mismatch between the fast 
proton transport CV and the slow protein conformation CV 
leads to slower convergence of the overall two-dimensional free 
energy surface. While MetaD remains the enhanced sampling 
method of choice in MS-RMD simulations where there is to be 
biasing along a single reaction coordinate, in instances where 
there are two or more CVs (and those CVs have different time-
scales) two-dimensional umbrella sampling (2D-US) is often 
required due to its more robust convergence properties.57, 86 This 
comes at the expense of a less complete sampling of the free 
energy surface when compared with MetaD, especially if the 
CVs chosen do not fully characterize the reaction coordinate. 

It should be clear that the choice between US and MetaD is 
one between control over the reaction pathway (and thus more 
facile convergence) versus a more complete sampling of the 
free energy space (and thus slower convergence). In other 
words, if the user has knowledge of (or a reasonable guess for) 
the reaction pathway based on their CVs, US is the most direct 
way to sample that path. However, this comes at the cost of po-
tentially neglecting pathways or regions of the free energy sur-
face that are not perfectly considered by one’s chosen CVs. Ad-
ditionally, 2D-US tends to be more computationally intensive 
for a given amount of simulation time compared with MetaD, 
as many umbrella windows are needed with significant overlap 
between them to ensure the CV is adequately sampled.33, 47, 57 
Each window may be run independently, however, allowing for 
efficient parallelization. 

 
V. Analysis of MS-RMD Trajectories 

A number of techniques may be used to analyze the output of 
MS-RMD trajectories to obtain properties such as the protona-
tion barrier and reaction kinetics. The RAPTOR software dis-
tribution offers a Python-based analysis suite, ‘raptoranalysis’, 
for interpreting LAMMPS and RAPTOR outputs. This module 
facilitates trajectory parsing through classes ‘LammpsReader’ 
and ‘RaptorReader’, enabling users to efficiently filter and 
parse simulation trajectories. In addition, it includes functions 
for calculating the mean square displacement (MSD) of the cen-
ter of excess charge (CEC), analyzing proton hopping events, 
and assessing proton transfer mechanisms through MS-RMD 
coefficients analysis. Additional functionalities include evalu-
ating the radial distribution functions and providing insights 
into the stability of hydrated proton forms via EVB coefficient 
statistics. In addition, the suite includes Jupyter notebook ex-
amples with detailed explanations to guide users in analyzing 
single and multi-proton systems with the module. More infor-
mation on the raptoranalysis module is available in the Support-
ing Information. 

To ascertain the PMF from an enhanced sampling simulation, 
one will use a free energy estimator appropriate for the en-
hanced sampling method used as described earlier. For MetaD, 
this is simply a matter of summing the gaussian hills appropri-
ately to determine the contours of the free energy surface.54, 86 
With US, exponential averaging methods such as the weighted 
histogram analysis method (WHAM)87, 88 and discrete transi-
tion-reweighted analysis method (dTRAM)89, 90 are typically 
used to construct the free energy surface. In order to determine 

the minimum free energy pathway through the PMF, the string 
method may be used.  

The rate for proton transport can then be estimated using tran-
sition state theory:32, 91 

𝑘/D- =
ω>

2π
𝑒𝑥𝑝=−

Δ𝐹‡

𝑘*𝑇
@ (19) 

where Δ𝐹‡ is the free energy barrier height along the minimum 
free energy path, and ω> is the fundamental frequency of the 
reactant state oscillations around its minimum, which is given 
by 

ω> = }
∂7𝑃𝑀𝐹(𝑟)/ ∂𝑟7

𝑚4VV
. (20) 

where 𝑚4VV is determined using the equipartition theorem, i.e., 
𝑚4VV⟨𝑣7⟩ = 𝑘*𝑇/2, where the value of ⟨𝑣7⟩ is computed from 
the MS-RMD trajectory sampled at 𝑟>. It should be noted that 
more elaborate forms of TST may also be employed,32, 92 includ-
ing 2-dimensional versions that include a second CV beyond 
the CEC.  
 
