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Abstract

We develop ∂-HylleraasMD (∂-HyMD), a fully end-to-end differentiable molecular

dynamics software based on the Hamiltonian hybrid particle-field formalism, and use

it to establish a protocol for automated optimization of force field parameters.

∂-HyMD is templated on the recently established HylleraaasMD software, while using

the JAX autodiff framework as the main engine for the differentiable dynamics.

∂-HyMD exploits an embarrassingly parallel optimization algorithm by spawning

independent simulations, whose trajectories are simultaneously processed by reverse

mode automatic differentiation to calculate the gradient of the loss function, which is

in turn used for iterative optimization of the force-field parameters. We show that

parallel organization facilitates the convergence of the minimization procedure,

avoiding the known memory and numerical stability issues of differentiable molecular

dynamics approaches. We showcase the effectiveness of our implementation by

producing a library of force field parameters for standard phospholipids, with either

zwitterionic or anionic heads, and with saturated or unsaturated tails. Compared to

the all-atom reference, the force field obtained by ∂-HyMD yields better density

profiles than the parameters derived from previously utilized gradient-free

optimization procedures. Moreover, ∂-HyMD models can predict with good accuracy

properties not included in the learning objective, such as lateral pressure profiles, and

are transferable to other systems, including triglycerides.
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Introduction

Coarse-grained modeling enables the simulation of systems on length and time scales that

are orders of magnitude larger than those accessible in traditional all-atom simulations.1

By adopting a low-resolution representation of molecules and computationally efficient

interaction potentials, coarse-graining is associated with a smoothening of the molecular

free-energy landscape.2 Due to the contraction of the phase-space, dynamics of

coarse-grained models is intrinsically accelerated, providing additional speedup and faster

statistical sampling over all-atom simulations, beyond the increased speed due to

lower-resolution molecular representation and fast effective interaction potentials,3 even

though this comes at the cost of a generally poor description of dynamical properties, such

as diffusion coefficients, unless explicitly accounted for.4 Acceleration in the conformational

sampling enables, for example, the straightforward study of phase separation, like the

self-assembly of lipid bilayers,5,6 or phase transitions, like spontaneous ice nucleation.7

Particle-field models represent the interactions between different molecules through

their density fields, leading to a particularly high level of smoothening of the free-energy

surface and hence a correspondingly large acceleration of the dynamics.8 In fact, we

reported that particle-field molecular dynamics models enable (sub-)nanosecond

equilibration of dispersed charged surfactants to fully self-assembled structures even in the

presence of large activation energies9,10 that would significantly lengthen the characteristic

self-assembling times even using particularly successful CG models like the MARTINI.11–13

As such, particle-field approaches provide a powerful tool for studying processes that are

computationally inaccessible by standard molecular modeling.

While particle-field simulations are maturing both in terms of mathematical

foundations14,15 and open-source software implementation,9,16,17 the parameterization of

the particle-field force field remains challenging. On top of being coarse-grained, which

targets the more elusive potential of mean force instead of the potential energy surface of

all-atom simulations, the determination of the non-standard particle-field interactions are
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not straightforwardly amenable to traditional techniques, such as iterative Boltzmann

inversion or force-matching.18,19 The key challenge resides in calibrating the χ̃kl-parameter

matrix, which describes the mixing energy between the density of two species k and l.

Earlier works investigating polymeric systems typically considered a confined range of

χ̃-parameters to understand the nature of their phase diagram.8 In subsequent works

targeting biological lipids, the χ̃-parameters were chosen by a combination of inference

from MARTINI Lennard-Jones parameters and by-hand adjustments in order to reproduce

all-atom density profiles.20 To systematize the parameterization of χ̃-parameters, some of

us proposed an automated machine-learning procedure.21 There, similar to the self-driving

labs approach in the Guzik Group,22 Bayesian Optimization (BO) was used to run

simulation experiments that compute density profiles for different χ̃-values, determining

the optimal χ̃-parameters that maximize the agreement with all-atom reference profiles.

The approach is very general and has the advantage over bottom-up coarse-graining

approaches in that it can incorporate both experimental and all-atom data, as exemplified

in a recent work, where the loss function to parameterize dipalmitoyl-phosphatidylcholine

(DPPC) phospholipid bilayers included both the computationally-determined density

profiles and the experimental value of the area-per-lipid.23

BO provides a state-of-the-art algorithm for optimizing costly fitness functions without

access to gradients in low-dimensional parameter spaces.24 However, this approach becomes

problematic when the number of particle species S increases, resulting in a large

S(S − 1)/2-dimensional parameter space, or, even worse when also including

intramolecular bonded parameters into the optimization problem. Optimization techniques

employing gradients generally achieve better convergence and work well on

higher-dimensional spaces; therefore, they are better suited for force field parameterization.

