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The Bigger Picture 
 
Rapid development of clean energy technologies is critical for achieving a sustainable and 
carbon-neutral society. Before rolling out new technology, forecasting future device performance 
is crucial. Traditionally, this involves extensive testing, a process that is not only time-consuming 
but also expensive. The integration of data science tools into the development process is now 
being explored worldwide to expedite testing and diagnostics in a cost-effective manner. This 
perspective reviews several strategies to augment the data-driven workflows in energy device 
development, taking solar cells, batteries, and fuel cells as examples. Data science and machine 
learning (ML) techniques are increasingly used for predicting the longevity and state of health of 
functional devices. There is also growing interest in understanding why failures occur and in 
optimizing process parameters through explainable ML. Beyond laboratory testing, the concept 
of digital manufacturing introduces closed-loop platforms that leverage predictive modeling and 
ML-guided optimization to improve production processes. While there are challenges in achieving 
seamless integration of artificial intelligence with traditional human-centric manufacturing 
workflows, the potential benefits for the advancement of energy devices are significant. Device 
informatics as a field not only has an impact on clean energy research but is also applicable in 
many fields in science and engineering, offering accelerated pathways for shortening the time-to-
market time of new technologies. 
 
 
Summary 
 
Data science has become increasingly prevalent in the development of energy devices, offering 
significant advancements in predicting future behaviors and identifying optimal process 
parameters in a resource-saving manner. This perspective begins by examining the role of data 
science and ML in enhancing accelerated aging tests across solar, battery and fuel cells. We 
present a generalizable data-driven workflow for processing aging test data and predicting the 
lifespan of different device types. In this perspective, we discuss two strategies to improve our 
understanding of device failures: integrating physics-based parameters and utilizing interpretable 
machine learning (ML) techniques. Following a brief review on ML-assisted process optimization, 
we propose an interpretable closed-loop platform towards digital manufacturing for thin-film solar 
and Li-ion battery production. Finally, we discuss the current challenges and research gaps in 
applying data science for accelerated energy device development, aiming to spark further 
investigation in this field. 
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Introduction 
 
To address today's pressing environmental and climate challenges, our society is moving towards 
a sustainable, carbon-neutral future. This crucial transition is underpinned by the widespread 
electrification of our energy systems. As a main pathway towards decarbonization, electrification 
spans across energy generation, storage, transmission, and utilization. Over the past decade, we 
have observed a increasing adoption of renewable energy sources, such as solar, wind, and 
geothermal energy,1 paralleled by a technological shift in the transportation sector towards electric 
and hybrid vehicles.2 The pursuit of more efficient, reliable, and affordable clean technologies 
necessitates innovation at every stage, from materials discovery and device testing to system 
integration and deployment. The advent of high-performance computing, robotics, and artificial 
intelligence (AI) has heralded digitalization as pivotal accelerators in the development of clean 
energy technologies, aligning with the Industry 4.0 paradigm of integrating data science tools 
across research, development (R&D) and manufacturing.3 Over the past few years, data-driven 
approaches have emerged as a powerful tool to reduce the lab-to-market time for new materials, 
as demonstrated from virtual molecular screening to autonomous synthesis of inorganic 
materials.4–6 These advances in accelerated materials discovery have led to a substantial 
increase in candidates poised for potential applications in batteries, hydrogen production, and 
solar cells. Consequently, there's a need to speed up the development and testing of new devices 
for both providing timely feedback to materials R&D and for pushing new technologies to 
deployment. However, few reports have focused on how data-driven approaches can be applied 
to accelerate testing and diagnostics at the device level. Depending on their functionalities, each 
device system has its own design principles, material limitations, and aging mechanisms, and 
therefore demands domain-specific techniques to automate and digitalize existing fabrication 
workflows and testing protocols. Nonetheless, common challenges exist across device types, 
including to extend the device's lifetime, to understand the root causes of failures, and to optimize 
process parameters for high-quality, low-cost, and reproducible device production.7–9 
 
