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Abstract 

The complex interplay between numerous parasitic processes—voltage losses, crossover, 
decay—challenges interpretation of cycling characteristics in redox flow batteries (RFBs). 
Mathematical models offer a means to predict cell performance prior to testing and to interpret 
experimentally measured cycling data, however most implementations require extensive domain 
knowledge and computational resources. To address these challenges, we previously developed a 
computationally inexpensive zero-dimensional modeling approach by deriving analytical 
solutions to species mass balances during cell cycling. Here, we expand on this framework by 
deriving closed-form expressions for key performance metrics and comparing the accuracy of 
these simplifications to the complete analytical model. The resulting closed-form model 
streamlines the computational structure and allows for spreadsheet modeling of cell cycling 
behavior, which we highlight by developing a simulation package in Microsoft® Excel®. We then 
apply this model to analyze previously published experimental data from our group and others, 
highlighting its utility in numerous diagnostic configurations—bulk electrolysis, compositionally 
unbalanced symmetric cell cycling, and full cell cycling. Given the accessibility of this modeling 
toolkit, it has potential to be a widely deployable tool for RFB research, aiding in data 
interpretation, performance prediction, and electrochemistry education. 
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Introduction 

Redox flow battery (RFB) materials research, a blossoming field at the intersection of 

chemistry, materials science, and chemical engineering, is expanding the limits of cell 

performance through the development of new redox species, electrodes, and membranes.1–7 

Within the suite of field-standard characterization approaches—including material property 

analyses,8 ex situ electrochemical testing,9–12 and cell polarization13,14—cell cycling is a crucial 

performance benchmark, yielding quantitative measures of the device efficiency and lifetime. 

Although these experiments offer critical insights, cell cycling characteristics are often obscured 

by numerous competing processes—voltage losses, species decay,4 crossover15,16—that 

challenge interpretation of experimental results (e.g., cycling efficiency, charge/discharge 

capacity). Further, laboratory-scale testbeds require considerable material quantities and time 

investments, frustrating systematic investigations into variable operating conditions that are 

needed to decouple competing effects. While there are indeed advanced diagnostic approaches 

for isolating individual contributions to performance loss,17–19 these still require additional 

resources and may not translate directly to cycling characteristics in a full cell configuration. 

Mathematical models offer a means to establish connections between material properties and 

cell performance, enabling qualitative and quantitative interpretation of cycling data as well as 

performance predictions.20,21 Indeed, numerous models have been reported in the open literature, 

spanning various levels of complexity and dimensionality. However, simulation packages and 

coding libraries are not always freely available and often require extensive user knowledge in the 

programming language or multiphysics software (e.g., COMSOL), potentially limiting their 

appeal to those conducting experimental research. Zero-dimensional models are particularly 

attractive for simulating extended cycling, as the modeling frameworks rely on coupled systems 
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of ordinary differential equations—as opposed to higher-dimensional partial differential 

equations—enabling reduced computation time and resource requirements as compared to more 

complex representations.19,22–34 In general, such models neglect spatial variations in species 

concentrations by assuming the electrolytes in either half-cell are well-mixed domains, 

sacrificing microscopic granularity for solvability. Even with these simplifications, previous 

zero-dimensional models have shown good agreement with experimental cycling results, 

allowing informed predictions of performance metrics and enabling parameter estimation from 

experimental data.19,24,26 However, many implementations remain computationally expensive 

(ca. 30–120 s per cycle on a typical laptop computer),22,26,33 as the numerical methods required to 

solve coupled differential equations over tens to hundreds of cycles can lead to hours of 

computation time for a single set of conditions. 

To address this limitation, we previously reported a zero-dimensional modeling framework 

that leveraged analytical solutions to the species mass balances, reducing simulation times by 

several orders of magnitude (ca. 0.05 s per cycle) while still retaining quantitative accuracy 

compared with experimental cycling performance.23 While this framework supports more 

extensive evaluations of the interconnections between component material properties and cell 

cycling performance, it still requires some computational knowledge for proper implementation. 

Specifically, as exponential decay terms introduce nonlinearities in the mass balance solution, 

the zero-dimensional model leverages nonlinear algebraic solvers and numerical integration to 

compute cycle times and efficiencies. These routines only account for ca. 10% of total simulation 

time but can frustrate model usability and may slow more time-intensive analytical routines (e.g., 

optimization, controls). To overcome this limitation, exponential terms may be approximated 

through Taylor expansions to yield polynomial equations for the mass balance solutions, which, 
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in turn, can be transformed into closed-form analytical expressions for capacities and 

efficiencies. Indeed, Silcox et al. used an analogous approach for deriving capacity retention with 

varying redox species decay rates and bulk electrolysis conditions, providing closed-form 

expressions for predicting capacity fade characteristics under different testing regimes.27 By 

extending this methodology to a more generalized zero-dimensional framework, we aim to 

derive analytical expressions for capacity fade and cycling efficiencies that incorporate common 

parasitic processes (i.e., crossover, species decay) and sources of voltage losses (i.e., kinetic, 

ohmic, mass transport). From this model, key performance indicators can be calculated using 

compact matrix operations, making simulations possible with less complex numerical methods. 

