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Abstract: Drinking water is essential to public health and socioeconomic growth. Therefore, 21 

assessing and ensuring drinking water supply is a critical task in modern society. Conventional 22 

approaches to analyzing and controlling drinking water quality are labor-intensive and costly with 23 

a low throughput. Machine learning (ML) is an alternative, promising technique to assess and 24 

ensuring safe drinking water supply. Existing reviews have summarized the applications of ML in 25 

safe drinking water supply from different aspects. However, a state-of-the-art, comprehensive 26 

review is missing that focuses on applying ML to monitor, simulate, predict, and control drinking 27 

water quality, especially in municipal engineered water systems. This review, therefore, critically 28 

compiles the applications of ML in assessing and ensuring water quality in engineered water 29 

systems. To be comprehensive, we also cover the applications of ML in other drinking-water-30 

related settings such as water sources and water purification processes. We explain the basic 31 

mechanics and workflows of ML, focusing on the applications of ML to access and control key 32 

factors or etiologies in drinking water from the physical, chemical, and microbiological aspects. 33 

Those factors or etiologies affect water quality and public health, such as water pipeline failures, 34 

disinfectant by-products, heavy metals, opportunistic pathogens, biofilms, and antimicrobial 35 

resistance genes. We then illustrate the distribution of ML models across research topics in safe 36 

drinking water supply. Finally, we discuss the challenges and outlooks for the applications of 37 

machine learning in safe drinking water supply. This is the first review summarizing the feasibility 38 

and applications of ML in assessing and ensuring water quality in municipal engineered water 39 

systems as well as other related water environments.  40 

Keywords: Drinking water quality; Engineered water systems; Artificial intelligence; 41 

Opportunistic pathogens; Disinfection byproducts; Heavy metals 42 
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1. Introduction  44 

Clean and safe drinking water is vital to public health and socioeconomic development  ADDIN 45 

EN.CITE (. Public water systems are essential drinking water sources in modern society. For 46 

instance, in the United States (U.S.), over 90% of people obtain drinking water from approximately 47 

150,000 public water systems (U.S. EPA, 2023). Public water systems provide water for human 48 

consumption through engineered water systems, including drinking water distribution systems 49 

(DWDSs) and building premise plumbing systems (Zhang and Lu, 2021b). Poor drinking water 50 

quality causes disease outbreaks and chronic diseases, leading to significant socioeconomic losses 51 

(Benedict et al., 2017; Craun et al., 2010; Lee et al., 2023). Therefore, assessing and ensuring water 52 

quality, especially in engineered water systems, is critical to public health and the welfare of 53 

society (WHO, 2011).  54 

 55 

Assessing and ensuring water quality in engineered water systems and related settings are complex 56 

(Li and Wu, 2019). Multiple ever-changing variables affect drinking water quality such as the 57 

quality of water sources, treatment processes and technologies, water pipe materials, distribution 58 

system configuration and length, natural disasters, and water stagnation in the pipes (Delpla et al., 59 

2009; Li and Wu, 2019; Proctor et al., 2020). For instance, drinking water effluent at water utilities 60 

many be high but could deteriorate in engineered water systems because of microbial (re)growth 61 

and instruction, the formation of disinfection by-products (DBPs), pipe failures (e.g., breaks and 62 

leaks), and the detachment of heavy metals from pipes (Liu et al., 2016). Meanwhile, drinking 63 

water in engineered water systems and other settings have various hazardous agents such as 64 

harmful microbes (especially opportunistic pathogens or OPs) (Li et al., 2019; Zhang and Lu, 65 

2021a), DBPs (Benítez et al., 2021; Lee et al., 2013), heavy metals (Chowdhury et al., 2016; 66 

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2
https://orcid.org/0000-0002-7299-9891
https://creativecommons.org/licenses/by/4.0/


Page 4 of 59 

Gonzalez et al., 2013), pesticides and herbicides (Syafrudin et al., 2021) (Mukhopadhyay et al., 67 

2022), and other emerging contaminants (e.g., antimicrobials and microplastics) (Gogoi et al., 68 

2018; Kirstein et al., 2021; Taheran et al., 2018). Those agents are interconnected, and controlling 69 

only one group of the agents frequently fails to secure drinking water quality. For instance, 70 

increasing disinfectant residual concentrations in engineered systems suppresses microbial 71 

(re)growth but promotes the formation of DBPs (Zhang and Lu, 2021a). By contrast, reducing the 72 

dose of disinfectant residuals in engineered water systems can mitigate the DBP issue, but 73 

microbes (including pathogens) can thrive. A chlorine burn (i.e., a short conversion from 74 

chloramination and free chlorination) is an effective means to control nitrification in chloraminated 75 

engineered water systems (AWWA, 2013). However, chlorine burns significantly enhance DBP 76 

formation in water pipes, posing serious public health risks (Alexander et al., 2024; Alfredo, 2021; 77 

Allen et al., 2022). 78 

 79 

Because of the complex nature of water quality in engineered water systems and related settings, 80 

assessing and ensuring drinking water quality using conventional means is challenging. Those 81 

traditional methods are time-consuming, labor-intensive, inefficient (i.e., low throughput), and 82 

costly (Ahmed et al., 2019; Zainurin et al., 2022). Artificial intelligence (AI), especially machine 83 

learning (ML), is promising to address the deficiencies in the traditional approaches to access and 84 

ensure safe drinking water supply (Richards et al., 2023). The adaptability, feasibility, and 85 

predictive power of ML offer significant advantages over other AI technologies (Willard et al., 86 

2022; Zhu et al., 2022), particularly when handling drinking water quality with a dynamic and 87 

complex nature. Consequently, ML to enhance drinking water treatment and quality is an emerging 88 
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area of research and practice (Henrique Alves Ribeiro and Reynoso-Meza, 2023; Li et al., 2021; 89 

Narita et al., 2023; Speight et al., 2019).  90 

Existing reviews have summarized the applications of ML in various aspects of drinking water 91 

quality (Ewuzie et al., 2022; Huang et al., 2021; Zhu et al., 2022), such as source water quality and 92 

contamination (Gong et al., 2023; Zanoni et al., 2022), the treatment processes (Li et al., 2021; 93 

Lowe et al., 2022; Ortiz-Lopez et al., 2022), and detection of quality anomaly (Dogo et al., 2019). 94 

However, a state-of-the-art, comprehensive review is missing that focuses on the applications of 95 

ML to monitor, simulate, predict, and control drinking water quality, especially in engineered water 96 

systems. Since engineered water systems are the vital civil infrastructure delivering municipal 97 

water from water utilities to the residents and industrial/commercial consumers (WHO, 2011), 98 

summarizing such applications can help understand and ensure drinking water quality, protect 99 

public health, and promote socioeconomic development.  100 

 101 

In this review, we critically compile the applications of ML in assessing and ensuring water quality. 102 

We focus on engineered water systems but also cover other drinking-water-related settings such as 103 

source water and drinking water treatment processes. First, we introduce ML and common ML 104 

models. Then, we summarize recent progresses on the applications of ML in safe drinking water 105 

supply from the physical, chemical, microbiological, and temporal perspectives. Finally, we 106 

present the challenges and outlook for applying ML to ensure safe drinking waters supply. We 107 

focus on the applications of ML to access and control key factors and etiologies that affect drinking 108 

water quality and public health, such as water pipeline failures, DBPs, heavy metals, OPs, biofilms, 109 

and antimicrobial resistance genes (ARGs). This is the first review summarizing the applications 110 

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2
https://orcid.org/0000-0002-7299-9891
https://creativecommons.org/licenses/by/4.0/


Page 6 of 59 

of ML in assessing and controlling water quality in municipal engineered water systems, while the 111 

applications of ML in other drinking-water-related settings are also discussed.  112 

 113 

2. Machine learning primers 114 

In the past decade, ML has driven significant progress across domains in modern society, including 115 

object detection (Erhan et al., 2014; Lin et al., 2017), autonomous driving (Almalioglu et al., 2022; 116 