In this perspective, we discuss how data science tools, including data-driven workflows and 
machine learning (ML) techniques, can be employed to assist resolving some of the common 
challenges in energy device development. We review recent studies that employed informatics 
tools for tasks such as optimizing performances in a high-dimensional space, reducing the long 
aging test duration, and drawing insights from the complex and convoluted experimental 
observations. Using thin-film solar cells, lithium-ion (Li-ion) batteries, and proton exchange 
membrane (PEM) fuel cells as examples (as illustrated in Fig. 1), we evaluate the concept of 
generalizable data-driven workflows in laboratory R&D that are expected to be applicable across 
scientific domains. We also share our perspective on the future of digital manufacturing, where 
interpretable ML and active learning can be combined forming workhorse workflows for multi-
parameter optimization at scale. Finally, we discuss open challenges centered around data 
availability, scientific understanding, and hardware integration. Overall, we envision data-driven 
frameworks and models to be increasingly incorporated in future development for functional 
devices, leading to a paradigm shift in clean energy innovation. 
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Figure 1. Schematic drawings and degradation curves for different renewable energy devices. 
(A) Schematic drawing (left) and degradation curve (right) for a perovskite solar cell, with its power 
conversion efficiency (PCE) measured to indicate its degradation performance. The evaluation criteria is 
the PCE at the end. 
(B) Schematic drawing (left) and degradation curve (right) for a lithium-ion battery, with its discharge 
capacity measured to indicate its degradation performance. The failure of the battery is defined as the 
discharge capacity dropped below a user-specific threshold. 
(C) Schematic drawing (left) and degradation curve (right) for a proton exchange membrane fuel cell, with 
its voltage measured to indicate its degradation performance. The failure of the fuel cell is defined as the 
voltage dropped below a user-specific threshold. 
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Accelerated Aging Tests and Lifetime Prediction 
 
A key challenge common to the widespread adoption of new solar, battery, and fuel cell 
technologies lies in the device durability. For example, despite perovskite solar cells’ excellent 
solar-to-electrical conversion efficiency, their long-term stability lags behind that of silicon solar 
cells and presents an area of active research.10 Similarly, Li-ion batteries and fuel cell powertrains 
are often compared to gasoline cars in the market, the latter last for decades without major 
degradation of the components.11 Throughout the R&D phase, testing multi-component devices 
is essential for quality control and performance evaluation, but can take years. Accelerated aging 
tests and predictive models that estimate a device's lifespan are therefore necessary to reduce 
the time from lab to market for new technologies. These predictive models also help plan for 
warranty services and regular maintenance. Over the past decades, deep learning gained 
popularity for degradation inference as the technique allows taking the on-board measured 
current and voltage directly as inputs to the ML models, without additional data featurization step. 
For example, in a recent study by Ansari et al., a recurrent neural network model was proposed, 
taking a rolling window of current and voltage time-series inputs to predict the continuous battery 
capacity fade curves in the near-term and long-term future.12 Alternatively, when data is scarce, 
state-of-the-art data-driven models for predicting device lifetime usually follow a standardized 
workflow that includes structuring data, identifying relevant features, and then using supervised 
ML models to predict the device's health or its remaining useful life. For example, Paulson et al.13 
used regression models to predict battery cycle life from aging tests of over hundreds of cells. 
They performed extensive feature engineering, which involved analyzing various parameters 
including voltage profiles, current rates, and capacity to extract relevant features indicative of 
battery health and degradation. In the following paragraphs, we select three recent studies of 
solar cells, batteries, and fuel cells, respectively. For each case study, we review the aging dataset 
and the data analytics presented and build on the reported work to apply simple ML models for 
lifetime prediction. The goal of the brief benchmarking in this perspective is to explore the 
generalizability of data-driven approaches across energy devices with different available data size, 
types and the objective of the studies. 
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Figure 2. Lifetime prediction performance using regression models. For each case study, 10 times 
were run with the average taken to ensure the accuracy of the results during the machine learning 
process. 
(A-B) Mean absolute error of the prediction of solar cells’ power conversion efficiency (PCE) at 150 hours 
using (A) different number of subsets applied for clustering and (B) different machine learning regression 
algorithms, with the self-organizing map parameters set to be sigma = 0.5 and learning rate = 0.1. 2-fold 
cross validation and grid search were applied on nonlinear machine learning models to tune their 
hyperparameters. 
(C-D) Mean absolute percent error of (C) Lithium-ion batteries’ cycle life prediction and (D) fuel cells’ lifetime 
prediction using different machine learning regression algorithms. 5-fold cross validation and grid search 
were applied on nonlinear machine learning models to tune their hyperparameters. 
 