To this end, we expand on the analytical zero-dimensional framework by deriving 

approximations to the mass balances, enabling fully closed-form solutions for cell cycling. 

Specifically, we apply Taylor expansions to approximate exponential terms in the mass balances 

as polynomials, facilitating algebraic solutions for charge and discharge times. By incorporating 

these polynomials into expressions for the cell voltage, we also derive analytical expressions for 

cell voltaic efficiency. First, to more rigorously characterize the accuracy of the closed-form 

expressions, we evaluate varying orders of expansion (i.e., first-, second-, and third-order) and 

compare the root-mean-square error (RMSE) against the full zero-dimensional model. Second, to 

further accessibility, we develop a spreadsheet model in Microsoft® Excel®, that may form the 

basis of a flexible and easy-to-use simulation tool for the RFB community. Third, we apply this 

model to retrospectively analyze previously published cell cycling data from our group and 

others, demonstrating its ability to predict and/or interpret experimental data and highlighting 

opportunities for further modification. Ultimately, this work aims to expand the utility of zero-

dimensional RFB models, facilitating their use in a wider range of experimental and modeling 
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studies. Further, the availability of easy-to-use spreadsheet models may support efforts to 

educate new entrants to the RFB field.  

https://doi.org/10.26434/chemrxiv-2024-pvskd ORCID: https://orcid.org/0000-0001-6747-8197 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-pvskd
https://orcid.org/0000-0001-6747-8197
https://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Theoretical framework 

The closed-form constitutive equations developed here are derived from simplifications to 

the generalized zero-dimensional model presented in reference [23]. The model assumes the 

active species in each half-cell undergo one-electron transfer between their charged and 

discharged states as shown by Equation (1). 

 
A A e
B e B

+ −

+ −

+

+





 (1) 

Species A and B+ represent the discharged species in the positive and negative half-cells, 

respectively, while A+ and B represent the corresponding charged species. The ionic charge of 

each species j (zj) is such that 1AA
z z+ = +  and 1BB

z z+ = + . We assume here that both half-cells 

are distinct, well-mixed domains, treating the faradaic reactions at the electrode, species decay, 

and membrane crossover as occurring uniformly throughout the electrolyte volume. Consistent 

with typical experimental methods, we apply galvanostatic cycling with the same current 

magnitude applied during charge and discharge. Throughout, we make the following additional 

assumptions: (1) all processes occur at constant temperature and (2) operating conditions, 

electrolyte/material properties, and cell characteristics remain constant throughout cycling. All 

other assumptions are described within the context of the relevant model equations. 

 

Zero-dimensional flow cell model—The general zero-dimensional mass balances are given by 

Equation (2) and subject to the initial condition given by Equation (3). 
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,
j

hC∞  (mol m–3) is the bulk concentration of species j in half-cell h, t (s) is the time measured 

from the beginning of the half-cycle (i.e., charge or discharge), I (A) is the applied current 

(defined as positive for charge and negative for discharge), Vh (m3) is the electrolyte volume in 

half-cell h, F (96,495 C mol–1) is the Faraday constant, h
jR  (mol m–3 s–1) represents first-order 

source and sink terms (i.e., species decay, crossover), ,h
j
oC  (mol m–3) is the initial concentration 

of species j in half-cell h at the beginning of the half-cycle. 

As described by Silcox et al., species decay is assumed to proceed through two homogeneous 

mechanisms—irreversible decomposition and reversible self-discharge—shown by Equations 

(4) and (5), respectively.27 
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kd,j (s–1) is the decay rate constant for species j and fj is the fraction of species j that decays via 

self-discharge. Crossover rate constants (Equation (6)) are derived from the steady-state flux 

through the membrane,17,23 accounting for diffusion, migration, and electro-osmosis and 

assuming the species flux is positive for transport from the negative electrolyte to the positive 

electrolyte. 
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,
h
c jk  (s–1) is the crossover rate constant for species j in half-cell h, Am (m2) is the geometric 

membrane area, m
jD  (m2 s–1) is the diffusion coefficient of species j in the membrane, Kj 

(dimensionless) is the partition coefficient of species j in the membrane, lm (m) is the swollen 

membrane thickness, γj (dimensionless) is a parameter scaling electro-osmosis and migration to 

diffusion for species j, σm (S m–1) is the membrane conductivity, R (8.314 J mol–1 K–1) is the 

universal gas constant, T (K) is the absolute temperature, ξ (dimensionless) is the electro-

osmostic coefficient, λ (dimensionless) is the molar ratio of solvent to fixed ion sites in the 

membrane, and Csite (mol m–3) is the concentration of fixed ion sites within the membrane. 