VI. Recent Example Applications of MS-RMD 

Recent applications with the MS-RMD method cover a wide 
range of chemically and biologically relevant systems. In par-
ticular, the method has been instrumental in the effort to eluci-
date a definitive answer of the structure and dynamics of the 
charge defect in bulk water, which had been a major outstand-
ing question in the physical chemistry community for a number 
of years.7, 25, 93 In addition, MS-RMD has provided insight into 
proton transport at air–water29, 30, 94, 95 and water–oil96 interfaces, 
in materials systems including carbon nanotubes (CNTs)13, 97 
and the Nafion perfluorosulfonic acid (PFSA) membranes,38, 40, 

42, 98-101 and in a number of biologically relevant protein systems, 
including but not limited to the enzyme staphylococcal nuclease 
from S. aureus (SNase),34, 61 the Cl–/H+ antiporter from E. coli 
(ClC-ec1),32, 33 cytochrome c oxidase (CcO),36, 37 the multidrug 
transporter EmrE from E. coli,102 and the influenza A M2 proton 
channel (AM2).12, 35, 103-105 This section will detail scientific in-
sights and advances in these applications (and others) which 
have been made possible by MS-RMD. 

Absolutely critical to MS-RMD’s success in defining the 
structure of the excess proton in bulk water is its ability to ex-
plicitly model Grotthuss shuttling, on long timescales and with 
the appropriate proton charge defect delocalization. To our 
knowledge, MS-RMD is the only method currently available to 
model excess proton delocalization and shuttling while simul-
taneously being efficient enough to routinely access nanosec-
ond to microsecond timescales. This grants it unique insight 
into both the solvation structure and structural reorientation dy-
namics of the excess proton. By delocalizing the charge across 
many EVB states, one accurately captures the quantum-like ef-
fects which cannot be captured by a fixed bonding topology 
MD. MS-RMD simulations,7, 17 in conjunction and agreement 
with ultrafast nonlinear spectroscopy, have established that a 
dynamic and distorted Eigen cation, H9O4

+, is the primary struc-
tural motif of the hydrated excess proton in bulk water. In addi-
tion, MS-RMD results have suggested that the hydrated excess 
proton rapidly changes partners in the ‘special pair dance’ 
which characterizes the distortion of the Eigen complex.93 This 
process occurs on timescales of tens of femtoseconds, which is 
too rapid to be readily apparent from current ultrafast 
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spectroscopy results.7 MS-RMD simulations have therefore 
been instrumental in capturing the structure and dynamics of the 
excess proton defect in bulk water. 

MS-RMD has also been used to explore the effects of charge 
defects at the air–water interface.29, 30, 94 Crucially, MS-RMD 
simulations have demonstrated that the hydrated excess proton 
has a small affinity for the air–water interface, while the hy-
droxide ion is repelled from it. In the case of the excess proton, 
this is due to a favorable enthalpic contribution due to elimina-
tion of the charge defect in the hydrogen bond network caused 
by the presence of the proton in bulk – the resulting increase in 
water-water interactions creates a favorable, negative enthalpic 
contribution. In the case of the hydroxide, it is enthalpically re-
pelled from the air–water interface, which is due to a reduction 
in energetically favorable ion–water interactions.29 Experi-
mental work106, 107 has corroborated the affinity of the excess 
proton for the air–water interface, in agreement with the predic-
tion first made with MS-EVB simulations in 2004.94 Additional 
work on the air–water interface has explored the effect of the 
definition of the air–water interface on the surface affinity of 
the excess proton.95 At the oil–water interface, MS-RMD simu-
lations have also been used to elucidate changes in the structure 
and dynamics of charge defects.96 At a neopentane–water inter-
face, MS-RMD simulations showed that the hydronium cation 
has a stabilizing effect on the hydrophobic solutes in the aque-
ous phase, and has a significantly lower transfer free energy 
compared to a sodium cation. 