Case study 1: Perovskite Solar Cells 
As shown in Fig. 1(A), perovskite solar cells consist of multiple layers of materials that are applied 
through printing, coating, or vacuum deposition onto a foundational support layer referred to as 
the glass substrate,14 while solar-to-electricity power conversion efficiency (PCE) at 150 hours is 
a typical indicator of their performance during the aging tests. In their recent study, Hartono et al., 
applied an unsupervised learning approach to a large dataset of perovskite solar cells aging tests 
2245 tests consisting of time-series data of PCEs were clustered into four groups using self-
organizing map (SOM) according to the shapes of the PCE curves.15 SOM was chosen as it 
efficiently simplified complex, high-dimensional statistical relationships into geometric patterns in 
lower-dimensional spaces, speeding up the learning process while preserving the data's original 
structure and relationships.16  
 
Lifetime prediction: Building upon the reported study, we combined the results from the SOM 
approach with a regression model to predict the future PCE values. In our approach, as shown in 
Fig. 2, clustering was done first to divide the whole dataset into multiple subsets based on the 
curves from 0 to 100 hours, while for each subset, a simple linear regression model using the 
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PCE value at 100 hours to predict the one at 150 hours was built. It turned out that this prediction 
method not only ran very fast, but also had a good performance with the least mean absolute 
error observed if dividing into 25 subsets, as depicted in Fig. 2(A). Notably, in this case study, 
limiting the model input to single parameters meant that other nonlinear regression models did 
not offer any advantage over a linear model. In fact, if nonlinear models were applied instead of 
the linear one, the accuracy would slightly decrease, as illustrated in Fig. 2(B). This case study 
demonstrates a two-step modeling approach where unsupervised and supervised learning are 
combined for solar cell life prediction. 
 
Case study 2: Li-ion Batteries 
Fig. 1(B) shows an example device structure of Li-ion batteries, which are charged and 
discharged by lithium ions moving between the negative (anode) and positive (cathode) 
electrodes. A Lifetime prediction for Li-ion batteries often aims to forecast the number of cycles 
until discharge capacity reaches 80% of the nominal capacity. In 2019, Severson et al. suggested 
that the log variance of the change in discharge voltage curves between cycles 10 and 100, 
denoted as Var(ΔQ100-10(V)), exhibited a strong correlation with the battery's cycle life.17 
Whereafter, this variance feature, along with other supplementary features obtained from the 
initial 100 discharge cycles, were employed as input features for data-driven models to predict 
battery's cycle life.  
 
Model comparison: Building upon the linear regression algorithm in the study by Severson et al., 
we further examined nonlinear regression methods for comparison purposes.  As shown in Fig. 
2(C), the three tree models had less mean absolute percent error than the linear model, and 
among them, the random forest model achieved superior performance. It is worth noting, however, 
that the benefits of using tree models compared to simple linear regression are minimal. This 
underscores that the ability to identify relevant features effectively for accurate outcome 
predictions, especially when the data size is limited (as with the 124 battery cells in this case 
study), is crucial. This case study showcases that with effective data featurization, developing 
complex models is not always necessary for achieving accurate predictions. 
 