Feng et al., 2023), drug delivery (Allesoe et al., 2023; Wołos et al., 2022), weather forecasting (Bi 117 

et al., 2023), and design-by-analogy (Jiang et al., 2021). Three key advancements in AI drive this 118 

process: I) the availability of extensive datasets, II) the development of robust computing hardware, 119 

and III) the refinement of advanced algorithms. In contrast to traditional physical and chemical 120 

theories relying on explicit formulas for problem-solving, ML tackles problems by extracting 121 

concealed insights from datasets through the learning process (Ley et al., 2022). 122 

 123 

2.1. Categories of machine learning 124 

On the basis of the nature of available datasets, ML can be divided into four main categories: I) 125 

supervised learning, II) unsupervised learning, III) semi-supervised learning, and IV) 126 

reinforcement learning (Goodfellow et al., 2016). Supervised learning uses both input data and 127 

corresponding labels for training. Unsupervised learning, on the other hand, deals solely with input 128 

data without labeled information. As a combination of supervised and unsupervised learning, semi-129 

supervised learning combines mostly unlabeled datasets and a few labeled ones. Reinforcement 130 

learning algorithms, such as Q-learning, enable learning by interacting with an environment and 131 

receiving feedback. These algorithms underpin the growth of AI, improving system performance 132 

by exposing to data and experience. Among the four categories, supervised learning is the most 133 
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widely used and well-established in assessing and protecting drinking water quality because of its 134 

strength in prediction with labeled datasets (Cordero et al., 2021; Hong et al., 2020; Zhang et al., 135 

2019c; Zhou et al., 2019). Unsupervised learning is also useful in safe drinking water supply for 136 

tasks such as identifying the major factors affecting water quality and classifying data. Conversely, 137 

in safe drinking water supply, the application of semi-supervised learning is scarce, and 138 

reinforcement learning is unexplored. 139 

 140 

Supervised learning acquires a mapping function from the input data to the corresponding output 141 

data on the basis of labeled input-output pairs or conditional distributions (Goodfellow et al., 2016). 142 

During training, the algorithm adjusts its parameters to minimize the discrepancy between 143 

predicted and actual outputs. Supervised learning is widely used in tasks such as classification and 144 

regression. Examples of supervised learning models include naïve Bayes (NB) (Gomez-Alvarez 145 

and Revetta, 2020), logistic regression (LR) (Bagriacik et al., 2018), support vector machines 146 

(SVM) (Oh et al., 2021), k-nearest neighbor (KNN) (Ghiassi et al., 2017), decision trees (DT) (Shi 147 

et al., 2022), random forests (RF) (Berglund et al., 2023; Cha et al., 2021), and extreme gradient 148 

boosting (XGB) (Park et al., 2020). 149 

 150 

Unsupervised learning focuses on extracting patterns, structures, and relationships from the input 151 

data without labeled outputs (Goodfellow et al., 2016). Instead of targeting predefined targets, 152 

unsupervised learning algorithms (such as K-means and dimensionality reduction techniques) 153 

discover inherent structures within the data. For instance, K-means groups similar data on the basis 154 

of their intrinsic features (Moodley and van der Haar, 2019). Dimensionality reduction techniques 155 

including principal component analysis (PCA) simplify complex datasets by preserving their 156 
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essential characteristics (Peleato et al., 2018). In drinking water research, unsupervised learning is 157 

crucial in tasks such as clustering bacteria (Moodley and van der Haar, 2019; Pinto et al., 2014), 158 

simplifying data for subsequent analysis (Peleato et al., 2018), and analyzing raw data to identify 159 

key parameters affecting water quality (Kazemi et al., 2023). 160 

 161 

2.2. Workflow chart of machine learning 162 

2.2.1 Problem definition 163 

Defining the problem is critical in applying ML that converts a complex challenge into a well-164 

defined scope and purpose. To start, one should define the objectives, outline desired outcomes, 165 

and determine if the task is a regression problem (such as predicting DBP concentration) or a 166 

classification problem (such as categorizing drinking water contamination status and pipe burst 167 

localization). 168 

 169 

2.2.2. Data collection 170 

In any ML endeavor, the quality of data is the key to the success of the modeling. Data collection 171 

involves sourcing, gathering, and recording from various origins, such as observational studies, 172 

controlled experiments, publications, and databases. The collected data should be pertinent to the 173 

problem, accurate, and suitable for developing ML models. Along with data collection, one needs 174 

to document the sources, methods, and potential biases associated with the data to ensure 175 

transparency and reproducibility.  176 

 177 

2.2.3. Data preprocessing 178 
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Data preprocessing is critical in a ML workflow that involves cleaning (i.e., filtrating), 179 

transforming, and organizing raw data. Cleaning is identifying and rectifying errors, inaccuracies, 180 

inconsistencies, and anomalies in the collected data, which involves filtrating incorrect values, 181 

detecting outliers, removing duplicate entries, and converting data types. Normalization, an 182 

example of data transformation, scales data into a specific range, such as 0 to 1. Normalization 183 

ensures that each feature of the data contributes equally to model training, preventing any single 184 

attribute from disproportionately influencing the results. Organizing raw data entails structuring 185 

and optimizes the data for the specific ML algorithms to be applied.  186 

 187 

2.2.4. Model training  188 

The first step in model training is to divide the dataset into training, validation, and test datasets 189 

(Hastie et al., 2009). The training dataset trains the model, the validation dataset tunes 190 

hyperparameters, and the test dataset evaluates the model. The second step is to select an 191 

appropriate model on the basis of the nature of the problem. During training, the model recognizes 192 

the relationship between the inputs and outputs and minimizes the difference between predicted 193 

and actual outputs by iteratively adjusting the model parameters with optimization techniques such 194 

as gradient descent. 195 

 196 

2.2.5. Model evaluation 197 

Evaluation metrics differ on the basis of the nature of the problem (Xie et al., 2023). Evaluation 198 

metrics assess the performance of classification models, revealing their ability to distinguish 199 

between classes. Accuracy refers to the proportion of correctly classified instances to the total 200 

instances. Precision measures the proportion of correctly predicted positive instances among all 201 
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predicted positives. Recall gauges the proportion of correctly predicted actual positive instances. 202 

The F1-score combines precision and recall into a single metric, offering a balanced view of the 203 

accuracy of a model (Sokolova and Lapalme, 2009). The confusion matrix provides a tabular 204 

representation of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 205 

predictions (James et al., 2013). Receiver operating characteristic (ROC) curves illustrate the 206 

trade-off between the TP rate and the FP rate at different classification thresholds with the area 207 

under the curve (AUC) summarizing the performance of the curve (Bradley, 1997). In regression 208 

tasks, the mean squared error (MSE) and root mean squared error (RMSE) quantify the average 209 

squared differences between the predicted and actual values, and the mean absolute error (MAE) 210 

measures the average absolute differences (Willmott and Matsuura, 2005). Additionally, the 211 

coefficient of determination (R2) indicates the proportion of variance in the target variable 212 

explained by the model (Steel and Torrie, 1960).  213 

 214 

3. Machine learning to ensure safe drinking water supply from the physical perspective 215 

Drinking water production and distribution is critical to public health, socioeconomic growth, and 216 

urban development (Grey and Sadoff, 2007). Water demand prediction is a critical component in 217 

drinking water production. Traditional methods for estimating water demand often lead to either 218 

overestimation, resulting in high costs and waste of resources, or underestimation, resulting in 219 

water supply shortages during peak times (Donkor et al., 2014). Additionally, water systems suffer 220 

from losses because of leaks and inefficiencies with severe financial and operational consequences 221 