The cell voltage as a function of time is given by Equation (7), which accounts for the 

difference in formal redox potentials between the positive and negative redox couples—E0,+ (V) 

and E0,– (V), respectively—ohmic losses, and mass transport losses. Although not considered 

explicitly here, kinetic losses may also be integrated by considering them as constant 

resistances—similar to ohmic losses—as discussed in reference [23]. 
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Rm (Ω) is the membrane resistance, Rc (Ω) represents additional contact resistances, and s
jC  (mol 

m–3) is the surface concentration of species j at the electrode. Surface concentrations can be 
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related to the bulk concentration using an advective mass transfer coefficient, km,j (m s–1), and the 

accessible electrode surface area, Aed (m2) according to Equation (8). 

 
, j

s
j

m
j

ed

IC C
FA k

∞= ±  (8) 

In this work, we consider the product of the mass transfer coefficient and electrode area (Aedkm,j) 

as an input parameter to the model; however, in some instances, km,j can be predicted from 

empirical correlations35–37 while Aed can be measured experimentally.38 

 

Deriving closed-form approximations—Incorporating the source and sink terms into the 

conservation equations for each species, the general mass balances can be written explicitly as 

Equation (9) and simplified to vector-matrix notation in Equations (10) and (11). 
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d
dt

= −C b KC  (10) 

 ( )0t = = oC C  (11) 

C (mol m–3) is a column vector containing the 6 bulk species concentrations, b (mol m–3 s–1) is a 

column vector containing the constant reaction rate terms, K (mol m–3 s–1) is a matrix containing 

first-order reaction rate constants, and Co (mol m–3) is a column vector containing the initial 

concentrations. The analytical solution to these mass balances is shown in Equation (12). 
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 ( )( )exp t= − − − oKC b K b KC  (12) 

Under conditions where the timescales for crossover, species decay, and self-discharge are low 

relative to the charge and discharge times—that is, tcki << 1, tdki << 1, where tc (s) and td (s) are 

the charge and discharge times, respectively, and ki (s–1) represents a decay or crossover rate 

constant—the exponentials can be approximated by a Taylor expansion according to Equation 

(13). 

 ( ) ( ) ( ) ( )2

0

31 1exp 1
! 2 6

n

n

t
t t t t

n=

∞ −
− = = − + − +∑

K
K K K K   (13) 

Here, n is the summation index. In the complete analytical solution, solving Equation (12) for 

the charge and discharge times requires numerical methods, as the sum of exponential terms is 

nonlinear. By approximating these terms as polynomials, the charge and discharge times can 

instead be derived algebraically. Generally, higher-order polynomials provide more accurate 

solutions but increase mathematical complexity; to this end, we derive solutions for first-, 

second-, and third-order approximations. 

 

First-order expansions—A first-order Taylor expansion of the exponential terms yields the 

solution to the mass balances given by Equation (14). 

 ( ) t= + −o oC C b KC  (14) 

The charge and discharge times are defined by the minimum time required for the reacting 

species concentrations to reach zero at the electrode surface. For the charging half-cycle, the 

reacting species are A or B+, which respectively correspond to the first and fifth elements of C. 

Therefore, the charge time is the result of matrix operations corresponding to those species as 

given by Equation (15). 
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Similarly, the discharge time is given by Equation (16). Note that during discharge, the current 

is negative by definition. 
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As we assume galvanostatic operation, the coulombic efficiency, CE, can be expressed from the 

charge and discharge times according to Equation (17). 

 CE
c

dt
t

=  (17) 

Determining the voltaic efficiency, VE, requires integration of the cell voltage to determine 

the average charge and discharge voltage— cE  (V) and dE  (V), respectively—as shown in 

Equation (18). 
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As the derivations are identical for charge and discharge, here we focus on the discharge voltage, 

written explicitly in Equation (19). 
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As the first several terms are assumed constant over the half-cycle, their integrals are 

comparatively straightforward as shown in Equation (20). 
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The logarithmic concentration terms are more complex, as each surface concentration is given by 

a polynomial expression. The integral can be simplified by separating the logarithmic terms 

(Equation (21)) and solved generally according to Equation (22) for a first-order expansion. 
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Here, X, Y, and Z are constants representing the linear time dependence of each surface 

concentration. The integral for each species concentration can then be combined with Equation 

(20) to yield a complete closed-form expression for the discharge voltage. Finally, the energy 

efficiency, EE, is the product of CE and VE as given in Equation (23). 

 EE VE CE= ×  (23) 

 

Second-order expansions—For the second-order expansion (Equation (24)), we follow the 

same procedure except that the quadratic formula is used to solve the resulting polynomials. 
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Here, x1, x2, and x3 (s) are constants. The vector subscripts indicate individual elements, with the 

asterisk indicating a row of the corresponding matrix. Interestingly, the lower root of the 

quadratic approximation always corresponds to the charge / discharge times, as the parabolic 

concentration-time function for the reacting species is concave upward. The higher root 

corresponds to non-physical conditions where concentrations fall below zero or grow 

unrealistically large. Computing the VE requires integration of the logarithms, which now 

feature second-order polynomials. The general form of this integral is given by Equation (27). 