In this regard, differentiable molecular dynamics, leveraging advancements in GPU-based

hardware, highly efficient implementations of automatic differentiation (autodiff),25 and a

generalized back-propagation algorithm,26 is becoming increasingly popular. Differentiable
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molecular dynamics can be used to optimize force field parameters through the dynamical

evolution of the systems under study. A conventional machine-learning-based approach

consists in training machine learning potentials, often based on artificial neural networks

(NN), on high-accuracy data (for example, either DFT calculation datasets or all-atom

simulations for CG modeling).27,28 This methodology has been successfully employed to

determine NN pair potentials for CG water models that replicate radial29,30 and angular

distribution31 functions, a NN potential for a CG model of chignolin32 and the

parameterization of a CG protein force field, where the parameters are trained to minimize

the root-mean-square deviation (RMSD) from the native state structures.33 However,

differential molecular dynamics is not limited to training NN potentials; in principle, it can

also be applied to the optimization of known analytical functions, like those that are still

commonly used in molecular simulations.

Given these successes, in the following, we present ∂-HylleraasMD (∂-HyMD), a re-

implementation of the HylleraasMD (HyMD)9,17 code for hamiltonian hybrid particle-field

(HhPF) molecular dynamics in the JAX34,35 differentiable framework, that allows us to

perform general force field parameterization on any target observable that depends on the

simulation trajectory. Our main goal is to optimize the intermolecular interactions described

by HhPF. As a test case, we apply our optimization protocol on a diverse set of lipids,

providing a library of parameters that can be used for future studies. We also test the

performance of these parameters for the self-assembly of lipid bilayers and the transferability

to similar systems such as triglycerides.

Methods

Hamiltonian hybrid particle-field dynamics

We start by briefly summarizing the Hamiltonian hybrid particle-field molecular dynamics

approach,9,14 for which parameters will be optimized. Consider a system of M molecules,
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with the ith molecule containing Ni particles at positions Ri = {rj}Ni
j=1 with conjugate

momenta Pi = {pj}Ni
j=1, subject to the Hamiltonian14

H(R,P) =
M∑
i=1

H0(Ri,Pi) +W [{ϕ̃(r)}], (1)

with

H0(Ri,Pi) =

Ni∑
j=1

p2
j

2mj

+ U0(Ri). (2)

Here R and P denote the collection of positions and momenta of all particles, H0 is the non-

interacting Hamiltonian for the single ith molecule, U0 is the intramolecular potential energy

(containing only bonded terms) and W [{ϕ̃}] is the interaction energy functional, dependent

on the densities of the particles {ϕ̃}, modeling the intermolecular interactions. We employ

the shorthand {ϕ̃} = {ϕ̃ℓ}Sℓ=1 for the collection of number densities associated with all S

different particle species in the system. This hybrid approach aims to achieve molecular

resolution through H0 and a smooth free energy landscape by adopting a density-dependent

interaction energy functional, with minimal steric hindrance. Since H0 is nothing but a

standard molecular mechanics Hamiltonian, in the following we focus on W [{ϕ̃}]. We adopt

a variation of the commonly used Flory-Huggins interaction functional:

W [{ϕ̃(r)}] = 1

2ρ0

∫
dr
∑
ℓm

χ̃ℓmϕ̃ℓ(r)ϕ̃m(r) +
1

2κρ0

∫
dr

(∑
ℓ

ϕ̃ℓ(r)− a

)2

, (3)

where ρ0 is defined as the density of a coarse-grained particle, κ is the compressibility, which

controls the local fluctuations of the density, a is a free parameter that can be tuned to

calibrate the correct average density at the target temperature and pressure of interest and

finally χ̃ℓm are the mixing interaction parameters between particle densities of types ℓ and

m. These model parameters are the optimization variables for our present study.