(Lambert et al., 1999; Lee and Schwab, 2005; Reis et al., 2023). ML models are a compelling 222 

solution to predict drinking water production and demand and identify system losses with greater 223 

precision than conventional approaches. This section examines how ML contributes to the 224 
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management of water resources, the prediction of water demand, and the assurance of 225 

sustainability and reliability in drinking water supply systems (Table 1). 226 

 227 

3.1. Predicting water production and demand 228 

Prediction of water production and demand is critical in safe drinking water supply. A hybrid model 229 

that combines genetic algorithms (GA) and GA artificial neural networks (GA-ANN) can predict 230 

drinking water production (Figure 1a) (Zhang et al., 2019c). The model uses temperature, COD, 231 

and electricity and chemical consumption as the inputs. The GA-ANN was trained and validated 232 

with monthly data from 45 water utilities across China. The R2 (0.93) of GA-ANN is substantially 233 

higher than that of the ANN (0.71) when more training data are incorporated. GA not only 234 

optimizes the weights and biases to enhance prediction accuracy but also increases the tolerance 235 

to imprecision, uncertainties, and approximates in the inputs. Moreover, GA-ANN could 236 

effectively forecast fluctuations in water production for various scenarios, highlighting its 237 

feasibility in adjusting water treatment operations. To assess drinking water demand patterns, one 238 

can apply unsupervised learning algorithms (such as the hierarchical K-means algorithm) to raw 239 

time-series data of drinking water consumption (Leitão et al., 2019). In that algorithm, daily time-240 

series demand with hourly records are the inputs within a 24-dimensional feature space to identify 241 

dense and distinctly separated temporal patterns of water demand. In contrast to directly clustering 242 

the water demand patterns, short-time water demand forecasting is more intriguing and has more 243 

practical merits in optimizing drinking water supply. A gated recurrent unit network (GRUN) 244 

predicts short-term water demand for different district metering areas for the upcoming 15 min and 245 

24 h using a time-step of 15 min (Guo et al., 2018). The GRUN has a higher accuracy with a lower 246 

mean absolute percentage error (MAPE) between 2.06% and 2.46% than the conventional three-247 
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dense-layered ANN (MAPE between 2.46% and 2.54%) and the seasonal autoregressive integrated 248 

moving average (SARIMA) model (MAPE between 2.57% and 2.85%) for the 15-min prediction. 249 

For the 24-h prediction, the GRUN also achieves more precise forecasts with MAPE between 4.33% 250 

and 4.96%. Another study used three ML models to forecast both short-term and long-term water 251 

demand encompassing daily, weekly, and monthly intervals in Iran (Ghiassi et al., 2017). These 252 

models include a dynamic artificial neural network (DAN2), a focused time-delay neural network 253 

(FTDNN), and a KNN. Given its inherent design of adjusting dynamically to the data-driven 254 

learning, DAN2 is promising at time-series forecasting, catering to datasets characterized by 255 

evolving temporal patterns. Correspondingly, DAN2 achieves remarkable prediction accuracies 256 

(96% for daily, 99% for weekly, and 98% for monthly water demand forecasts) and outperforms 257 

FTDNN and KNN.  258 

 259 

3.2. Monitoring pipeline integrity  260 

Pipeline failures in engineered water systems cause significant water loss and contamination 261 

(Renwick et al., 2019). These failures can introduce harmful microbes and chemicals from the 262 

surroundings into distributed water. Addressing these issues requires precisely localizing failures 263 

in complex water networks, thoroughly assessing their impacts, and preventing future incidents. 264 

ML is a powerful tool to address these challenges, offering innovative solutions for detecting and 265 

predicting pipeline failures. This section reviews recent advancements in the application of ML to 266 

understand, detect, forecast, and mitigate pipeline failures, highlighting the role of deep learning 267 

and ensemble models in this application (Table 1). 268 

 269 
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To detect pipe burst locals, a study developed a burst location identification framework by fully-270 

linear DenseNet (BLIFF) (Figure 1b) (Zhou et al., 2019), which relies on deep learning through 271 

the fully-linear DenseNet (FL-DenseNet) model. BLIFF supplants the convolutional layers in 272 

DenseNet with linear connections and omits pooling layers. Using real-time pressure 273 

measurements as the inputs, BLIFF generates the likelihood values of a burst for each pipe in the 274 

potential burst district. The prediction accuracies, ranging from 62.35% (highest probability pipe 275 

match) to 98.58% (top five pipes match), of BLIFF are two times those of the original DenseNet 276 

model. The remarkable improvement in the prediction accuracy is attributed to the linear-277 

connection layer, which discerns global features in the pressure signals. The effective deployment 278 

of deep learning methods such as BLIFF corroborates the viability of pressure values in burst 279 

localization, countering prior assertions of their insensitivity to burst events (Bakker et al., 2014; 280 

Mounce et al., 2010). Another work proposed an advanced meta-learning (AdvaML) model to 281 

predict the failure of water pipelines (Almheiri et al., 2021). AdvaML comprises an input layer 282 

with 33 neurons (mirroring the 33 input variables including pipe and climate data), four hidden 283 

layers, and an output layer that yields the failure/hazard index of a pipe. AdvaML forecasts the risk 284 

index associated with pipe failures and detects pivotal determinants of pipeline service life. Of 285 

these determinants, the number of traffic lanes and chlorine residual concentration are paramount, 286 

collectively contributing approximately 9% to the service life analysis of water pipes. Benefiting 287 

from its knowledge transfer from initial parameterization to the ultimate learning phase, AdvaML 288 

has commendable performance even with scant training data compared with cox-proportional 289 

hazards (Cox-PH), survival support vector machine (SSVM), and random survival forest (SRF).  290 

 291 
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While inherent system vulnerabilities cause pipeline failures, external factors exacerbate the issue 292 

(Fan et al., 2023). Climatic extremes and weather disasters, such as wildfires, become more 293 

frequent because of climate change and threaten drinking water infrastructures. In response, 294 

researchers leverage ML to better understand and predict the impact of these disasters on water 295 

pipes. Two ensemble ML models (RF and XGB) can predict the repercussions of calamities on 296 

water supply infrastructures (e.g., water pipelines) (Park et al., 2020). These models incorporate 297 

23 variables encompassing facility specifications and operational data from 419 water utilities in 298 

South Korea. The models project the total disaster index (TDI), a metric signifying the effects or 299 

damages wrought by three predominant disasters (typhoons, heavy rainfalls, and earthquakes) on 300 

water supply systems. While both RF and XGB have commendable predictive prowess concerning 301 

the TDI, XGB slightly outperforms in most scenarios. Another study developed four models, a 302 

linear regression-based repair rate (RR) method, LR, boosted regression trees (BRT), and RF, to 303 

predict pipeline damage during an earthquake (Bagriacik et al., 2018). The models incorporate 304 

parameters such as ground shaking, permanent ground deformation, pipe material, pipe diameter, 305 

year of installation, and trench backfill type. Each model demonstrates unique strengths. The BRT 306 

model has the best overall predictive performance, while the LR model is instrumental in 307 

highlighting the influence of pipe materials and trench types on pipeline damage.  308 

 309 

4. Machine learning to ensure safe drinking water supply from the chemical perspective  310 

Numerous chemicals, such as DBPs, disinfectant residuals, and heavy metals can appear in 311 

drinking water, deteriorating water quality and affecting public health (Levallois and Villanueva, 312 

2019; Valbonesi et al., 2021). Therefore, monitoring and controlling those chemicals are essential 313 

to ensuring drinking water quality. Conventional approaches to assess, monitor, and/or control 314 
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chemicals can be time-consuming, inaccurate, and costly. ML opens a promising venue for 315 

monitoring and ensuring chemical drinking water quality. This section complies the applications 316 

of ML to assess and control chemicals in drinking water with a focus on engineered water systems 317 

(Table 2). 318 

 319 

4.1. Optimizing drinking water disinfection 320 

Drinking water disinfection is critical to ensuring microbial drinking water quality and 321 

safeguarding public health (Zhang and Lu, 2021a). Disinfection is effective in killing pathogens, 322 

impeding microbiological recontamination, and inhibiting biofilm development in drinking water 323 