MS-RMD simulations have also been used extensively in a 
wide range of protein environments to elucidate the mechanics 
of proton shuttling and how those mechanics impact broader 
structural rearrangements. The ability to explicitly consider the 
protonation of key amino acid residues simultaneously with 
Grotthuss shuttling through the hydrogen bonding network is 
key to its insight. Three systems in particular have been ex-
plored extensively: the ClC-ec1 antiporter, which is responsible 
for a variety of cellular processes such as maintenance of the 
membrane potential and pH regulation;70, 108 CcO, a key proton 
pump in the respiratory chain of mitochondria and bacteria;109, 

110 and influenza AM2, which transports protons across the viral 
membrane and catalyzes a dissociation of the viral matrix pro-
teins which is essential to the virus replication cycle.111, 112 In all 
three of these systems, proton transport regions shuttle protons 
to and from key amino acid residues buried within the protein. 

Proton transport through confined environments is a very dif-
ferent process from proton transport in bulk. The carbon nano-
tube (CNT) system offers a simple system in which one can un-
derstand the basic effects of confinement on proton transport. 
The findings from the CNT system are threefold: firstly, proton 
delocalization significantly lowers the barrier of transport 
through the CNT. Figure 5 presents the transport of a CEC-
delocalized excess proton versus that of a classical hydronium 
cation (with no Grotthuss shuttling) through the CNT. The free 
energy barrier of transport through the CNT is ~ 2 kcal/mol 
lower with the CEC excess proton versus the classical hydro-
nium, showcasing the need to model a delocalized proton to 
achieve an accurate idea of the energetics. Secondly, contrary 
to the belief that protons will hop only after the prior establish-
ment of a water wire, MS-RMD simulations have demonstrated 
that hydrated excess protons can actual dynamically hydrate dry 
regions of pores and channels by forming their own transient 
water wires.13, 97 The corresponding 2D PMFs using a CEC-
based CV and a water occupancy CV, or using a CEC-based 

CV and water connectivity CV, both demonstrate the dynamic 
formation of transient water wires in carbon nanotube sys-
tems.13, 84 Thirdly, the geometries of CNTs can impact their se-
lectivity for different ions. CNTs simulated with MS-RMD at a 
number of different pore sizes and lengths showed that the 
CEC-delocalized cation diffuses much more rapidly than a po-
tassium cation, that the spatial distribution of waters within the 
pore vary significantly based on the pore size, and that Zundel 
cations are typically more favored in larger nanotubes.97 These 
results conclusively demonstrate that Grotthuss-assisted diffu-
sion (as opposed to vehicular diffusion) is important to proton 
transport through a water wire. The CNT system additionally 
provides a key case study on the substantively different struc-
tural and diffusive properties that will emerge in confined envi-
ronments with proper modeling of the charge delocalization de-
fect. The basic features of proton transport in this system are 
also transferable to more complex systems. 

 
Figure 5. Effects of explicit Grotthuss proton transfer in simula-
tions. (A) Proton transport through a 30-Å (6,6) carbon nanotube 
(CNT). Cyan lines depict the CNT and two graphene layers. Green 
spheres denote ions. Water molecules are shown as ball-and-stick 
models. A single water wire connecting bulk waters via the CNT is 
visible, with orange highlighting the excess proton (CEC) delocal-
ized across two water molecules. (B) Potential of mean force 
(PMF) profiles of CEC (red line) and classical hydronium ion with 
no Grotthuss hopping (blue line) through the CNT. Simulation set-
tings followed Ma et al.97 Black dashed line marks the entry of 
CNT. PMFs were averaged from three independent runs with error 
bars indicating standard deviations. Included is a table of free en-
ergy barriers (∆𝐹Ws) and their difference (∆∆𝐹W). 
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Influenza AM2 is critical to regulating the life cycle of the 
Influenza protein. In the activation process, proton permeation 
acidifies the virion to catalyze the release of viral RNA.111, 112 
MS-RMD simulations have been critical in characterizing both 
the function and free energy profile of this process and also 
characterizing how antiviral drugs may inhibit its function.12, 35, 