Case study 3: PEM fuel cells 
PEM fuel cells use hydrogen as fuel and oxygen from the air as oxidant to convert chemical 
energy into electricity. Typically, time-resolved voltage curves are utilized for lifetime prediction, 
with their failure threshold set to be, for example, 95.5% of the initial voltage at the beginning of 
the test. This standard references the criteria established by the FCLAB Laboratory in 2014, which 
introduced a challenge featuring a time-series dataset of 10 PEM cells.18 Fig. 1(C) demonstrates 
an example PEM cell undergoing aging tests from this dataset. Several papers have performed 
lifetime predictions using this dataset to train data-driven models. Specifically, deep learning 
techniques such as artificial neural network, recurrent neural network, or convolutional neural 
network were employed to predict the succeeding voltage curves over time.19,20  
 
Feature engineering: Inspired by the featurization approaches widely employed in the battery 
community, we constructed features-based lifetime prediction models without using deep learning. 
According to Tian et al., the output voltage of a fuel cell was negatively correlated with time,21 
making the linear fit of the early time series data of voltage a predictive feature. Moreover, 
variance features were also included to ensure that the model accounts for the uncertainty present 
in the voltage measurements in the presence of noise. After applying the same regression 
methods as for the solar cells and batteries in the previous case study, we observed in Fig. 2(D) 
that nonlinear ML models exhibited superior performance compared to linear regression, 
capturing the local nonlinear voltage drops throughout the tests. However, we shall note despite 
the higher prediction accuracy, training data for these ML models comes from the available aging 
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data of 10 cells. As a result, ML models face overfitting problems with small datasets like in this 
case study, and the results are not transferable to other datasets. Our case study here exemplifies 
that sufficient training data is a prerequisite for developing trustworthy ML models. 
 

 
Figure 3. Machine learning process workflow for different renewable energy devices, where SOM 
stands for self-organizing map, PCE means power conversion efficiency, and Var(ΔQ100-10(V)), 
Min(ΔQ100-10(V)), Skew(ΔQ100-10(V)) represents the variance, minimum, skewness of the change in 
discharge voltage curves between cycles 10 and 100, respectively. 
 
To sum up, data-driven models have been widely applied for lifetime prediction across solar, 
battery and fuel cell technologies as a complementary approach to the traditional physics-based 
models.22 In Fig. 3, we present a common data-driven workflow employed by researchers. After 
structuring the data and identifying the representative features for each device, input-output 
models can be built using the training set with various regression methods applied. Then, 
predictions are validated with the test dataset. Notably, challenges remain in reducing the high 
cost of long-term tests for model validation and understanding the complexity of aging 
mechanisms. Unlike simulations, analytics of real-world testing data suffer from issues such as 
managing noisy datasets and small available datasets. Instead of large-scale models, identifying 
predictive features is a powerful approach for small dataset ML modeling and often does not 
require complex model architectures. Meanwhile, domain knowledge and expert insight play an 
important role in small dataset modeling. Specifically, collaborating with domain experts leads to 
effective feature identification and down selections, thus improving the accuracy of prediction and 
efficiency of model development. For example, in the study conducted by Fathy et al., they built 
the mathematical model of a PEM fuel cell to help them select the input parameters to be 
determined before adopting the optimizer, which turned out to be effective in the end.23 Moreover, 
if the dataset is large (more than one thousand entries), like our solar cells case study or the 
batteries study conducted by Deebansok et al.,24 combining a clustering step with simple linear 
regression presents another efficient and fairly accurate way for predicting the devices’ 
performance without complex models. Deep learning, on the other hand, can be effective in 
tackling challenges such as noise reduction and predicting for multiple outputs, given sufficient 
training dataset. Examples include the use of convolutional neural network25 or recurrent neural 
network.12,26 
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Understanding Failures  
 
Identifying the root causes of device failures, whether they are 'expected' due to degradation over 
a long-term usage or 'unexpected' due to defective systems, is critical for developing safe and 
reliable energy devices. In the previous section, we discussed various data-driven approaches, 
however, ML lifetime prediction models usually are black boxes, providing very little physical 
insights.27 In this section, we summarize two approaches in recent literature where interpretability 
can be embedded into the data-driven prediction studies.  
 