(Mazhar et al., 2020). Chlorine-based disinfectants, such as free chlorine (e.g., chlorine gas and 324 

sodium hypochlorite), bound or combined chlorine (e.g., monochloramine), and chlorine dioxide, 325 

are widely used in water treatment because of their cost-effectiveness and high efficiency (Jefri et 326 

al., 2022; Zhang et al., 2018). Nonetheless, when these disinfectants interact with natural organic 327 

matter (NOM) and anthropogenic compounds (such as pharmaceuticals and antimicrobials), they 328 

generate DBPs such as trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), 329 

haloacetonitriles, halophenols, and halopropanoles (Favere et al., 2021; Xiao et al., 2023). DBPs 330 

cause reproductive defects, carcer, and other serious health issues (Pandian et al., 2022; Zhou et 331 

al., 2023a). Therefore, monitoring and controlling DBPs in drinking water is vital to public health 332 

(He et al., 2021; Helte et al., 2023; Redondo-Hasselerharm et al., 2022). Conventional methods to 333 

monitor DBPs require expensive equipment such as gas chromatography (GC) and liquid 334 

chromatography (LC) combined with mass spectrometry (MS) and complicated pre-treatment 335 

processes. Thus, those conventional methods are labor-intensive, costly, and time-consuming, 336 

limiting the ability of water utilities to reduce DBP formation. By contrast, ML to monitor DBPs 337 
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in drinking water are accurate, efficient, inexpensive, and easy to handle (Table 2) (Balogun et al., 338 

2021; Jia et al., 2021; Podgorski and Berg, 2022).  339 

 340 

4.1.1. Predicting the formation of disinfection by-products from operation conditions and 341 

water quality metrics 342 

Finding the optimal disinfectant dosages to minimize the levels of DBPs in finished water is crucial 343 

(He et al., 2021; Zhang and Lu, 2021a). Nevertheless, reaching this goal with traditional methods 344 

is time-consuming, expensive, and complex. Conversely, ML is effective in predicting the 345 

formation of DBPs, significantly reducing capital and human investment for DBP control. 346 

Common input parameters in these ML models are operational and water quality variables, such 347 

as water temperature, contract time, pH, absorbance of light at 254 nm (UV254), and the 348 

concentrations of dissolved organic carbon (DOC), chloride ( ), bromide ( ), nitrite 349 

nitrogen ( ), and ammonium nitrogen ( ) (Deng et al., 2021; Hong et al., 2020; Hu et 350 

al., 2023; Lin et al., 2020; Pan et al., 2023; Singh and Gupta, 2012). The outputs are the 351 

concentrations of DBPs, such as THMs, HAAs, and HKs. 352 

 353 

A study developed three ML models, including ANN, SVM, and gene expression programming 354 

(GEP), to forecast THM formation in chlorinated river water on the basis of a 63-point dataset 355 

(Singh and Gupta, 2012). Specifically, pH, water temperature, contact time (t), bromide 356 

concentration, and DOC-normalized chlorine dose (Cl2/DOC) are the inputs. SVM outperforms 357 

the other two models, exhibiting the highest R2 and the lowest RMSE values. Furthermore, 358 

sensitivity analysis reveals that pH, hydraulic retention time (HRT), and water temperature are the 359 

top three contributors to DBP formation. In addition, radial basis function (RBF) based ANN 360 
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(RBF-ANN) can predict the formation of typical DBPs such as HAAs (Lin et al., 2020), THMs 361 

(Hong et al., 2020), and HKs (Deng et al., 2021) in drinking water. For instance, a study extracted 362 

64 representative data points from the literature to predict HAA formation using pH, water 363 

temperature, DOC, UV254, , , , and  as the inputs (Figure 2a) (Lin et al., 364 

2020). RBF-ANN outperforms the linear and log-linear models by 21% and 47 % in accuracy, 365 

respectively. Therefore, RBF-ANN is promising in assessing DBP formation and optimizing 366 

disinfection. A follow-up study used 64 data points to train an RBF-ANN to predict THM 367 

formation (Hong et al., 2020). RBF-ANN achieves accuracies between 92% and 98% and 368 

regression coefficients between 0.76 and 0.93, outperforming the linear and log-linear models and 369 

demonstrating its superiority to uncover complex non-linear patterns in THM formation. Even 370 

when trained with fewer water quality variables, a fusion of grey relation analysis with RBF-ANN 371 

could provide superior prediction results. Furthermore, an RBF-ANN trained with 63 data points 372 

of tap water predicts the formation of HK (Deng et al., 2021). Both RBF-ANN and back 373 

propagation (BP) ANN outstrip the linear and log-linear models with the RBF-ANN displaying 374 

higher accuracies in both internal and external validations. Another study applied a decision tree 375 

boost (DTB) model to predict the concentrations of THM4 and HAAs (Pan et al., 2023). The study 376 

correlated water quality parameters with mixed chlorine/chloramine species. The work then 377 

selected seven variables such as NH2Cl, NHCl2, organic chloramines, pH, total dissolved nitrogen 378 

(TDN), nitrite, total organic carbon (TOC), and NH4+ as the independent variables to predict 379 

THM4 and HAAs. The DTB model demonstrates higher prediction accuracy with R2 values of 380 

0.56 for THM4 and 0.65 for HAAs, while the inclusion of organic chloramines improves the 381 

prediction. Additionally, a study implemented multiple ML models to predict emerging DBPs in 382 

small water distribution systems across Canada by analyzing the data from eleven such networks 383 
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(Hu et al., 2023). The models use parameters such as water temperature, total chlorine residual, 384 

DOC, turbidity, pH, conductivity, and UV254 to predict the concentrations of THMs, HAAs, 385 

dichloroacetonitrile (DCAN), chloropicrin (CPK), and trichloropropanone (TCP). Among the 386 

evaluated models, support vector regression (SVR) and Gaussian process regression (GPR) show 387 

superior performance with SVR exhibiting the highest prediction accuracy (R2 = 0.94) and stability 388 

for DCAN and TCP, while GPR is optimal for predicting CPK (R2 = 0.92). 389 

 390 

4.1.2. Assessing disinfection by-products using online spectroscopy 391 

Fluorescence spectroscopy is the preferred technique to monitor DBPs (Krasner et al., 2006; 392 

Rodriguez et al., 2004). Fluorescence spectroscopy is sensitive in assessing the characteristics and 393 

reactivity of NOM because of its minimal sample preparation requirement and short acquisition 394 

time (Pifer and Fairey, 2012). However, the complex high-dimensional characteristics of 395 

fluorescence spectroscopy make it difficult to predict DBP formation. The significant resources 396 

and time required for DBP analysis through fluorescence spectroscopy restrict the capacity of 397 

water utilities to reduce DBP formation. This situation has prompted the development of ML 398 

models to assess DBP formation. Compared with traditional fluorescence spectroscopy, ML-399 

powered fluorescence spectroscopy can accurately assess DBP formation with limited resource 400 

and time requirement.  401 

 402 

Autoencoder-neural networks (AE-NN) can predict the concentrations of both THMs and HAAs 403 

in river water from fluorescence spectra (Figure 2b) (Peleato et al., 2018). To manage the high 404 

dimensionality of the fluorescence spectra, the researchers applied three dimension-reduction 405 

techniques, including AE-NN, parallel factors analysis (PARAFAC), and PCA. Afterward, they 406 
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trained NN to identify fluorescence regions associated with DBP formation and to predict DBP 407 

concentrations. The AE-NN model has superior predictive accuracies for THMs and HAAs, 408 

achieving validation MAE values of 9.65 μg/L and 9.64 μg/L, respectively. These figures exceed 409 

those of PCA, which has higher validation MAE values of 13.19 μg/L for THMs and 11.92 μg/L 410 

for HAAs. Furthermore, the precision of the AE-NN model surpasses that of PARAFAC, which 411 

has validation MEA values of 20.39 μg/L for THMs and 14.00 μg/L for HAAs. In addition, 412 

convolutional neural networks (CNN) can predict DBP concentrations from fluorescence spectra 413 

without extensive data pre-processing (Peleato, 2022). Compared with multilayer perceptron 414 