The sampling of Eq. 3 can be achieved in multiple ways, such as in Monte Carlo, often
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referred to as the Single-Chain-In-Mean-Field method,8 or by molecular dynamics with

various formulations.9,17,36,37 We adopt our recently developed Hamiltonian approach,

which is the only implementation demonstrated to achieve energy-conserving and alias-free

dynamics.14 In brief, this approach builds on standard particle-mesh operations38 by

assigning particle number densities onto a regular grid via an assignment function P and

subsequently performing a convolution with a filter function G that defines the density

spread associated with particle species t as

ϕ̃t(r) ≡
∫

ϕt(x)G(r− x)dx, with ϕt(r) =
Nt∑
i=1

P (r− ri). (4)

The force on a particle placed at ri is then obtained by the direct spatial derivative of this

interaction energy functional as

Fi = −∂W

∂ri
. (5)

The above can be recast, as worked out in ref.14, into the form:

Fi = −
∫

∇V (r)P (r− ri), with V (r) =
δW

δϕ(r)
, (6)

where V (r) is called the external potential, and its gradients are obtained numerically by

Fast Fourier Transform (FFT) operations.14

Differentiable molecular dynamics

Our main objective is to minimize an arbitrary loss function L, which depends on an

observable A, with respect to a set of T force field parameters θ = {Θi}Ti=1,

θoptimal = argmin
θ

L
(
⟨A(Uθ)⟩

)
, where θ ∈ RT . (7)
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Here the angle brackets denote the ensemble average, while Uθ = Uθ(R; Θ1,Θ2, . . . ,ΘT )

is the potential energy depending parametrically on θ. Assuming ergodicity, the ensemble

average of the observable A is calculated as the time average over a trajectory composed of

Nf frames by

⟨A(Uθ)⟩ =
1

Nf

Nf∑
i=1

A(Ri), (8)

where superscript i denotes positions and velocities of all particles, Ri and Vi respectively,

at discrete time step i. The particle positions are evolved in time through a discrete and

recursive update step:

Ri = Ri−1 + f(Ri−1,Vi−1; θ)∆t, (9)

where ∆t the time step and f denotes the update scheme. In our implementation, we use the

rRESPA integrator,39 where the positions-update step is the same as in the velocity-Verlet

algorithm. Therefore, we have

f(Ri,Vi; θ) = Vi +
∆t

2m
F(Ri; θ), (10)

where F = −∇Uθ are the forces acting on the particles, which directly depend on the force-

field parameters. By tracing the update step, we can find the corresponding gradient of L

with respect to the force field parameters by recursively applying the chain rule:

∇θL =
dL

dθ
=

N∑
i=1

dL

dRi

dRi

dθ
(11)

=
N∑
i=1

dL

dRi

d

dθ

(
Ri−1 + f(Ri−1,Vi−1; θ)∆t)

)
(12)

=
N∑
i=1

dL
dRi

i−1∑
j=0

d

dθ

(
f(Rj,Vj; θ))

)
. (13)
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Finally, with the gradient of the loss function, we can then use any gradient descent optimizer

to steer the θ-parameters towards the optimum by updating the force field parameters

θi+1 = θi − η Sp(∇θL), (14)

where η is the learning rate and Sp represents the update step function of the given

optimizer. Various packages implementing differentiable molecular dynamics are available,

such as JAX-MD,40 TorchMD,32 and Molly.41 However, these programs lack some critical

features, especially the particle mesh routines needed for the HhPF nonbonded

interactions. Therefore, we have implemented our differentiable framework in ∂-HyMD

based on our open-source HhPF simulator HyMD.9,17 In ∂-HyMD we use JAX34,35 to trace

the update steps and get the gradient of the loss function as in Equation 13, while

implementing the HhPF operations with fast Fourier transforms, the MD integrator,

barostat and thermostat using JAX NumPy API, and taking advantage of JIT

compilations whenever possible.

Differentiable density profiles

To compute its derivatives, the loss function needs to be continuously differentiable. For this

work, the property that we want to target is the membrane lateral density profile, which is

typically obtained by computing the histogram of the z coordinate of the particles (assuming

here that z is the direction normal to the membrane). To calculate a differentiable density

profile, we can approximate the histogram with a simple Gaussian kernel density estimation,

where we center a normal distribution around each discrete value zi:

ρ̂t(z) ≃
∆z

NT

NT∑
i=1

1√
2πh2

e−
(z−zi)

2

2h2 . (15)
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Here NT is the total number of particle of type T , ∆z is the bin width and h is the Gaussian

bandwidth. Therefore, the final density profile is given by:

ρt(z) =
ρ̂k(z)NT

LxLznb∆z
≃ 1

LxLynb

NT∑
i=1

1√
2πh2

e−
(z−zi)

2

2h2 , (16)

where Lx and Ly are the box lengths along the respective axis, and nb is the number of bins.