The first approach involves directly integrating parameters that have physical meanings as 
features to the prediction models. Taking battery technology as an example, battery capacity fade 
are typically attributed to three thermodynamics degradation modes:  (1) loss of active materials 
on the negative electrode side (LAM NE), (2) loss of active materials on the positive electrode 
side (LAM PE) (3) loss of Li inventory (LLI) , and kinetic degradation.28 There have been extensive 
studies in literature to understand those degradation modes through additional materials 
characterization and device testing, involving reconstructing low-rate full cell performance by 
manipulating the fresh half cells voltage curves.29–34 Kinetic degradation can be probed through 
pulse power tests or electrochemical impedance spectroscopy.35–38 Those low rate and 
impedance tests are best known for being non-destructive, and because of this, many introduce 
low-rate cycles and pulse tests periodically to their testing process to track changes in both 
thermodynamic and kinetic properties.39–42 By building data-driven models with fitted physics-
based degradation parameters as input, and device performance, such as battery cycle life as 
output, we can correlate the device degradation with physic-based parameter change like 
resistance rise or electrode capacity drop while achieving low prediction errors.39,40,43 
 
The second approach is to integrate interpretable ML into the predictive modeling workflows. 
Several model-agnostic methods such as function decomposition have been reported44 for 
describing the average behavior of a ML model, and local interpretation methods Shapley values 
are attracting increasing attention for explaining the impact of individual features in a predictive 
model .45 SHAP (SHapley Additive exPlanations) proposes interpretation methods based on 
combinations of Shapley values across the data.46 In their recent work, Van Vlijmen et al.39 
generated a diverse battery aging dataset by varying 6 cycling parameters, as shown in Fig. 4(A). 
Given the diverse degradation trajectories resulting from convoluted degradation mechanisms, 
the traditional method of studying parameter sensitivity by looking at one parameter at a time is 
no longer feasible. The authors employed pulse measurements and differential voltage analysis 
to characterize the kinetics and thermodynamics degradation, and applied SHAP analysis to 
further understand the impact, as illustrated in Fig. 4(B) and (C). The extracted SHAP values can 
be used to construct a matrix plot where each matrix entry is the impact of a parameter (cycling 
conditions or physics-based parameters) to the model output. The analysis enables a quick 
identification of important parameters and degradation diagnosis. For example, the authors found 
that the most impactful cycling parameters are charge current magnitude and discharge cutoff 
voltage, and charge current impacts the cycle life through resistance. SHAP and physics-based 
models enable a quick examination and understanding of parameter impact in a high dimensional 
parameter space. Similar explainable ML concepts were recently demonstrated in solar cell 
lifetime prediction studies. Oviedo et al. incorporated interpretable ML to lifetime prediction of thin-
film organic solar cells to gain insights into the degradation cause.47 The authors implemented a 
black-box neural net model to predict solar cell lifetime from input voltage curves, as seen in Fig. 
4(D), and in parallel they calculated the physical parameters from a device model to estimate the 
contribution of physical parameters to input voltage curves, thus identifying the main degradation 
driving forces (Fig. 4(E) and (F)).47 For common energy devices, whether their purpose is to 
harvest, convert, or store energy, understanding the failure mechanisms is equally, if not more, 
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important than achieving accurate lifetime predictions. Interpretable predictions are powerful as 
they enable scientific understanding in a high-dimensional space where correlations between 
inputs can be non-linear or complex. Coupling interpretable ML with accelerated aging tests has 
the potential to improve operation protocols and even enhance device designs. Methods 
presented here are highly generalizable and are not only limited to specific energy device 
applications of battery or solar cells.  
 