(MLP) and dimensionality reduction techniques, CNN not only exhibits superior prediction 415 

accuracies for THMs and HAAs but also identifies the fluorescence spectra regions highly 416 

associated with DBP formation.  417 

 418 

4.1.3. Unraveling the formation mechanisms of disinfectant by-products  419 

ML is promising in predicting DBP formation using either water quality and operational 420 

parameters or via online spectrum monitoring. However, even with the knowledge of DBP 421 

concentration, controlling DBPs in drinking water remains costly and inefficient (Bond et al., 2011; 422 

Rodriguez et al., 2004). An effective approach for DBP control is to remove DBP precursors and 423 

prevent them from reaching the clear wells in water utilities (Bond et al., 2012; Krasner et al., 424 

2013). This needs a comprehensive understanding of the mechanisms for DBP formation. 425 

 426 

A multiple linear regression (MLR) model can predict the production of chloroform (a THM 427 

compound) from organic precursors (Bond and Graham, 2017). Relying on 211 precursors from 428 

22 studies, the MLR model uses 19 descriptors as the inputs and chloroform yield as the output. 429 
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The well-trained MLR model has a promising prediction accuracy with an R2 value of 0.91 and an 430 

RMSE value of 8.93 mol/mol. Further chemical insights pinpoint that functional groups, such as 431 

hydroxyl, chlorine, and carboxyl groups, significantly affect chloroform formation. ML can also 432 

forecast the formation of HAAs from the interaction between organic precursors and free chlorine 433 

(Cordero et al., 2021). The training dataset comprises 283 organic compounds and 732 chemical 434 

descriptors as the inputs with HAA yield as the output. These organic compounds are converted 435 

into 2D and 3D chemical descriptors with their simplified molecular input line entry system 436 

(SMILE) strings used for ML compatibility. Three ML models (RF, SVR, and MLP) are selected 437 

because they can handle nonlinear problems, activity cliffs, and high dimensions in addition to 438 

MLR as a benchmark. RF is the top performer with the lowest RMSE values of 1.05 and 1.19 for 439 

dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), respectively. The crucial predictors 440 

of TCAA formation are the number of aromatic bonds, hydrophilicity, and electrotopological 441 

descriptors related to electrostatic interactions and the atomic distribution of electronegativity. 442 

 443 

4.1.4. Evaluating alternative drinking water disinfectants 444 

Since chlorine-based disinfectants produce harmful DBPs, alternative disinfectants, such as ozone, 445 

for drinking water disinfection attract attention (Lin and Lin, 2024; Manasfi, 2021; Zhang et al., 446 

2019a; Zhang et al., 2019b). Unlike chlorination, ozonation does not produce chlorinated THMs 447 

and HAAs. Ozone, therefore, provides a two-fold benefit: it is effective and does not generate 448 

chlorinated DBPs. However, ozonation produces various other DBPs (Mao et al., 2014; 449 

Richardson et al., 1999). The occurrence and toxicity of ozonated DBPs are a concern (Simpson 450 

and Mitch, 2022; Srivastav et al., 2020). Therefore, while ozone does not generate chlorinated 451 

DBPs, its use requires careful considerations for other toxic byproducts. This section summarize 452 
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how ML models have been developed and applied in the field of ozonation. ML can help control 453 

the formation of bromate and reduce micropollutants, microbes, and organic contaminants during 454 

ozonation.  455 

 456 

Compared with MLR, ANN has two advantages in controlling bromate formation during ozonation 457 

(Legube et al., 2004): First, ANN with an R2 value of 0.98 is more accurate than MLR. Second, 458 

ANN classifies model variables (predictors) in the descending order of impact: ozone dose, , 459 

bromide concentration ( ), pH, water temperature, DOC, and alkalinity. While ANN has 460 

superior performance, the simplicity of MLR is attractive. However, a key limitation of MLR is 461 

that its accuracy decreases with increased sample size because MLR cannot effectively process 462 

nonlinear components. 463 

 464 

ML models based on routinely measured physical-chemical water quality parameters can predict 465 

the oxidation of micropollutants (such as pharmaceuticals and personal care products) during 466 

ozonation. For instance, RF can predict the oxidation of micropollutants during ozonation (Cha et 467 

al., 2021) (Figure 2c). That study introduced four distinct RF models, all incorporating standard 468 

predictors such as pH, alkalinity, and DOC. These models have unique inclusions of fluorescence 469 

excitation-emission matrix (FEEM) data at different resolutions. These models are as FEEM-Free, 470 

FEEM-LowRes, FEEM-HighRes, and FEEM-FullRes, each with a different resolution of FEEM 471 

data used as the unique predictors. Integrating FEEM data results in more accurate prediction of 472 

ozone exposures. The high-resolution FEEM data yield better predictions for micropollutant 473 

abatement (R2 = 0.904; RMSE = 6.6%). However, the improvement in prediction accuracy when 474 
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using FEEM data is less substantial for predicting micropollutant abatement than for predicting 475 

the exposures of oxidants (i.e., ozone and hydroxyl radicals) during ozonation.  476 

 477 

ML-quantitative-structure-property-relationship (ML-QSPR) methods can calculate the rate 478 

constant (kO3) of the reactions between ozone and micropollutants (Gupta and Basant, 2016; Huang 479 

et al., 2020; Shi et al., 2022; Sudhakaran and Amy, 2013). Generally, nonlinear models outperform 480 

their linear counterparts. For instance, an MLR method (Sudhakaran and Amy, 2013) and an SVM 481 

method (Huang et al., 2020) have R2 values of greater than 0.75 and 0.78, respectively. Conversely, 482 

a DTB model has a higher R2 value of greater than 0.97 (Gupta and Basant, 2016). A recent study 483 

compared several ML models including MLR, SVM, DT, RF, and deep neural network (DNN) for 484 

predicting logkO3 (Shi et al., 2022). Of these, RF has the highest effectiveness with a peak R2 value 485 

of 0.91. RF has two primary benefits: robustness and a lower tendency of overfitting. On the other 486 

hand, DT has a complex structure and subsequently increases the overfitting risk. In addition, DNN, 487 

promising at recognizing nonlinear features, underperforms in predicting logkO3. A similar 488 

situation occurs when ML models predict the elimination of recalcitrant trace organic compounds 489 

(TOrCs) by ozonation for municipal wastewater reuse (Park et al., 2015). Specifically, ANN is 490 

susceptible to overfitting. Incorporating PCA into ANN creates a PC-ANN workflow, which 491 

addresses the overfitting issue. PCA transforms the input variables (Table 2) to linearly 492 

independent variables, thereby resolving the issue of collinearity among explanatory variables. 493 

The PC-ANN workflow (R2 = 0.934) surpasses the standalone ANN (R2 = 0.914) regarding 494 

predictive power.  495 

 496 

4.2. Surveilling drinking water nitrification  497 
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Chloramine, a commonly used chlorine-based disinfectant, can maintain a higher level of residual 498 

while minimizing DBP formation (Shao et al., 2023; Shi et al., 2020). However, nitrification is a 499 

major concern in chloraminated engineered water systems (Allen et al., 2022; AWWA, 2013). 500 

During nitrification, ammonia-oxidizing microbes oxidize free ammonia to nitrite, and nitrite-501 

oxidizing bacteria further oxidize nitrite to nitrate. Nitrification deteriorates water quality by 502 

destroying chloramine residuals, releasing free ammonia, promoting microbial (re)growth, and 503 

producing toxic nitrite and nitrate. Therefore, monitoring and controlling nitrification in 504 

engineered water systems is critical to ensuring drinking water quality and protecting public health. 505 