Optimization protocol

Differentiable MD has two main drawbacks. Firstly, the memory used in the optimization

scales linearly with both the number of particles and the number of simulation steps due

to the requirement of tracing all the operations in the MD algorithm. For a single 20 ps

differentiable MD simulation, the memory allocated for the backpropagation of the gradients

can reach ∼ 9 GB per task. Secondly, increasing the number of steps risks the so-called

gradient explosion, where gradient sums in Eq. 13 grow instantly larger, leading to disruptive

numerical instability. However, an adequate number of frames is needed to obtain a well-

sampled property. To the best of our knowledge, only one work31 in the literature suggests

an approach, using trajectory reweighing via Boltzmann distributions, that tries to alleviate

the second problem. In this work, we opt for a parallel setup, as schematized in Fig. 1.

The main idea is to spawn independent replica simulations starting from the same initial

CG structure and the same set of starting χ parameters, but with different random number

generator seeds. We call this protocol parallel replica simulations (PRS). By employing the

PRS, we are able to scatter the memory usage in different computing nodes while obtaining

more reliable gradients. Initially, we equilibrated, letting the system evolve without tracing

any operation. This is followed by a shorter differentiable MD simulation to obtain the

target property. Our loss function is then computed as the mean of the loss functions over
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Figure 1: Differentiable MD protocol for the optimization of the lipid library. On the left
is the overall training architecture, in which each lipid runs a parallel replica simulation
(PRS) without any communication. The results are combined to compute the mean loss
(Equation 19), which is the quantity effectively minimized. In the zoomed-in part at the top
right, a single lipid optimization unit – PRS – which is composed of independent parallel
simulations containing an equilibration followed by differentiable sampling. Each PRS unit
produces a loss function defined by Equation 18. On the bottom right, comparison between
the losses obtained from training a single DPPC membrane, with and without replicas.

the replicas:

LPRS
χi

=
1

NR

NR∑
n=1

Ln(χi) (17)

=
1

NR

NR∑
n=1

(
1

nT

nT∑
t=1

wt

nb

nb∑
b=1

(ρt(zb)− ρref
t (zb))

2 + wa(AL − Aref
L )2 +

1

2

∑
l ̸=m

∣∣∣∣ χ̃l,m

∆χ

∣∣∣∣3
)
,

(18)

where NR is the number of replicas. The inner loss function is composed of three terms. The

first one targets the density profiles. In this case, nT is the number of particle types in the

system, nb is the number of bins, wt is an optional weight parameter, and the densities ρt and

ρref
t are estimated at the bin centers zb. The second one targets the area per lipid (APL). AL

is the mean APL, naively calculated from the simulations as 2LxLy

Nlipids
, Aref

L is the experimental
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value for the APL, and wA is another optional weight. The last term is a cubic constraint

for the numerical range of the χ̃l,m matrix elements, which prevent model parameters from

diverging to unphysical values, avoiding unstable simulations. Here, ∆χ is the boundary

value.

In Fig 1, we also show the difference between the loss function obtained by training a

DPPC membrane with and without the PRS method. Without PRS, the loss is noisy and

slowly decreasing, meaning that, due to the short single differentiable MD simulation, we

are not able to consistently learn the parameters.

Since training single lipid membranes on their own would lead to non-transferable

overfitted parameters to that specific lipid (see Supporting Information), in each epoch, we

opt to train a set of them and apply the parameter update step only after all the lipids in

the set have been simulated (Fig. 1A). This ensures that the parameters are transferable

among the different lipids. We achieve this by computing a mean loss

Lmean
χi

=
1

Nlipids

Nlipids∑
j=1

Lj
χi

(19)

where Lj
χi

is the PRS loss for the j-th of the Nlipids optimized simultaneously, defined by

Equation 18. The mean loss is what is effectively minimized and gives the update step for

the force field parameters (Equation 14).