Though applied differently, the two strategies discussed in this perspective share a common 
objective: integrating data-driven techniques with relevant physical parameters, either before or 
after machine learning models are trained. Importantly, merging these strategies into a unified 
data-driven workflow can significantly enhance the model's transparency. This integration forms 
an end-to-end ML pipeline that is more likely to generate actionable knowledge and insights for 
specific energy systems. 
 

 
Figure 4. Demonstrations of incorporating interpretable machine learning into the degradation 
analysis, top row (A)-(C) is an example of using SHAP and physics-based featurization to 
understand battery cycling parameter impact, and bottom row (D)-(F) is a solar cell example to 
SHAP and physics-based featurization to understand a black-box prediction model.47  
(A) A diverse battery aging dataset generated by varying 6 cycling parameters39 
(B) Physics based measurement (pulse tests for resistance measurements) and model (differential voltage 
analysis) for parameter estimation of this dataset 
(C) SHAP analysis for understanding how cycling conditions and physics-based parameters affect the final 
battery equivalent full cycles. The extracted SHAP values can be used to construct the matrix plot for a 
quick visualization of the parameter impact. Darker color in the matrix plot indicates higher parameter 
impact. This is especially helpful when dealing with a diverse dataset where parameter impact is convoluted. 
(D) Time series representation of the initial cell degradation (current density-voltage) as input for neural 
network prediction.47 
(E) Time-regularized physical inference. A device model is used to fit the degradation dynamics to the 
dynamics of various physical parameters on the time axis. 
(F) SHAP values are used to quantify the effect of each physical parameter, and this offers insights into the 
black box prediction model. 
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Optimizing Processes 
 
Process optimization using ML techniques has the advantages of rapidly assessing and screening 
a large number of parameters and iteratively converging to optimal decisions.48,49 A popular 
approach used in the scientific community research is active learning, a subfield of AI, and have 
been demonstrated in virtual materials discovery,50–53 synthesis,54,55 and electrochemical 
performance testings.49 In this section, we review two case studies, where active learning 
techniques were applied to optimize device fabrication and device operation, respectively.  
 
Bayesian optimization, an example active learning technique, has been employed in a number of 
studies guiding experimental research and optimizing unknown functions, since the algorithm 
efficiently balance exploratory experiments with utilizing prior knowledge to identify extrema.56 
Many researchers use active learning to accelerate materials design and synthesis with targeted 
properties.55,57,58 However, there are few demonstrations on the device level. Liu et al. 
implemented batch Bayesian optimization to identify the optimal conditions for fabricating 
perovskite solar cells via rapid spray plasma processing, focusing on six process parameters: 
spray flow rate, plasma nozzle height, plasma gas flow rate, plasma duty cycle, coating speed, 
and film quality, which altogether present over 40,000 possible conditions.59 To accelerate the 
process optimization, the authors developed a data-driven framework that utilizes results from 
previous batches of experiments as a probabilistic guide to suggest subsequent experiments 
under a constrained budget. They also combine insights from domain experts as knowledge 
constraints in their ML models and thereby accelerate the search for process conditions that lead 
to high-efficiency solar devices. Similar data-driven frameworks have also been reported to 
optimize device operation rather than fabrication. This approach has been particularly applied in 
battery management systems, as the state of health of a battery significantly depends on its 
charging and usage patterns. Attia and Grover et al. designed a closed optimization loop for Li-
ion battery fast charging.49 This optimization loop has two key parts: (1) lifetime prediction using 
the first 100 aging cycle data to shorten the battery testing time;17 (2) Bayesian optimization to 
recommend the next round of parameter values to test. Because of this optimization loop, the 
authors were able to rapidly identify high-cycle-life charging protocols among 224 candidates in 
16 days (compared with over 500 days using exhaustive search without early prediction). 
 