 ( )
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2 2 2

2 2
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∫ (27) 
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Here, W, X, Y, and Z are constants representing the quadratic time dependence of each surface 

concentration. 

 

Third-order expansions—For third-order expansions (Equation (28)), we apply the cubic 

formula to solve the resulting polynomials. 

 ( ) ( ) ( ) 32 32 21 1
2 6

t t t= + − − − + −o o o oC C b KC Kb K C K b K C  (28) 

However, to our knowledge, a concise analytical solution does not exist for the logarithm of a 

third-order polynomial, frustrating a closed-form analytical expression for VE. Accordingly, we 

leverage numerical integration to compute the average charge and discharge voltages. For 

completeness, the third-order derivations are provided in the Supplementary Information (SI). 

 

Computational tools and model implementation—To assess the relative error of the simplified 

model against the complete analytical solution (Equation (12)), we leveraged MATLAB® 

R2022b; similar to [23], eigenvalues and eigenvectors of K were calculated using the eig 

function, nonlinear algebraic equations were solved implicitly using the fsolve function, and 

numerical integration was performed using the cumtrapz function. The spreadsheet model used 

in this work was constructed in Microsoft® Excel® 2021 and leverages straightforward algebraic 

and matrix operations (i.e., mmult, transpose). All simulation results presented throughout this 

work were performed on a Dell Latitude 7290 laptop computer with an Intel® Core™ i7-8650U 

processor (quad-core, 1.90 GHz) and a random-access memory of 16 GB. 
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Results and discussion 

Assessing error for closed-form approximations—We begin by comparing the accuracy of the 

closed-form approximations with those obtained using numerical methods reported in reference 

[23]. As a representative example, Figure 1 compares discharge capacities using the “Complete 

0-D model”—solved using numerical methods—to the second-order closed-form approximations 

for differing active species diffusion coefficients through the membrane. Note that the cycling 

conditions used here are analogous to those used to generate Figure 6 in reference [23] and are 

detailed in Table S1. Qualitatively, the second-order approximations capture capacity fade well 

across a range of crossover rates, highlighting the efficacy of using low-order Taylor expansions 

to simplify the model equations. However, assessing the relative accuracy of this approach 

requires a more rigorous evaluation of error across varying model inputs. 

 
 
Figure 1. A qualitative comparison of the second-order closed-form approximation to results 
obtained from the complete zero-dimensional model for different membrane diffusion 
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coefficients (assumed to be equal for all species). All cell conditions for both sets of data are 
identical to those reported in Figure 6 of reference [23] and detailed in Table S1. 
 

To expedite the process of comparing simulations across a large set of independently tunable 

input parameters, we employ dimensional analysis to identify and evaluate a reduced set of 

quantities, shown in Table 1. The dimensionless groups represent intrinsic relationships between 

different process timescales while the dimensional quantities (i.e., OCV, ohmic losses) represent 

cell energetics. While this form of analysis is not required to implement the modeling 

framework, it greatly simplifies parametric sweeps and provides bounding on the simplifying 

assumptions within the closed-form models. For each of these dimensionless groups, we 

randomly select model inputs across a uniform distribution for physically realistic model 

conditions and conduct all simulations for 1000 cycles to provide sufficient time for parasitic 

processes to proceed. However, note that the actual time represented by each cycle depends on 

the dimensional parameters, meaning that the timescales of the simulation may vary depending 

on inputs. We quantify error between the “complete 0-D model” and the three closed-form 

approximations by comparing both parity and RMSE between the capacities and efficiencies 

predicted by the models. Results were generated using the same computation resources and are 

reported for 1000 unique parameter combinations, yielding a total of 106 data points. 

 

Table 1. Studied parameters and their ranges / values used for comparing model outputs. All 
terms involving bulk species concentrations are scaled by the initial concentration of A. 
 

Studied parameter Definition Ranges / values 

Dimensionless charge capacity o
A

cIt
V C F+  0 – 1 

Dimensionless discharge capacity d
o
A

It
V C F+  0 – 1 

Dimensionless current o
Aed m

I
FA k C

 0 – 0.25 

https://doi.org/10.26434/chemrxiv-2024-pvskd ORCID: https://orcid.org/0000-0001-6747-8197 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-pvskd
https://orcid.org/0000-0001-6747-8197
https://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

OCV (V) 0, 0,E E+ −−  1 – 3 
Ohmic losses (V) ( )m cI R R+  0 – 0.3 

Dimensionless permeability of A 
m

m o
A A AmD K A FC

Il
 10–7 – 10–3 

Dimensionless permeability of B+ m

m

m o
AB B

D K A FC
Il

+ +  10–7 – 10–3 

Permeability ratio of A+ /m m
AA

D D+  0.1 – 10 

Permeability ratio of B /m m
B B

D D +  0.1 – 10 

Dimensionless electric field 
m

m m

FIl
RTAσ

 10–3 – 10 

Dimensionless electro-osmotic 
flux site

m

m
m
jDC

Il
A

ξ
ν

 0 

Dimensionless decay rate of A+ 
, Ad A

ok C V F
I

+
+

 10–7 – 0.01 

Dimensionless decay rate of B 
, Ad B

ok C V F
I

+

 10–7 – 0.01 

A
f +  (–) --- 0.01 – 0.99 

Bf  (–) --- 0.01 – 0.99 
Az  (–) --- 1 

B
z +  (–) --- 2 

 