Computational details

All-atom membrane systems for different lipids were set up using CHARMM-GUI,42

namely, for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-

glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-

palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-

phosphoethanolamine (DMPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1-

palmitoyl-2-oleoyl-glycero-3-phosphoethanolamine (POPE), 1,2-dipalmitoyl-sn-glycero-3-

12
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phosphoglycerol (DPPG), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1,2-

dioleoyl-sn-glycero-3-phosphoglycerol (DOPG), and 1-palmitoyl-2-oleoyl-glycero-3-

phosphoglycerol (POPG). The box size was approximately 5 × 5 × 8 nm and the total

number of lipid molecules was ∼80, depending on the system. After equilibration, all

atomistic MD simulations were run for 100 ns, using a time step of 2 fs, with the

CHARMM-36m43 force field in GROMACS 2021.5.44,45 Temperature control above the

melting temperature Tm of each lipid was ensured by using the CSVR46 thermostat, with

τT = 1ps, and the pressure was maintained at 1 bar using the semi-isotropic cell rescale

barostat,47 with τP = 5ps. PME was used to compute long-range electrostatics, with a real

space cut-off radius of 1.2 nm. The same cut-off was also used for the Lennard-Jones

interactions, and bonds involving hydrogen atoms were constrained with LINCS.48

The all-atom trajectories were then coarse-grained using the PyCGTOOL package49

and the MARTINI 2 mapping.50 The mapping and bead types used for the parametrization

are shown in Fig. 2, where beads represented by the same color in different lipids have the

same χ parameters. The bond distances were calculated from the average distances in the

atomistic trajectories (see Table S2 in the Supporting Information), while the reference

angles for the three-body interatomic potential and all harmonic force constants were taken

from MARTINI. We computed the reference lateral density profiles with MDAnalysis51,52

from these CG-mapped trajectories, and used them in the differentiable MD optimization.

For what concerns the parallel replica CG simulations, the equilibration was run for 2000

steps (200 ps) while the differentiable MD for 200 steps (20 ps). Since we use 40 replicas for

each optimization, the gradients are effectively computed from 40 × 20 ps = 800 ps long

simulations. In both equilibration and production, we used a time step of 0.02 ps for the

interatomic forces calculation and a time step of 0.1 ps for the intermolecular and

electrostatic forces. The systems were kept at constant temperature with the velocity

rescale thermostat46 and at constant pressure with the semi-isotropic Berendsen

barostat53. The coupling constant was set to 0.1 ps for both. We used a 20 × 20 × 30 grid
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for the particle mesh calculations, compressibility κ = 0.05 kJ−1mol, particle spread σ =

0.5 nm, ρ0 = 8.33 nm−3 and a = 9.21 nm−3. The bonded parameters used for the hPF

model are reported in Table S2 of the Supporting Information.

Training was carried out over 600 epochs. We set wt = 1nm6, wA = 100 nm−4, and

∆χ = 300 kJmol−1, while for the χ parameter updates, we used the AdaBelief optimizer54

with b1 = 0.1, b2 = 0.4, and learning rate η = 0.01. To validate the trained parameters,

we employed large unit cells (10× 10× 10 nm3, ∼ 380 lipids) for all the systems. For these

systems, we used a 40 × 40 × 40 grid, while keeping all the other simulation parameters

unchanged, and ran the simulations for 50 ns. For the DPPC self-assembly validation, we

started from the big simulation box system and dispersed the lipids by running a simulation

at high temperature, 500K. Then, to obtain the self-assembled membrane, we ran an NVT

simulation at 323K. Finally, we investigated the phase separation of triolein, a triglyceride

(TG), in a DOPC bilayer. The CG mapping of triolein was taken from Ref55. We used one

of the setups provided in Ref.56, where the membrane is composed of 3200 DOPC molecules

and 320 TGs. In this case, the box is approximately 33 × 33 × 17 nm3 big, and contains

∼113 000 water beads.

Results

We use ∂-HyMD and the outlined optimization protocol to obtain the χ̃ℓm matrix for the

nonbonded interaction between each bead in the phospholipid set. The simulations were

carried out at temperatures in which the lipids are in the fluid lamellar phase, and

experimental data for the APL are available in the literature. The temperatures and

experimental APLs are shown in Table 1.

We optimized the parameters for the set of lipids over 600 epochs, as shown in Fig. 2.

The mean loss quickly decays during the first 100 steps and keep going down during the

600 epochs. For most systems, the individual loss value decays in the first 400 epochs and
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Figure 2: On the left, all-atom to coarse-grained bead mapping. The different bead colors
represent the particle types for which the intermolecular interactions were trained in this
work. The phosphate groups (represented in brown) are negatively charged (−1), the PC
and PE head groups and the Na+ ions have positive charge (+1). Apart from the PG
and PE head groups, hydrogen atoms were omitted in the all-atom representation. On the
right, training loss evolution for the set of phospholipids. Individual losses of each PRS
(Equation 18) are shown. The panel “Average” contains the mean loss across all the systems,
which is the quantity minimized during the optimization procedure (Equation 19).

then oscillates around a minimum, usually well below 1. For DMPC, we can see that the

loss increases in the first 100 epochs, and only then descends, indicating that the starting

parameters were already good for this particular system. However, these parameters were

not transferable to other systems, especially in the PG and PE series, which show starting

losses above 1.