103-105 MS-RMD simulations coupled with QM/MM have of-
fered essential, atomic-level insights into the gating mechanism 
of the His37 tetrad. Specifically, these simulations have offered 
key insight on a longstanding debate over whether the His37 
tetrad functions via a ‘shutter’ or ‘shuttle’ mechanism – that is, 
whether it functions as a gate, opening at low pH due to elec-
trostatic repulsion between the doubly protonated histidine res-
idues, or whether the His37 tetrad actually changes protonation 
states and shuttles the proton through the His37-Trp41 region.35 
MS-RMD simulations of proton transport through water chains 
were key to describing the energetics prior to and after the 
His37 tetrad while QM/MM was used for the tetrad region. 
Combined, these the overall PMF from these simulation 
showed that the excess proton must overcome a large energy 
barrier but is then heavily stabilized as the proton is delocalized 
and bound into the His37 tetrad and then released. This also ex-
plains the pH-dependent activation of the channel – by lowering 
the pH conditions, the deprotonation barrier of the His37 tetrad 
is lowered, leading to channel activation. The simulations also 
help to explain how pH gradients between the virion environ-
ment and bulk help explain proton flux behavior.35, 103 

Additional work on AM2 has focused on conformation 
changes in the protein environment which accompany the pres-
ence of an excess proton.12 Explicit modeling of the excess pro-
ton with charge delocalization has a profound influence on both 
protein conformation and the water hydrogen-bonding network 
in the channel. In particular, the excess proton is found to shift 
the protein structure conformation away from equilibrium ac-
cording to the position of the excess proton. In addition, the dis-
tribution of excess protons around the channel is shown to be 
asymmetric, with implications for drug design and mechanistic 
insight. Following this, MS-RMD simulations were used to ex-
plicitly model the binding of an adamantyl amine inhibitor to 
M2 in the presence of an excess proton.104 These simulations 
demonstrated that the ammonium group on the inhibitor lever-
ages the channel’s natural ability to stabilize excess charge, and 
thus effectively acts as a hydronium mimic. Additionally, they 
show that the drug binding pocket, located in a particularly sta-
ble and symmetric portion of the channel, is particularly condu-
cive to binding near-spherical drugs. Additionally, the D44N 
mutant of AM2 has been studied with MS-RMD.105 It was 
found that the mutation significantly lowers the barrier of His37 
deprotonation, and that this effect is supported by structural 
shifts that facilitate more facile transport of protons in the viral 
interior. In short, it should be clear that MS-RMD simulations 
have been critical to furthering our understanding of the func-
tion and activation of the AM2 channel, by allowing for the ex-
plicit modeling of a fully delocalized protonic defect on multi-
ple-nanosecond timescales. 

In the ClC-ec1 system, extensive MS-RMD simulations have 
provided a detailed picture and understanding of the proton 
transport mechanism at atomic resolution.32, 33 Using 2D-US, 
MS-RMD was able to provide a complete free energy profile of 
the proton transit process. 2D PMFs as a function of the excess 
proton CEC and the water occupancy in the central region of 
the protein help elucidate the reaction mechanism and pathway 
of proton uptake through the channel. In particular, MS-RMD 

results suggest that proton transport in the central region of the 
ClC-ec1 protein can be induced by, but does not strictly require, 
the presence of a Cl– anion in one of the crystallographically 
resolved anion binding sites. As it is experimentally well-
known that proton and Cl– transport occur in tandem, these re-
sults suggest that the coupling occurs elsewhere in the proton 
uptake process. Further work with MS-RMD on the system has 
demonstrated the crucial role of the deprotonation of glutamic 
acid E148 in facilitating proton transfer from bulk to intracellu-
lar solution.32 In particular, it is shown that the deprotonation of 
E148 is the rate-limiting step for proton transport, and that this 
step is significantly accelerated by the presence of a Cl– anion 
in the central region of the protein. In the absence of the central 
Cl–, E148 will be most stable in a down configuration which 
effectively blocks proton transport from intra- to extracellular 
solution. Insight into the hydration of the proton channel is also 
provided – the transport of the excess proton dynamically hy-
drates the central region of the protein, which is a phenomenon 
observed for both this biomolecular system and in CcO.36 This 
also replicates the finding of transient, dynamic water wires 
found in the CNT system.33 Kinetic insights also provided rate 
constants for the proton transport process. 