Figures 2a, 2b, and 2c show parity plots for discharge capacities predicted by first-, second-, 

and third-order approximations (“predicted values”), respectively, measured against those 

calculated using the analytical mass balances (“actual values”). As the randomly generated 

inputs are dimensionless, we report the capacity as a dimensionless fraction of the theoretical 

capacity. The parity plots display cycling results from 1000 simulations; to aid in interpretation, 

a single set of simulations (1000 cycles) with the same input parameters is highlighted in red. 

Compared to the first-order approximation, the second- and third-order approximations describe 

the solution well over a relatively broad range of input values as indicated by the tight clustering 

of values around the parity line. The error is further quantified by the RMSE in Figure 2d for the 
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charge and discharge capacities as well as the coulombic, voltaic, and energy efficiencies. Here, 

we calculate RMSE for each cycling simulation (1000 cycles) and report the average and 

standard deviation across all parameter combinations (1000 simulations), yielding a total of 106 

data points. Similar trends are observed with respect to the relative accuracy where < 1% relative 

error is observed for all model inputs beyond the first-order approximation. However, given the 

wide range of independent parameters, we observe considerable variation in the relative error, 

especially for the first-order approximation. For instance, the RMSE of the discharge capacity 

ranges to as low as ca. 10–7 and to as high as ca. 0.24. Upon closer inspection, the simulations 

featuring the largest degree of inaccuracy are those with longer charge / discharge times and 

faster crossover and decay rates; this error is further exacerbated by significant electric field 

contributions. Migration causes larger differences in crossover rate constants between charge and 

discharge, leading to compounding errors from cycle to cycle. These phenomena are reflected in 

the arcing trajectories in Figure 2a that extend from the parity line as cycling proceeds and later 

converges closer to zero. 
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Figure 2. Parity plot comparing dimensionless discharge capacities predicted from closed-form 
approximations (“predicted capacity”) versus those determined from the complete zero-
dimensional model (“actual capacity”) for (a) first-order expansion, (b) second-order expansion, 
and (c) third-order expansion. Red traces represent a single simulation (1000 cycles) with 
identical input parameters. (d) Average root-mean-square error (RMSE) for dimensionless 
charge and discharge capacities as well as coulombic, voltaic, and energy efficiencies, 
comparing the values predicted by closed-form approximations with the complete zero-
dimensional model. Simulations were conducted over 1000 cycles using randomly generated 
inputs (Table 1) and repeated 1000 times. 
 

As expected, extending the Taylor expansion improves model accuracy, as the higher-order 

terms better approximate the exponential function at increasing times and with faster decay and 

crossover rates. This is evinced by both the tighter clustering around the parity line and the lower 

magnitudes of the RMSE observed in the quantitative analysis. While there exist some 
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differences between the second- and third-order approximations, the additional accuracy gained 

is diminishing and does not appear to meaningfully affect results. Further, we reiterate that third-

order expansions prohibit the derivation of closed-form expressions for VE and EE and introduce 

considerable difficulty in identifying the polynomial roots needed to predict charge and 

discharge capacities. These limitations lead to marked differences in computation time, requiring 

ca. 3 × 10–5, 0.001, and 0.05 s per cycle for the first-order, second-order, and third-order 

expansions, respectively. Thus, we conclude that second-order approximations are sufficient for 

predicting performance metrics while providing a simple theoretical framework. 
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An accessible simulation platform in Microsoft® Excel®—A key feature of closed-form 

analytical expressions is that they enable spreadsheet modeling of redox cells across a range of 

diagnostic and performance configurations, which could increase accessibility and facilitate 

integration with pre-existing experimental data processing workflows. Considering the 

aforementioned tradeoffs between second- and third-order expansions, we elected to leverage the 

simpler second-order expressions for designing a spreadsheet model. The model is constructed in 

Microsoft® Excel® 2021 and features a wide range of variable input parameters corresponding to 

electrolyte, electrode, and membrane properties, cell configuration, and operating conditions. 

Figure 3 shows a snapshot of the prototype spreadsheet, featuring the input properties and their 

descriptions as well as representative outputs. The input values (highlighted in yellow) can be 

readily adjusted to simulate varying experimental conditions; however, the model is subject to 

the same assumptions and limitations presented in reference [23] and outlined in the theoretical 

framework (vide supra). Finally, the cutoff voltages are included to set the voltage at the end of 

each half-cycle for data visualization and are not used to determine the charge capacity. 