The APLs evolution in Fig. 3 shows how areas converge towards the target experimental

APLs. These curves are, in most cases, highly correlated to the loss evolution curves due to

the square difference penalty in the loss function shown in Equation 18. For some systems

(DOPC, POPC, DOPG, POPG, DMPG, DOPE, DMPE) we obtain very good agreements

with the experimental values, while in other cases (DMPC, DPPC, DPPG, POPE) the APL
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curves seem to diverge. Generally, the mean absolute error is 0.02 nm2, corresponding to

an average 3.8% deviation from the experimental reference. In the worst case (POPE), the

absolute error is around 0.04 nm2, (≈7% deviation). It should be noted that these differences

are within the variability found for different experiments performed with the same lipid at

similar conditions.57–59 The average APL deviation is also just slightly larger than the values

obtained in a recent refinement of the MARTINI 3 force field, which are up to 4% in their

worst cases.60 Even though the study of Empereur-mot et al.60 also targeted the APL as

one of the observables, the authors used different mappings and focused on optimizing the

intramolecular bonded terms, which were not the focus of our optimization.

0 200 400 600
0.64
0.66
0.68
0.70
0.72

AP
L 

(n
m

2 )

DOPC

0 200 400 600
0.66
0.67
0.69
0.70
0.72

POPC

0 200 400 600
0.58
0.60
0.62
0.64
0.66

DMPC

0 200 400 600
0.60
0.64
0.68
0.72
0.76

DPPC

0 200 400 600
0.70
0.72
0.74
0.76
0.78

AP
L 

(n
m

2 )

DOPG

0 200 400 600
0.64
0.68
0.72
0.76
0.80

POPG

0 200 400 600
0.60
0.64
0.68
0.72
0.76

DMPG

0 200 400 600
0.64
0.68
0.72
0.76
0.80

DPPG

0 200 400 600
Epoch

0.55
0.60
0.65
0.70
0.75

AP
L 

(n
m

2 )

DOPE

0 200 400 600
Epoch

0.55
0.60
0.65
0.70
0.75

POPE

0 200 400 600
Epoch

0.50
0.55
0.60
0.65
0.70

DMPE

Training
Reference

Figure 3: Area per lipid evolution for the set of phospholipids. The horizontal red dashed
lines represent the target APL for the system.

Despite the loss curves being modulated by the APL, the density profiles also play an
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important role during the optimization. The density profiles computed in epoch 0, i.e., using

the initial set of parameters, and epoch 600 are shown in Fig. 4. We observe a systematic
Nu
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Figure 4: Density profiles for all the optimized lipids (dashed lines), at the start (top) and
end (bottom) of training. Solid lines represent the all-atom reference profiles. The same
color is used for the head groups.

improvement of the density profiles for all the phospholipids, being able to reproduce in

most cases peak positions, water penetration, and even structuring of the alkyl tails as

seen, e.g., for DOPC, DOPE, and POPE. The robustness of these results finite sampling

time and simulation size is supported by the nearly identical density profiles Fig. S1 of the

Supporting Information for four times as large system simulated over 50 ns. For the DM and

DP series, even with the improvements brought by the optimization, we observe that the

intricacies of the alkyl density profile were not perfectly reproduced. We attribute this to the

fixed topology adopted during the optimization, with bond and angle parameters not being
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optimized. As shown in previous studies, optimizing the bonded parameters can greatly

improve the description of coarse-grained potentials.60 However, in this work, we focus on

optimizing transferable nonbonded parameters (which were kept constant in Ref.60) and

leave refinements of topology and bonded parameters to future work.

Outside the differentiable training simulations, good agreement is also maintained

between the converged APL and the experimental values, as reported in Table 1. In all

cases, the error is around 0.03 nm2. Since the APL was computed naively by considering

only the xy plane area, thus not considering membrane undulations, our values might

underestimate the real APL. Therefore, values below the experimental values may be closer

to the reference than they appear. These combined results indicate that the optimized

parameters are transferable to larger systems and can be used for production runs.

Table 1: Reference experimental area per lipid compared to the ones obtained from training,
and from 50 ns long HhPD MD simulations of a larger membrane using the learned χ̃ℓm

parameters.