 506 

ML is useful in detecting drinking water nitrification (Table 2). NB classifier, a supervised ML 507 

model, relies on biomass and microbiome datasets to detect nitrification in engineered water 508 

systems (Gomez-Alvarez and Revetta, 2020). After being trained with microbial indicators, the 509 

model has a binary classification accuracy of up to 85% with an AUC of 0.825 when distinguishing 510 

between nitrification and stable events. Nitrification can also be monitored using spectrum 511 

fingerprint since one can isolate the combined nitrate and nitrite from the total spectra. SVR was 512 

used and trained to predict the concentrations of nitrate and nitrite from nitrate/nitrite spectra at 513 

various wavelengths (Figure 2d) (Hossain et al., 2021). SVR negates the need for any chemical 514 

supplements, is easy to use, and can reach a high level of precision of up to ±0.01 mg N/L.  515 

 516 

4.3. Monitoring and regulating heavy metals in drinking water 517 

The detachment of heavy metals from water pipes (i.e., leaching) deteriorates drinking water 518 

quality in engineered water systems (Mays, 2000; Proctor et al., 2020). Heavy metals are toxic to 519 

human beings and significantly affect public health (Abd Elnabi et al., 2023; Fu and Xi, 2020). 520 
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ML is useful in assessing heavy metals in drinking water (Yaseen, 2021; Zhu et al., 2022). 521 

Therefore, this section summarizes the applications of ML in monitoring and regulating heavy 522 

metals in drinking water (Table 2). 523 

 524 

4.3.1. Assessing heavy metal concentration and distribution  525 

A continuous on-site, in situ system can estimate lead (Pb) concentration in municipal water (Oh 526 

et al., 2021). The system leverages the SVR algorithm, supplanting traditional mathematical 527 

models confined to analyzing stationary ions in a solid substrate. By using the radio-frequency 528 

reflection coefficient of the raw trace data, the system predicts Pb ion concentration with a 529 

resolution of 1 μg Pb/L and an RMS prediction error of 0.71 μg Pb/L in the presence of interfering 530 

metals such as copper (Cu²⁺), ferric (Fe³⁺), and zinc (Zn²⁺) ions. Other than estimating heavy metal 531 

concentration in individual samples, ML is promising in broader analytical applications. For 532 

instance, ML is useful in spatially interpolating environmental variables, significantly enhancing 533 

its performance (Li et al., 2011). This approach is valid in developing spatial interpolation maps 534 

depicting the concentrations of heavy metals such as Fe, Mn, Ni, Pb, and Zn in groundwater (i.e., 535 

a source of drinking water) (De Jesus et al., 2021). That study combined ML and geostatistical 536 

interpolation (MLGI) to leverage an ANN-based algorithm to augment the efficacy and robustness 537 

of the spatial interpolation mapping. Furthermore, the MLGI approach comprehensively assesses 538 

the carcinogenic risks of heavy metals through in situ measurements. The approach produces 539 

detailed spatial maps delineating heavy metal concentration and estimates health quotient indices 540 

(HQI) to offer a more refined risk assessment (Senoro et al., 2022). While integrating ML 541 

algorithms elevates the efficacy and robustness of spatial interpolation, traditional interpolation 542 

techniques are still critical in this domain. For instance, a spherical semi-variogram model relying 543 
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on the classic Kriging interpolation technique can monitor the temporospatial distribution of 544 

residual aluminum (Al) in a DWDS, highlighting the enduring relevance and applicability of 545 

traditional interpolation methods (Tian et al., 2020). 546 

 547 

4.3.2. Predicting heavy metal removal with porous materials  548 

Adsorption is proficient in mitigating heavy metal contamination in drinking water (Joseph et al., 549 

2019; Wołowiec et al., 2019). The adsorption of heavy metals by porous materials has highly 550 

stochastic, non-linear, and non-stationary dynamics coupled with redundancy (Bhagat et al., 2020). 551 

Therefore, ML is a preferred technique for analyzing the removal of heavy metals of porous media. 552 

Many ML techniques can enhance the precision and efficacy of predicting heavy metal adsorption 553 

dynamics by porous materials. Common predictors for those ML techniques are adsorbent dosage, 554 

operating temperature, contact time, and pH, whereas the output is the removal of heavy metals. 555 

Other variables can also be incorporated into the predictive models such as the initial concentration 556 

of heavy metals, the specific surface area of metal-organic frameworks (MOFs), and the presence 557 

of anions. A study used four tree-based ML models, including light gradient-boosting machine 558 

(LightGBM), XGB, gradient-boosted decision trees (GBDT), and RF, to predict the adsorption of 559 

arsenate [As(V)] by MOFs (Abdi and Mazloom, 2022). Among these models, LightGBM yields 560 

the most accurate and reliable prediction with R2 and RMSE values of 0.996 and 2.069, 561 

respectively. The sensitivity analysis indicates that the adsorption process is adversely affected by 562 

the initial As(V) concentration and is directly influenced by the specific surface area and dosage 563 

of MOFs. ANN and symbiotic organisms search (SOS) algorithm can predict the removal of five 564 

heavy metals (Al, Cd, Co, Cu, Fe, and Pb) by two adsorbents, Chitosan and Chitosan-565 

Montmorillonite nanocomposite (Hamidian et al., 2019). First, RBF-ANN has a higher prediction 566 
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accuracy than MLP-ANN for the two adsorbents and the five heavy metals. Second, when 567 

integrated with SOS algorithm, RBF-ANN facilitates the identification of optimal performance 568 

parameters and increases the adsorption performance than the experimental results. Finally, RBF-569 

ANN outperforms Langmuir and Freundlich models when considering the five heavy metals and 570 

three operational parameters (pH, absorbent dose, and contact time).  571 

5. Machine learning to ensure safe drinking water supply from the microbiological 572 

perspective 573 

Microbial drinking after quality is essential to public health and the economic development of 574 

society (Abkar et al., 2024; Figueras and Borrego, 2010; Wen et al., 2020). The microbial 575 

community in drinking water is highly diverse and ever-changing spatiotemporally, especially in 576 

engineered water systems (Ashbolt, 2015; Jing et al., 2023; Zhou et al., 2023b). Therefore, 577 

monitoring and ensuring microbial drinking water quality is complex, time-consuming, and often 578 

ineffective with conventional assays. Microbes in drinking water encompass general heterotrophic 579 

bacteria, fecal contaminants, microbial indicators, protozoans (such as amoebae, ciliates, and slime 580 

molds), and OPs (Abkar et al., 2024; Siponen et al., 2024; Zhang et al., 2021b). Because of the 581 

complex nature of microbial drinking water quality, ML models are the preferred approaches for 582 

analyzing and ensuring microbial drinking water quality (Mahajna et al., 2022; Naloufi et al., 2021; 583 

Saboe et al., 2021; Zhu et al., 2022). This section summarizes the applications of ML in monitoring, 584 

predicting, and ensuring microbial drinking water quality (Table 3).  585 

 586 

5.1. Surveilling and mitigating opportunistic pathogens  587 

In municipal water, OPs are the most significant aspect of microbial drinking water quality because 588 

of their frequent occurrence, high concentration, high resistance to disinfectant residuals, and 589 

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2
https://orcid.org/0000-0002-7299-9891
https://creativecommons.org/licenses/by/4.0/


Page 27 of 59 

proliferation within amoebae (Zhang and Lu, 2021b). OPs are the major disease-causing agents in 590 

drinking water and significantly affect the health of the end consumers. Therefore, closely 591 

monitoring OPs in drinking water, especially in engineered water systems, is critical to assessing 592 

drinking water quality and protecting public health. Dominant water-related OPs are Legionella 593 

(especially L. pneumophila), Mycobacterium (e.g., nontuberculosis mycobacteria or NTM and M. 594 

avium complex or MAC), Pseudomonas aeruginosa, Vermamoeba vermiformis, Naegleria fowleri, 595 

and Acanthamoeba (Donohue et al., 2019; Isaac and Sherchan, 2020; Lytle et al., 2021). Among 596 

them, Legionella is the most important OP. In addition, compared with conventional microbial 597 

drinking water quality indicators such as fecal coliforms and , Legionella is a better candidate to 598 

indicate microbial drinking water quality (Zhang and Lu, 2021b). Therefore, this section focuses 599 

on the applications of ML in monitoring and controlling Legionella in municipal water (Table 3). 600 