Matrix operations are performed in a separate tab of the spreadsheet to compute capacities 

and efficiencies at each cycle using results from the previous cycle. As a representative case, 

results are shown for 100 full charge / discharge cycles, however the simulation can be extended 

by copying and pasting rows of the calculations tab. For select cycles—by default, cycles 1, 10, 

20, 40, 60, 80, 100—the time-dependent concentrations and cell voltage are also calculated in 

separate spreadsheet tabs at multiple time points (i.e., 1000) throughout each half-cycle to 

compute charge / discharge voltage profiles. The selected cycles can be changed by altering the 

input cycle numbers. 
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As expected from the earlier error analysis, the results here are consistent with those obtained 

using the complete zero-dimensional model. Accordingly, the accuracy of this model as 

compared with experimental cells is subject to the validity of the overarching zero-dimensional 

assumption (e.g., low single-pass conversion, well-mixed electrolytes). As already noted, prior 

low-dimensional models have reported suitable accuracy for capturing charge / discharge 

behavior in vanadium RFBs26,28 and aqueous organic RFBs,24 and our previous experimental 

results show quantitative agreement for membrane characterization.19 Importantly, 

charge/discharge capacities, cell voltages, and cycling efficiencies can be simulated in ca. 1 s 

after updating input parameters, meaning that variables can be readily manipulated to explore 

relationships between material properties and performance outputs. Additionally, the spreadsheet 

model may also enable facile performance predictions prior to and during cycling experiments, 

allowing for test planning and real-time comparisons between measured characteristics and 

expected results. 
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Figure 3. Screenshot of the zero-dimensional spreadsheet model constructed in Excel® 2021, 
showing simulation representative inputs and performance metrics.   
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Exploring model utility through retrospective data analysis—We posit that this spreadsheet tool 

may find broad utility in complementing analysis and experimental planning for cell cycling. As 

such, we aim to illustrate several possible uses of the model by retrospectively analyzing cycling 

data published by our group and others. We focus here on our own results to maintain 

consistency across this work and because we have easy access to the raw experimental data. In 

doing so, we apply the model to three distinct experimental configurations—bulk electrolysis, 

compositionally unbalanced symmetric cell cycling (CUSCC), and full cell cycling—

highlighting its flexibility. In each instance, we compare predictions from the spreadsheet model 

with experimental data and discuss how this tool can be leveraged to augment such studies in the 

future. For all model results shown here, the parameters used for each set of simulations is 

provided in Section S2 of the SI. 

First, we consider work by Kowalski et al. that investigated the impact of bulk electrolysis 

cycling conditions on measured capacity fade rates for 2,5-di-tert-butyl-1,4-bis(2-

methoxyethoxy)benzene (DBBB) in propylene carbonate containing 1 M lithium bistriflimide 

(LiTFSI).39 Because bulk electrolysis evaluates a single electrolyte—with the counter-electrode 

chamber containing lithium metal in this case—we approximate the negative half-cell as a large 

excess volume at 50% state-of-charge (V − = 1 m3, ,
B

C +
∞ − = 1 mol m–3, ,

BC∞ − = 1 mol m–3) such that 

it does not impact capacity, similar to a volumetrically unbalanced compositionally symmetric 

cell.18,40 Considering that crossover is likely to proceed through the porous glass frit separating 

the counter electrode chamber from the working electrode chamber, we estimate the crossover 

diffusion coefficients and membrane conductivities by assuming they are approximately 20% of 

their values in the bulk ( m
AD = 2 × 10–11 m2 s–1, σm = 0.05 S m–1),41 which has been measured 

previously for gas diffusion in similar fritted substrates.42 Mass transfer coefficients are set 
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explicitly and are estimated based on the limiting current measured prior to cycling (Section S3). 

To estimate decay rates, we leverage results from another work by Kowalski et al. that uses 

microelectrodes to measure DBBB decay in an identical electrolyte.43 Figure 4 compares 

experimental capacity fade results from Kowalski et al. with those generated by the spreadsheet 

model, showing reasonable agreement across the range of currents measured, which correspond 

to rates of 1 C, 0.5 C, 0.25 C, and 0.125 C. Importantly, the relative agreement between decay 

rates measured via microelectrodes and capacity fade measured via cell cycling further 

underscores the connections between ex situ properties and predicted electrochemical cell 

performance. However, we observe some differences between the predicted and experimental 

data, which we tentatively attribute to temperature fluctuations, incomplete mixing in the bulk 

electrolysis cell, and incomplete characterization of crossover—for instance, the reaction 

between DBBB and the lithium counter electrode is not well understood. In retrospect, utilization 

of this model in conjunction with the bulk electrolysis experiments would have augmented and 

helped to explain the impact of operating conditions on observed stability. Further, the model 

could have been used to estimate decomposition rates from capacity fade data, which likely 

would have agreed well with those measured via complementary ex situ techniques. 
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Figure 4. Comparison of capacity fade results measured by Kowalski et al. with those predicted 
by the spreadsheet model. Data was collected in a bulk electrolysis configuration with 30 mL of 
1 mM DBBB and 1 M LiTFSI in propylene carbonate. Charging rates of 1C, 0.5C, 0.25C, and 
0.125C correspond to currents of 0.804 mA, 0.402 mA, 0.201 mA, and 0.1005 mA, respectively. 
Error bars represent the average and standard deviation from two different cells. Data adapted 
from Electrochemistry Communications 2020, 111, 106625 with permission under CC BY 4.0 
open access. The closed-form model inputs match the operating conditions of the cell while mass 
transport characteristics (Aedkm,j) were estimated from the cell limiting current. Decay rates (

,d A
k +

= 9.9 × 10–6 s–1 and 
A

f + = 0.87) were estimated from [43] as described in the Section S3. 
 