 
Outlook in Digital Manufacturing 
 
Building on the data-driven methods reviewed in previous sections, here we propose an general 
interpretable optimization framework that can be used to accelerate device development at scale, 
as shown in the example workflows in Fig. 5. Taking energy storage as an example, battery 
electrode production, which include slurry preparation and subsequent processing numerous 
manufacturing steps such as mixing, coating, drying, and calendering,60 has  high dimensional 
parameters and a long evaluation timeline loop. Data-driven closed-loop optimization can be a 
promising approach to shorten the optimization period and identify the most important parameters. 
The first step is to identify parameters to optimize, and listed here (in blue) are some example 
parameters that can affect the electrode slurry performance such as composition, coating speed, 
and drying temperature etc. Electrodes are tested in a half/full cell format to further evaluate its 
performance. Before the cycling test, physical parameters such as porosity, capacity, or 
resistance can be measured. After this, cells undergo the same cycle life testing. Active learning 
techniques, such as Bayesian optimization, can be used on the initial dataset to recommend the 
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next round of parameters to test, and lifetime prediction models can be developed to shorten the 
future cell testing time. Except for the initial dataset, future cycle life prediction can be done during 
early cycles, and through iterations, we will land with the optimized cell fabrication parameters. 
By adding interpretable ML between parameters and physical properties, physical properties and 
cycle life, insights on how parameters affect battery performance could be gained, informing better 
materials designs in the future. For example, it has previously been shown that though binder can 
improve mechanical stability, it impedes Li diffusion, leading to higher cell resistance, resulting in 
shorter cycle life,60 and such impact can be captured with this interpretable optimization 
framework. Interpretable ML works efficiently in a high-dimensional space and can identify the 
important parameters faster.39 Similar approaches can be applied in the manufacturing of thin-
film photovoltaic devices, as exemplified in Fig. 5 (highlighted in green).59,61,62 Such efforts align 
with the initiatives in digital manufacturing, which emphasis on the automation of production 
processes with technologies such as AI, internet of things, and cloud computing.63,64 In the context 
of the energy industry, digital manufacturing frameworks that integrate a streamlined data 
workflow that combines interpretable ML with closed-loop active learning into accelerated aging 
test procedures is promising in accelerating device failure diagnostics. To facilitate this, it's 
essential to create specific databases that map the relationships between process variables (like 
thin film composition and annealing temperature in solar cells) and physical properties (such as 
photoluminescence and carrier mobility of solar materials).65 Overall, we see great potential in 
data-driven workflows to enhance equipment efficiency and device reproducibility. These 
workflows can leverage extensive production data to refine control parameters, thereby optimizing 
the manufacturing process. 
 

 
Figure 5. Demonstration of accelerated solar cell and battery R&D via a closed-loop approach with 
interpretable ML. Blue highlights the parameters for batteries and green highlights the parameters 
for solar cells. Lifetime prediction here is to shorten the battery/solar cell performance evaluation 
time, Bayesian optimization is to recommend the next round of parameters to test, and interpretable 
machine learning helps gain insights into the process-property relations. With parameter space set 
for individual processes, the same optimization loop can be used for other manufacturing problems 
not limited to batteries or solar cells.  
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Open Challenges  
 
Despite the great potential of applying data-driven workflows to predict, understand, and optimize 
the performance of the energy devices, challenges exist to incorporate data science into the 
industrial R&D and manufacturing workflows beyond proof-of-the concept studies. Here we 
summarize a few open issues centered around data quality, generalizable insights, and hardware 
integration. 
 
Data availability: Collecting high-quality data is both expensive and time-consuming. For 
instance, it is not uncommon to test perovskite solar cells for over 5,000 hours (~208 days), and 
Li-ion batteries for more than a year in laboratory settings.39,66 These testing typically are already 
following accelerated testing strategies, designed to induce device degradation faster than would 
occur under field operations. Consequently, many academic demonstrations of ML model 
construction and validation end up using exceedingly non-diverse data sets. To address this, we 
recommend scrutinizing the generalizability of models. Without this, frequent model re-training 
may be necessary when developing new materials formulations or device structures, leading to 
high upfront costs. Moreover, data collected during manufacturing processes are often proprietary. 
If more datasets, for example, those concerning previous-generation devices or from exploratory 
early research stages, could be made available as “challenge datasets” after removing personally 
identifying information, it would enable community efforts to develop more advanced ML methods 
and build robust, large-scale models based on real-world data. 
 