In the CcO system, MS-RMD simulations have characterized 
the free energy profile of proton transport through the D-chan-
nel, providing major insights into the mechanistic function of 
the enzyme.36, 37 The MS-RMD simulations obtain a clear mech-
anism and free-energy profile of proton transit, establishing key 
relationships between electron transfer reactions, the resulting 
electrostatic changes, and corresponding events in the proton 
transport chain. MS-RMD simulations were used with MetaD 
to establish the lowest energy pathway through the channel, and 
then the free energy profile was computed with umbrella sam-
pling. Additional work37 on a number of mutant structures 
showed how proton transport through the channel may be im-
paired, and then described the key gating mechanisms present 
in the channel. The latter study made use of extensive 2D-US, 
which tracked both the position of the proton CEC and the hy-
dration around a key residue. The 2D PMFs reveal key barriers 
for proton transit and detailed insight into the decoupling mech-
anisms of different CcO mutants.37 

Further research has considered a synthetic, minimally-de-
signed channel protein to demonstrate how water wire connec-
tivity mediates proton transport.113 This study aimed to explain 
the effect of dry, apolar patches in the proton conduction path-
ways. Using MS-RMD simulations, it was again shown that 
transient water wires are formed to connect dry regions in con-
fined spaces, and that the formation of these wires is heavily 
influenced by the presence of the excess proton. To correctly 
track the transit of the proton through the pore, two CVs were 
required: a CEC-based CV, which tracks the location of the 
charge defect along the pore, and secondly, the water wire con-
nectivity parameter,84 which is closely related to the excess pro-
ton’s water wire structure. Both CV’s needed to be modeled 
simultaneously with two-dimensional umbrella sampling to en-
sure that the hydration and proton transport behavior is correctly 
considered.84, 113 In comparison to MS-RMD simulations, clas-
sical MD simulations of the same system were unable to fully 
characterize the extent of the water wire formation in the chan-
nel.113 

In the realm of materials systems, MS-RMD has also proven 
valuable in obtaining mechanistic insight into excess proton be-
havior. In particular, the Nafion charge transport membrane has 
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been studied in detail with MS-RMD simulations.38-44, 98, 100 
Nafion is a PFSA membrane polymer that is used in electrolyte 
membrane fuel cells to facilitate proton transport. A strong, mo-
lecular-level understanding of the mechanism and diffusion rate 
of protons through the PFSA membrane was obtained via ex-
tensive MS-RMD simulations using the SCI-MS-EVB algo-
rithm. These simulations determined accurate diffusion rates 
and transport pathways through the membrane. Critically, it was 
found that proton hopping is critical to the transport of protons 
through the membrane, and that the sulfonate groups of the 
membrane help stabilize the proton in a more Zundel-like 
(H5O2

+) configuration. However, as the water concentration in-
creases, the bulk Eigen-like (H9O4

+) solvation structure is pre-
ferred. Later work explored the effect of the chosen water model 
on the observed self-diffusion of the excess protons and com-
pared the structural properties and proton transport of Nafion 
against another PFSA membrane from 3M.40  

In summary, all of these examples described here reflect 
cases where proton shuttling over large distances and on long 
timescales proves crucial to understanding the fundamental 
structure and function of the system. The RAPTOR software 
has provided the vehicle to enable such simulations.  