 

Next, we evaluate our recent work describing a technique for measuring crossover in redox 

flow cells using CUSCC.19 This study uses a symmetric cell configuration, requiring 

modification of the model to include a single active species in either half-cell. The modified 

mass balance is shown in Equation (29), and the general solution strategy outlined above still 
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applies. Solutions for the charge / discharge times are analogous to Equations (25) and (26) with 

matrix indices adjusted to account for the modified mass balances. 
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 (29) 

Note that in Equation (29), we maintain the positive and negative half-cell notation for 

consistency with earlier forms of the mass balances, but there should not be a potential difference 

between the electrolytes at equilibrium. Neyhouse et al. used the aqueous FeCl2 / FeCl3 redox 

couple as a chemically stable model system; thus, we again assume that species decay rates are 

negligible. All other parameters are identical to those reported in reference [19] and detailed in 

Table S3. Figure 5 compares experimental capacity gain data reported by Neyhouse et al. with 

results obtained by our spreadsheet model. As expected, the model results agree well with 

experimental data; however, it is important to note that the input parameters used here were 

obtained by least-squares fitting in the original work; hence, as the closed-form model agrees 

well with the complete zero-dimensional model, quantitative agreement should be consistent 

with that obtained in reference [19]. We posit that it would also have been possible to start with 

parameters measured using ex situ techniques (i.e., H-cell crossover, membrane conductivity) 

and manually tune them to improve data fitting. While rigorous parameter estimation may be 

difficult in Excel®, this tool provides a means to interpret experimental data and predict cycling 

behavior more easily. For instance, we could have used this tool in place of the complete zero-

dimensional model to develop intuition for the factors that underscore capacity gain. Similarly, 
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we also could have used the spreadsheet model alongside ex situ data to identify the most 

suitable operating conditions for experimental validation. Beyond CUSCC, this implementation 

of the model can also be applied to conventional symmetric cells,18,44 enabling predictions of 

species decay—similar to bulk electrolysis—and facilitating judicious consideration of cycling 

conditions and their impact on perceived capacity fade. 

 

Figure 5. Comparison of CUSCC capacity gain results measured by Neyhouse et al. with those 
predicted by the spreadsheet model. Data was collected in a 2.55 cm2 flow cell featuring a 
Nafion 117 membrane, carbon paper electrodes, interdigitated flow fields, and 15 mL of 
electrolyte in each half-cell. The donor electrolyte (positive electrolyte) initially contains 0.5 M 
FeCl2 and 0.5 M FeCl3 in 2 M HCl. The receiver electrolyte (negative electrolyte) initially 
contains 0.05 M FeCl2, 0.05 M FeCl3, 0.45 M MgCl2, and 0.45 M CrCl3 in 2 M HCl. Data 
adapted from ChemRxiv with permission under CC BY NC ND 4.0 open access. The closed-
form model inputs match the operating conditions of the cell while mass transport characteristics 
and membrane properties are taken from the best-fit parameters reported in [19]. 
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Finally, we evaluate results reported by Liang et al., using model phenothiazine and viologen 

derivatives—N-[2-(2-methoxyethoxy)ethyl]phenothiazine (MEEPT) and bis[2-(2-

methoxyethoxy)ethyl] viologen bistriflimide (MEEV-TFSI2) in acetonitrile with 0.5 M 

tetraethylammonium tetrafluoroborate (TEABF4) supporting electrolyte—to assess the role of 

the membrane / separator on nonaqueous cell cycling.45 This work employs a conventional full 

cell configuration that is consistent with the base model and requires no modifications. In 

addition to the reported experimental parameters for cell cycling, we initially estimate membrane 

permeabilities and conductivities from crossover and cell resistance data, and then further refine 

those values using the goal seek function in Excel® (Section S2). As negligible active species 

loss was observed in post mortem analysis, we assume decay rates for both species are zero. 

Figure 6 compares results from the spreadsheet model with those measured experimentally, 

showing good agreement for capacity fade and cycling efficiencies. While the “fit” appears more 

accurate than our earlier comparison to Kowalski et al., it is worth noting that, here, we are 

fitting only one data set. Importantly, the model captures the decrease in capacity below the 

theoretical capacity for fully mixed electrolytes as shown earlier by Small et al. in an aqueous 

organic RFB.46 That is, while one might initially expect the capacity to approach equilibrium at 

half the original theoretical capacity, we instead observed continuous capacity fade below this 

value resulting from electric-field-driven crossover. Both Liang et al. and Small et al. only offer 

qualitative explanations of this phenomenon based on a fundamental understanding of membrane 

transport, however access to this model enables more robust and quantitative data interpretation. 