System Experimental (nm2) Training (nm2) Validation (nm2)
DPPC 0.633 (50◦ C)58 0.667 ± 0.004 0.664 ± 0.002
DMPC 0.654 (50◦ C)58 0.618 ± 0.004 0.612 ± 0.002
DOPC 0.674 (30◦ C)61 0.669 ± 0.004 0.664 ± 0.002
POPC 0.673 (50◦ C)59 0.674 ± 0.004 0.667 ± 0.002
DMPE 0.586 (60◦ C)62 0.553 ± 0.004 0.550 ± 0.002
DOPE 0.600 (22.5◦ C)63 0.607 ± 0.003 0.603 ± 0.002
POPE 0.566 (30◦ C)64 0.610 ± 0.003 0.608 ± 0.002
DPPG 0.670 (50◦ C)65 0.707 ± 0.004 0.702 ± 0.002
DMPG 0.684 (50◦ C)65 0.660 ± 0.004 0.653 ± 0.002
DOPG 0.729 (50◦ C)65 0.714 ± 0.004 0.708 ± 0.002
POPG 0.695 (50◦ C)65 0.713 ± 0.004 0.708 ± 0.002

As a necessary check for the validation of the data sets produced by our optimization

setup, we computed the lateral pressure profiles ∆P (z) for the optimized lipid bilayers,

defined as:

∆P (z) =
1

LxLy

∫
[PN(r)− PL(r)] dxdy (20)

As previously shown using BO-optimized parameters for DPPC in HhPF simulations, the
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main features of ∆P (z) could be reproduced without directly introducing any related

information in the learning function.23 Fig. 5 reports the lateral pressure profile for the

same lipid obtained from simulations using parameters by ∂-HyMD, also in comparison

with previously reported data.
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Figure 5: On the left, contributions to the pressure difference in the normal and lateral
directions to the membrane (∆P ), across a DPPC bilayer simulated with the parameters
optimized in this paper (solid line) and with previous BO parameters from Sen et al.23

(dashed line) due to field, bond and angle terms. On the right, total pressure differences
calculated in this work (solid line), and HhPF, hPF, and united atom (UA) curves are taken
from ref23.

Using DPPC for direct comparison, the lateral pressure profile is in excellent quantitative

agreement with the one produced by all-atom data, improving the profiles obtained with

the BO-optimized parameters. In particular, the lateral pressure profiles feature a weakly

negative balance in the membrane core and a large positive fluctuation at the height of

the polar head. Notably, in the same region, the stretching, and bending terms provide

larger contributions to the pressure imbalance than with the BO model.23 This is consistent

with the sharper distribution of the polar heads reported in the density profiles (Fig. 4),

corresponding to a more regular alignment of the bonded moieties along the normal axis of

the membrane. Compared to the all-atom model, the pressure profile underestimates the

negative fluctuations in the outer part of the bilayer, similar to the BO model. As already
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discussed there, this is attributed to the poor representation of the solvation structure, which

is an intrinsic weakness of the CG mapping itself. However, compared to the BO model, in

this case, we managed to almost perfectly match the inner all-atom peaks, both in terms

of intensity and position along the normal to the membrane. The qualitatively correct

behavior of the lateral pressure profile across the whole membrane validates the soundness

of the physics represented by the models and, thus, their reliability for future use in other

application studies. Fig. S2 in the Supporting Information reports the complete table of

lateral pressure profiles for all the other systems.

Another validation we carry out is the ability of lipids to self-assemble. This was already

investigated in a previous paper,9 but it is an important test to replicate here, since the

optimized parameters are strikingly different compared to the ones used previously. In

particular, the tail bead-water interaction, which is one of the main promoters of lipid

aggregation, dropped from 42.24 kJmol−1 to 23.94 kJmol−1. In Fig. 6, we report simulation

snapshots that show how the new model still manages to reproduce extremely fast self-

assembly of a DPPC bilayer, as characteristic of the HhPF model.

0 ns 0.5 ns 1 ns 1.5 ns

Figure 6: DPPC bilayer self-assembly with the optimized parameters in a 103 nm3 box. We
use the same color coding shown in the mapping. Water beads are omitted for clarity.