 601 

Studies using ML to assess the risks of OPs in drinking water remain limited. An early work 602 

mitigated the proliferation of Legionella in premise plumbing by controlling environmental 603 

variables (Sincak et al., 2014). Using water flow and water temperature as the inputs, that study 604 

presented a NN-based simulator relying an approximate reasoning architecture (NARA) neuro-605 

fuzzy system to predict and simulate water tank temperature. The simulator emulates conditions 606 

that inhibit the spread of Legionella in water networks. The NARA-based simulator achieves a 607 

high fidelity in mimicking water tank temperature with an accuracy exceeding 97%. A recent study 608 

integrated both unsupervised and supervised ML to correlate the spread of Legionella with 609 

environmental variables in retirement homes, health-related facilities, tourism-related buildings, 610 

and swimming-pools s from 2002 to 2019 in Italy (Brunello et al., 2022). That study used an 611 

unsupervised ML algorithm to identify the spatiotemporal distribution of atypical Legionella 612 
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through an ordinal regression model. The results indicate how the distribution is correlated with 613 

the types of healthcare facilities. The propagation of Legionella and both the nature of the facilities 614 

and broader geographical characteristics have strong correlations. Hospitals have the highest 615 

contamination cluster locations That work also used supervised ML to assess the serotypes of 616 

Legionella and to anticipate the corresponding contamination levels. For serogroup assessment, 617 

XGBoost, LR, and SVM Classifier were used and compared. XGBoost shows superior 618 

performance with an overall classification accuracy of 0.71. The Shapley values evaluates the 619 

contribution of each predictor to the final classification. The Shapley values quantify the 620 

contribution of each variable to the outputs of a ML model by comparing the effect of the outputs 621 

relative to the average across all inputs. The geographical location of a sample is the most 622 

important parameter but is useful only when combined with other predictors. For contamination 623 

level prediction, all three models demonstrate low performance with the highest accuracy of 0.57 624 

from XGBoost.  625 

 626 

5.2. Analyzing drinking water microbial communities 627 

The microbial community in drinking water is complex with ever-changing structure and 628 

significant public health implications (Abkar et al., 2024; Zhang et al., 2021a). Assessing the 629 

structure and composition of the microbial community helps understand and ensure microbial 630 

drinking water quality. Conventional approaches can monitor the microbial community in drinking 631 

water, such as phenotypic/genotypic matching, molecular marking, high-throughput metagenomic 632 

sequencing, and microbial and chemical indication. However, these methods have limitations in 633 

terms of cost, time, and spatial/temporal coverage. ML, on the other hand, can overcome those 634 
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limitations and are suitable for analyzing, monitoring, and source-tracking microbial communities 635 

in municipal water (Table 3).  636 

 637 

When using the NB theorem to estimate the distribution of microbes in water sources, one could 638 

apply either maximum posterior probability (evaluation metrics: RMSEc) (Ritter et al., 2003) or 639 

direct averaging posterior probability (evaluation metrics: RMSEp) (Greenberg et al., 2010). Direct 640 

averaging of the source posterior probability yields more precise source distribution estimates with 641 

RMSEc being significantly lower than RMSEp. The more precise source distribution estimates are 642 

because direct estimation bypasses the information loss that typically happens when frequencies 643 

are first classified and then averaged (Greenberg et al., 2010). SourceTracker as a ML tool 644 

estimates the proportion of contaminants (Knights et al., 2011). SourceTracker employs the Gibbs 645 

sampling technique within a Bayesian framework and is more efficient than both NB- and RF-646 

based source tracking methods (Smith et al., 2010). The superior performance of SourceTracker is 647 

because it can handle ambiguity in the source and sink distributions and can model a sink sample 648 

as a blend of various sources. SourceTracker can track the origin of bacteria in drinking water and 649 

water sources (Liu et al., 2018). For instance, a study developed six ML models (XGBoost, KNN, 650 

NB, SVM, NN, and RF) to predict microbial contamination in a watershed in California using data 651 

on land cover, weather, and hydrologic variables (Wu et al., 2020). That study used SourceTracker 652 

to generate ground-truth data for training purposes. Out of the six models, XGBoost outperforms 653 

the other models in terms of accuracy and AUC (average AUC = 0.88) when tracking the primary 654 

sources of microbial contamination in the watershed. 655 

 656 
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Unsupervised ML can unveil hidden features, trends, or patterns in bacterial communities in 657 

engineered water systems. For instance, alpha and beta diversity analyses can display the spatial 658 

dynamics and temporal trends of bacterial communities in DWDSs (Pinto et al., 2014). UniFrac 659 

as an unsupervised ML tool uses principal coordinates analysis (PCoA) coupled beta diversity 660 

measure to analyze the differences among microbial communities (Lozupone et al., 2011). UniFrac 661 

can effectively analyze the microbiome in drinking water (Bruno et al., 2018; Li et al., 2017; Ling 662 

et al., 2018).  663 

 664 

5.3. Detecting drinking water parasites  665 

Cryptosporidium and Giardia are protozoan parasites in municipal water with substantial public 666 

health risks by causing cryptosporidiosis and giardiasis, respectively (CDC, 2021a, 2021b). These 667 

pathogens are highly resistant to disinfectants, challenging drinking water treatment (Adeyemo et 668 

al., 2019). Therefore, detecting and controlling Cryptosporidium and Giardia is critical to 669 

maintaining drinking water quality. In this section, we discuss the performance of ML models in 670 

monitoring Cryptosporidium and Giardia in drinking water (Table 3).  671 

 672 

ML to detect Cryptosporidium and Giardia are robust and precise. For instance, deep-learning-673 

based image classification models such as ParasNet (Xu et al., 2020) and MCellNet (Luo et al., 674 

2021) are accurate in detecting these two parasites in drinking water. They have the power of ML 675 

in classifying parasites from the cell-level scattering images. In addition, a linear ML model can 676 

predict the contamination of these two parasites in surface water and drinking water (Ligda et al., 677 

2020), offering a valuable tool to control waterborne diseases.  678 

 679 
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ParasNet (Xu et al., 2020) uses an eight-layer CNN to determine whether particles in cell-level 680 

scattering images from drinking water are Cryptosporidium and Giardia. The model has superior 681 

performance compared with a traditional handcraft SVM regarding both detection accuracy and 682 

processing time. For instance, ParasNet can reach a detection accuracy of above 95.6% with 683 

analysis speeds of up to 100 frame-per-second (fps) on embedded Jetson TX2 platform. MCellNet 684 

(Luo et al., 2021), another image classification pipeline, uses a DNN optimized from MobileNetV2 685 

(Sandler et al., 2018) to recognize objects. MCellNet includes a convolutional layer, six inverted 686 

residual blocks (IRBs), a flattened layer, and a fully connected layer. MCellNet can process images 687 

from flow cytometry to classify Cryptosporidium and Giardia. Compared with ParasNet, 688 

MCellNet achieves a higher detection accuracy of above 99.6% with a 346-fps analysis speed. The 689 

superior accuracy and fast analysis of MCellNet are due to the cascading six IRBs. 690 

 691 

An alternative statistical model uses linear discriminant function analysis (LDFA) to predict the 692 

appearance of Cryptosporidium and Giardia in drinking water (Ligda et al., 2020). That model 693 

uses microbiological, physicochemical, and meteorological parameters to classify the 694 

contamination of Cryptosporidium and Giardia into four categories: none, low, moderate, and high 695 

(oo)cysts concentrations. LDFA has accuracies of 75% and 69% in predicting Cryptosporidium 696 

and Giardia, respectively. 697 

 698 

5.4. Assessing biofilm development in engineered water systems  699 

Biofilms are complex microbial communities adhering to surfaces (Flemming and Wingender, 700 

2010). In engineered water systems, biofilms develop on the inner wall of water pipes and pose 701 

significant risks. Drinking water biofilms harbor pathogenic and antimicrobial resistant bacteria, 702 
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corrode pipes, reduce water flow rate, deteriorate water quality, and increase the costs and 703 

complexity of water distribution (Simoes and Simões, 2013; Wingender and Flemming, 2011; 704 