 
VI. Outlook and Concluding Remarks 

MS-RMD occupies a critical junction in the simulation of 
processes where chemical reactivity and charge transport plays 
a key role in the structure, dynamics, and function of the system. 
In the case of proton transport, the ability of RAPTOR to dy-
namically treat Grotthuss proton shuttling and charge delocali-
zation without explicitly computing the electronic structure is 
essential to accurately describe the charge transport behavior at 
low computational cost. The method’s success in modeling 
complex charge transport processes with numerical accuracy 
and favorable comparison to both ab initio methods and exper-
imental results highlights the strength and flexibility of mul-
tiscale reactive MD modeling approaches, where one coarse-
grains key attributes from higher-level calculations onto a po-
tential that may be evaluated rapidly enough to access the rele-
vant length and times scales. The development of CVs that can 
accurately account for behavior mediated by charge transport 
phenomena – most importantly for proton transport, water wire 
formation – has further bolstered MS-RMD’s potential. Future 
directions for the RAPTOR software package for MS-RMD 
will focus on further improvements to the computational per-
formance (with a particular focus on GPU acceleration), better 
support for more flexible off-diagonal forcefield terms that will 
enable the consideration of more complex chemical reactions, 
and integration of the package with other MD engines for flex-
ibility and potentially further performance improvements. 

In particular, we hope to soon support neural network-based 
off-diagonal terms, where neural network inferences can be 
made to compute the off-diagonal forces and energies at each 
timestep. Neural networks reflect a highly flexible functional 
form that is trained directly on ab initio data, and thus fit clearly 
into the MS-RMD paradigm. The proliferation of physics-con-
strained neural network models in recent years and recent work 
in the EVB framework that uses such neural networks lend cre-
dence to the approach for applications in proton transport and 
complex biomolecular reactions.46, 114 By fitting neural net-
works for just the off-diagonal components of the reaction, and 
fitting separate networks to separate matrix elements when ap-
propriate, we hope to improve the stability and accuracy of the 

resulting model and avoid the criticism of neural network ap-
proaches as being “black-box”. Neural network enhancements 
to MS-RMD will also open the door to the consideration of 
more complex chemical reactions, and more clearly and directly 
link MS-RMD to higher-level electronic structure calculations. 

Additional improvements to RAPTOR’s computational per-
formance will focus on more efficiently leveraging GPU accel-
eration and further improvements to the speed and scalability of 
the k-space calculations. The current implementation of GPU 
acceleration for RAPTOR fails to fully saturate the GPU, and 
significant efficiency is thus lost as communication costs in-
crease. Efficiency gains may be achieved by considering a mul-
tiple program (MP) approach for the GPUs, where communica-
tion costs will be reduced by assigning a single GPU to compute 
the k-space interactions. Increasing GPU utilization by better 
overlapping communication costs related to the FFTs will dra-
matically increase simulation speeds and allow for MS-RMD 
simulations to enjoy some of the benefits that classical MD has 
enjoyed from GPU acceleration over the past 10 years. 

Another long-term goal for RAPTOR is to generalize its in-
terface and enable coupling to other MD drivers, in order to take 
advantage of features that are available in other MD engines and 
to make MS-RMD simulations a more attractive option for non-
LAMMPS MD package users. This will involve rewriting the 
RAPTOR-specific code pieces (state search, matrix diagonali-
zation) as an independent, standalone library with a sufficiently 
flexible API that it can couple into various MD engines to con-
duct MD-specific operations (force and energy evaluation, in-
tegration) with the algorithms and features offered by that spe-
cific MD code. 
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empirical valence bond; MS-EVB, multistate empirical valence 
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consistent iterative MS-EVB; MP, multiple program; CGIS, 
coarse-graining in interaction space; RDF, radial distribution func-
tion; MPI, message passing interface; SPMD, single program mul-
tiple data; GPGPU, general-purpose graphics processing unit; 
MSD, mean squared displacement; CEC, center of excess charge; 
WT-MetaD, well-tempered metadynamics; TT-MetaD, transition-
tempered metadynamics; 2D-US, two-dimensional umbrella sam-
pling; WHAM, weighted histogram analysis method; dTRAM, dis-
crete transition-reweighted analysis method; CNT, carbon nano-
tube; PFSA, perfluorosulfonic acid; SNase, staphylococcal nucle-
ase; AM2, influenza A M2 proton channel; CcO, cytochrome c ox-
idase. 
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