Finally, we test the phase separation of TG molecules in a DOPC bilayer, that was

previously investigated by molecular dynamics simulations and experiments.56 We use TG

here because the mapping does not introduce any new bead type, so we can also verify

the transferability of the optimization on molecules that were not included in the training

dataset. In our simulation, we use a concentration of TG that is above the reported critical
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aggregation concentration of 4%66, therefore we expect to observe phase separation from

DOPC. In Fig.7 we report snapshots from the initial configuration and after 30 ns. We are

indeed able to observe the formation of a TG blister, with a diameter of ∼18 nm and a

height of ∼5.7 nm, inside the DOPC membrane. In reality, in our simulation the process of

aggregation of the TG molecules starts much earlier, around the 10 ns mark, which is anyway

consistent with the previously reported blister formation time of ∼25 ns.56

Figure 7: Phase separation of triglyceride (TG) molecules, in blue, inside a DOPC bilayer.
On the left, side and top view of the starting system with TGs randomly dispersed in the
membrane; on the right, snapshots taken after 30 ns that show the formation of a TG blister.
DOPC molecules are not rendered in the top view, and water beads are omitted for clarity.

Overall, the parameters optimized for the whole set of lipids (Table S1 in the

Supporting Information) perform just slightly worse than the parameters optimized for

each lipid individually (Tables S3 to S14 in the Supporting Information). The data for the
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losses, density profiles, area per lipid, and lateral pressure profiles for the individual lipids

optimization are also shown in Fig. S3 to S8 in the Supporting Information. Even though

the APL and density profiles for the individually optimized lipids are closer to their

experimental references, the parameters were also more prone to overfitting, leading to

unstable simulations in some cases. In many cases, the parameters were also very different,

so obtaining a single set of transferable parameters from this data is not trivial. Training a

common set of parameters for all the lipids with the protocol presented in this work,

provided transferable parameters which still lead to properties in very good agreement with

the target values.

Conclusion and Outlook

In this work, we developed and used differentiable molecular dynamics to automate and

standardize the determination of force field parameters for HhPF modeling. Our procedure

requires only the definition of a loss function, targeting specific molecular properties of

interest, which may be based on any microscopic or macroscopic observable, and may target

bottom-up data, i.e., from all-atom models, or top-down quantities, i.e., from experimental

measurements.

Compared to similar approaches already proposed in the literature, we overcome the

general issues of excessive memory requirements, and numerical instability upon progressive

gradient accumulation, by averaging the loss gradient over a set of independent parallel runs.

This framework is implemented in ∂-HyMD, an open-source software that reimplements

HyMD by employing the autodiff capabilities of JAX.

We tested our implementation by optimizing HhPF models for a library of

phospholipids, comprising different polar heads (phosphocholine, phosphoethylamine,

phosphoglycerol), as well as different combinations of saturated and unsaturated fatty tails.

The results show that, in general, our differentiable MD protocol can systematically
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optimize the parameter sets, producing models that are in excellent agreement with the

reference. In particular, the model produced by differentiable MD for DPPC surpasses the

one previously obtained by BO, showing better-peaked distributions for the lipid heads,

and improved water penetration at the water/lipid interface, even though the parameters

are optimized to be transferable to other lipids in the ∂-HyMD case and were tailored to

just DPPC in the BO case. These considerations indicate differentiable MD as a more solid

route for the systematic optimization of libraries of compounds.

The parameters obtained by ∂-HyMD reproduce with good accuracy the fluctuations in

the difference between the normal and lateral components of the pressure, as compared to

the all-atom reference, and previous gradient-free parameterization. In particular, they

yield the tensionless condition for the bilater as a balance between the laterally compacting

hydrophobic tails, and the laterally expanding hydrophilic heads. The good quality of the

pressure profiles confirms that the parameters obtained by this optimization procedure

describe well the physics of the system, and can be used to predict properties not explicitly

introduced into the learning pool. We also showed that the fast self-assembly of lipid

membranes is retained by these parameters, and that the extension of their use for

molecules outside the training pool, such as triglycerides, is possible.

In this work, we also introduced the first library of standard charged and zwitterionic

phospholipids to be used with the HhPF method. In fact, our ∂-HyMD is, by design, a

flexible tool that can be easily applied to diverse systems. Future work will be focused on

the enrichment of this core library with other biologically relevant lipids, including

sphingolipids, sterols, and glycosylated systems (phosphorylated inositol phospholipids,

lipopolysaccharides). A further step will be in the use of this same approach for the

calibration of sequence-specific peptide models,67 and of nucleic acids, with the final

objective of producing a consistent force-field for simulations of complex multiphase

biological systems. Changing the mapping and including the optimization of the bonded

parameters may also lead to improvements in the description of membranes.60
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