Notably, prediction of this trend would have likely been possible based solely on properties 

measured using ex situ techniques (i.e., voltammetry, H-cell crossover, membrane area-specific 

resistance). 
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Figure 6 Comparison of cell cycling results measured by Liang et al. with those predicted by the 
spreadsheet model. Data was collected in a 2.55 cm2 flow cell featuring 2× FAPQ 375 PP 
membranes, carbon paper electrodes, interdigitated flow fields, and 10 mL of electrolyte in each 
half-cell. The positive electrolyte initially contains 0.5 M MEEPT and 0.5 M TEABF4 in 
acetonitrile. The negative electrolyte initially contains 0.5 M MEEV-TFSI2 and 0.5 M TEABF4 
in acetonitrile. Adapted with permission from ACS Applied Energy Materials, 4, 6, 5443–5451. 
Copyright 2021 American Chemical Society. The closed-form model inputs match the operating 
conditions of the cell while mass transport characteristics and membrane properties are estimated 
from the experimental data as described in Sections S2 and S3. 
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Conclusions 

In this work, we have developed closed-form expressions for cell cycling performance, 

leveraging Taylor expansions to approximate solutions to the coupled species mass balances. By 

comparing the RMSE between these approximations and the complete analytical solution, we 

determined that the second-order expansion is sufficiently accurate for predicting cell cycling 

performance under practically relevant experimental conditions. Further, such low-order 

approximations enable facile numerical implementation, allowing us to develop a spreadsheet 

modeling package in Microsoft® Excel®. We applied this model to retrospectively analyze 

published data from our group and others, demonstrating its utility for complementing data 

analysis for cell configurations common in the published literature, including bulk electrolysis, 

compositionally unbalanced symmetric cell cycling, and full cell cycling. 

More generally, this work seeks to further establish and advance zero-dimensional models 

for RFB development. Specifically, the rapid computation times afforded by this framework and 

similar models may aid in broader computation analyses, including optimization, controls, and 

techno-economic evaluations. The accessibility of this particular framework and the associated 

spreadsheet application may also find utility in electrochemical engineering education, 

complementing undergraduate curricula and guiding new entrants to the RFB field. Indeed, we 

have previously employed these models in undergraduate electrochemical engineering courses as 

a learning exercise in analyzing representative RFB performance and failure modes. Although 

widely used, we note that Excel® may not be accessible to all researchers; however, the 

mathematical framework that enables this spreadsheet model can be readily implemented in 

other open-access spreadsheet tools and programming languages. 
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List of symbols 

Roman symbols 

edA  Accessible electrode surface area (m2) 

mA  Geometric membrane area (m2) 
b  Constant reaction rate vector (mol m–3 s–1) 
C  Bulk concentration vector (mol m–3) 

oC  Initial concentration vector (mol m–3) 
,

j
hC∞  Bulk concentration of species j in half-cell h (mol m–3) 

,h
j
oC  Initial concentration of species j in half-cell h at the beginning of each half-cycle 

(mol m–3)  
s
jC  Surface concentration of species j (mol m–3) 

siteC  Concentration of fixed ion sites in the membrane (mol m–3) 
CE  Fractional coulombic efficiency 

m
jD  Diffusion coefficient of species j in the membrane (m2 s–1) 

0,hE  Formal redox potential in half-cell h (V) 
Ecell Cell voltage (V) 

cE  Average charging voltage (V) 

dE  Average discharging voltage (V) 
EE Fractional energy efficiency 

jf  Fraction of species j that decays via self-discharge 
F  Faraday constant (96485 C mol–1) 
I  Applied current, denoted as positive for charging and negative for discharging (A) 

,
h
c jk  Crossover rate constant for species j in half-cell h (s–1) 

,d jk  Decay rate constant for species j (s–1) 

,m jk  Mass transfer coefficient for species j (m s–1) 
K  Rate constant matrix (s–1) 

jK  Membrane partition coefficient for species j 

ml  Swollen membrane thickness (m) 
n Summation index 

OCV  Open-circuit voltage (V) 
R  Universal gas constant (8.314 J mol–1 K–1) 

cR  Additional contact resistances (Ω) 
h
jR  Source term for species j in half-cell h (mol m–3 s–1) 

mR  Membrane ohmic resistance (Ω) 
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t  Time (s) 

ct  Charge time (s) 

dt  Discharge time (s) 
T  Temperature (K) 

hV  Total electrolyte volume in half-cell h (m3) 
VE  Fractional voltaic efficiency 
W Representative constant 

nx  Representative constant 
X Representative constant 
Y Representative constant 
Z Representative constant 

jz  Ionic charge of species j 
 
Greek symbols 
 

jγ  Dimensionless transport parameter for species j 
λ  Molar ratio of solvent to fixed ion sites in the membrane 
ξ  Dimensionless electro-osmotic coefficient 

mσ  Membrane conductivity (S m–1) 
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