Data standardization and model benchmarking: During the preparation of this perspective, we 
noticed that each field is adopting data science at its own pace, leading to different levels of 
convergence on data standardization shared by the community. Compared to batteries, there are 
fewer open sources of fuel cell device aging data available. In the solar cell community, there is 
an increasing discussion about standard testing and reporting protocols for perovskite 
photovoltaics. This is exemplified by the 2020 publication of a consensus statement on stability 
assessment based on ISOS standardized procedures, which was co-authored by 59 
researchers.67 From a model benchmarking angle, among the open-source data available, there 
often exist different data formats and testing protocols that make the creation of a unified ML-
ready dataset challenging. For example, several battery aging datasets were published in the past 
years,68 however, the fact each dataset was constructed from testing cells with different electrode 
chemistry, form factors, and testing conditions confine the broad applicability of the generalizable 
prediction models and highlight the importance of structured metadata in addition to testing data. 
To address this, we recommend introducing standard diagnostic tests during regular aging tests 
to compare the different cycling conditions on a fair basis. Those diagnostic tests can also be 
used to get more in depth degradation information that can be used in lifetime prediction. 
Moreover, experimental data can be complemented by synthetic data simulated with different 
failure modes, and this is a convenient and inexpensive way to expand the training dataset and 
benchmark the ML models.69–72 
 
Scientific understanding and actionable outcomes: There is often a trade-off between model 
interpretability and its accuracy. In this perspective, we discussed how to incorporate interpretable 
ML and physics-based parameters to the ML pipeline in order to improve model interpretability. 
There are also examples of combining physics-based models with data-driven models to achieve 
desirable accuracy without losing interpretability.73 While predicting device performance 
effectively shortens testing durations, relying solely on simple ML models falls short of providing 
the scientific principles and understanding necessary to guide the direction of next-generation 
R&D. Multimodal learning that combines both material and device-level characterization and 
testing data in the model development, along with causal learning that makes predictions based 
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on discovering cause-and-effect relationships, will improve the model's capability in identifying 
the root causes of device failure. We encourage researchers focusing on applied ML for energy 
science to look beyond the immediate benefits of analytical acceleration offered by data science 
tools. There is significant potential to extract broader, generalizable insights from ML models and 
to transform these insights into actionable outcomes that can be directly evaluated and tested by 
device engineers. 
 
Integration with existing human-centric workflows: The development of cyber-physical 
platforms that merges the software and hardware solutions into intelligent systems provides 
avenues towards autonomous operation. However, most of the workflows currently in use in 
research labs and factories are designed to be human-centric, leading to barriers to adopt data-
driven approaches. In the energy storage field, data hubs like Battery Archive are good examples 
of open sourcing and standardizing data from different cyclers and testing methods to make data-
driven models more accessible.74 Intuitive analytics platforms allow users to visualize, evaluate 
and predict device degradation without deep technical expertise, as exemplified by BEEP 
analytics platform for batteries.75 Furthermore, embedding transparency and explainability in data 
models demystifies prediction and optimization strategies, fostering trust and adoption. Today’s 
automated workflows in R&D still rely on human feedback and supervision to ensure model 
integrity. Therefore, it is essential to reduce the barriers for domain experts to use data science 
tools by offering software interfaces that allow them to interact with the model and provide timely 
feedback. With the support of enhanced data infrastructure, education of the workforce in data 
science, and progress in software for human-machine interfaces, we can expect data-driven 
strategies to unlock new possibilities towards autonomous device research, development, and 
manufacturing, leading to increased efficiency and reduced costs. 
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