Zhou et al., 2023c). Monitoring and controlling biofilm formation in engineered water systems 705 

with conventional approaches are challenging because assessing the biofilms inside of the water 706 

pipes is difficult and biofilms are protected by an extracellular matrix (Flemming et al., 2023; 707 

Karygianni et al., 2020). ML provides novel solutions for assessing and controlling drinking water 708 

biofilms (Table 3).  709 

 710 

ML models studying biofilm development in engineered water systems use relevant physical (such 711 

as water age, flow velocity, hydraulic regime, pipe material, and pipe age) factors to assess the 712 

dynamics of biofilm development, where the heterotrophic plate count (HPC) is the output. 713 

Established ML algorithms are preferred models to study the dynamics of biofilm development, 714 

such as NB, RT, and RF (Ramos-Martínez et al., 2014, 2016). These algorithms have high 715 

prediction accuracy and provide an in-depth understanding of the impact of physical factors on 716 

biofilm development in engineered water systems. For instance, a Bagging naïve Bayesian tree 717 

(B-NBT) model proposes optimal flow velocities for different types of pipes to mitigate biofilm 718 

development (Ramos-Martínez et al., 2014). Predicted biofilm development probabilities show 719 

that, to control biofilm accumulation, water utilities need to avoid cement pipes, implement 720 

medium- or high-flow velocities in metal pipes, and sustain water ages above 0.035 in plastic pipes. 721 

The 'water age' is a synthetic index derived from the normalized HRT and the distance from the 722 

disinfection source. 723 

 724 
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Recent studies have enabled more detailed, single-cell level analyses and predictions of biofilm 725 

development in engineered water systems (Berne et al., 2018). In addition, studies have expanded 726 

ML algorithms to incorporate deep learning (Jelli et al., 2023; Weigert et al., 2020). These 727 

innovative approaches can enhance the assessment of biofilm dynamics in various settings 728 

including engineered water systems. A recent work (Jelli et al., 2023) optimized StarDist (Weigert 729 

et al., 2020), a cutting-edge CNN-based segmentation algorithm, to segment single cells in 730 

biofilms, track cell lineages, and measure single-cell growth rates (Figure 3a). First, an iterative 731 

semi-automated annotation workflow was developed to accelerate the annotation of bacterial cells 732 

in 3D images for training data. Then, a new post-processing algorithm (StarDist OPP) that 733 

reconstructs the bacterial cell shapes were developed to increase the accuracy of bacterial 734 

segmentation. The second step was to overcome the embedded limitations of the StarDist non-735 

maximum-suppression post-processing that considers only the shape information in the voxel with 736 

the highest assigned label probability. StarDist OPP achieves unprecedented accuracy in biofilm 737 

segmentation, surpassing other algorithms under scrutiny, such as Cellpose (Stringer et al., 2021), 738 

a multi-class U-Net (Zhang et al., 2020), and BCM3D 2.0 (Zhang et al., 2022). Finally, the accurate 739 

single-cell segmentation results were used to track cell lineages and to spatiotemporally measure 740 

single-cell growth rates. 741 

 742 

5.5. Analyzing the risks and tracking the sources of antimicrobial resistance  743 

Antimicrobials have been extensively used since the 1920s in the medical industry, animal 744 

husbandry, consumer goods production, and other fields (Chang et al., 2015; Hutchings et al., 2019; 745 

Prescott, 2017; WHO, 2021). However, a significant portion of antimicrobials consumed by 746 

humans and animals is not metabolized but excreted, entering waterbodies. Antimicrobials in 747 
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waterbodies contributes to the development of antibiotic-resistant bacteria (ARB) and ARGs, 748 

posing a serious threat to aquatic ecosystems and public health by causing antimicrobial resistance 749 

(AMR) (Roca et al., 2015; Walesch et al., 2023). The advent of ML has introduced novel 750 

methodologies that enhance our ability to assess the risks and track the sources of AMR in in 751 

drinking water with unprecedented precision (Table 3). 752 

 753 

5.5.1. Assessing the risks of antimicrobial resistance  754 

AMR presents challenges in treatment, costs, and mortality rates compared with non-resistant 755 

infections in humans and animals. Despite the efforts to assess and control AMR, challenges 756 

remain because of uncertainties in data acquisition and dose-response mechanisms. To streamline 757 

the estimation process and minimize labor, a study developed three ML models (LR, DT, and RF) 758 

to rapidly predict the relative risks of AMR in drinking water (Wu et al., 2022). These models take 759 

four land-use type factors (residential, urban, green, and agriculture) and eleven environmental 760 

factors (water temperature, pH, oxidation-reduction potential, electrical conductance, resistivity, 761 

total dissolved solids, salinity, pressure, DO, turbidity, and 24-h accumulated rainfall) as the inputs. 762 

Given limitations in data, particularly in field data, employing classification over direct regression 763 

for relative risk assessment is more robust. That study used a binary classification framework, 764 

labeling relative risk scores above the median as 1 for relatively high risks and scores below the 765 

median as 0 for relatively low risks. Compared with LR and DT, RF has the highest accuracy 766 

(0.86), precision (1.0), recall (0.75), F1 (0.86), and AUC (0.88). Finally, the feature importance 767 

analysis from RF reveals that green (areas designated for natural vegetation, parks, forests, or other 768 

green spaces), DO, and pH are the top-three significant influencing factors of AMR in drinking 769 

water.  770 
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 771 

5.5.2. Tracking the sources of antimicrobial resistance  772 

Leveraging the capabilities of ML for environmental monitoring, recent studies have harnessed 773 

SourceTracker, an ML tool based on a Bayesian classification algorithm (Knights et al., 2011), to 774 

identify the sources of ARGs in drinking water and water sources. A study used SourceTracker to 775 

identify the complex sources of ARGs and assessed their contributions to ARG pollution in a peri-776 

urban river (Chen et al., 2019). The results show that the discharge from sewage plants was the 777 

largest contributor of ARGs (81.6% to 92.1%) in the river sediments. Another work used 778 

SourceTracker to monitor the presence of ARGs in household drinking water and tracked their 779 

origins back to anthropogenic sources, highlighting the significant impact of human activities on 780 

drinking water quality (Figure 3b) (Wang et al., 2023). The data generated by SourceTracker have 781 

a strong Pearson correlation (r = 0.98) with the corresponding expected proportion by artificial 782 

source inputs. Source tracking analysis from that study indicates that a significant proportion of 783 

ARGs (37.1%) was from anthropogenic sources, especially wastewater effluent.  784 

 785 

6. Machine learning to ensure safe drinking water supply from the temporal perspective  786 

The increasing use of ML in safeguarding drinking water quality has led to the development of 787 

innovative approaches to detect drinking water quality from the temporal perspective (Table 4) 788 

(Zhong et al., 2021). The term 'temporal' refers to the time-related applications of ML to track, 789 

predict, and mitigate contamination events in drinking water as they unfold over time. By 790 

examining the temporal patterns and trends of contamination events, we can bolster the predictive 791 

power and responsiveness of ML to ensure effective measures against accidental contamination in 792 

drinking water. This section explores the advancements, versatility, and potential of ML in 793 
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revealing drinking water quality from the temporal perspective focusing on accidental drinking 794 

water contamination events.  795 

 796 

Three studies developed multiple ML approaches to detect anomalies in the drinking water quality 797 

datasets from GECCO Industrial Challenges (GECCO IC) (Fehst et al., 2018; Muharemi et al., 798 

2019; Qian et al., 2020). These studies pinpointed shifts or spotted anomalies in drinking water 799 

quality over time. Various parameters such as pH, redox potential, electric conductivity, turbidity, 800 

and chlorine dioxide concentration are the predictors, whereas events in Boolean form are the 801 

outputs. A study developed SVM, DNN, long short-term memory (LSTM), recurrent NN (RNN), 802 

LR, simple NN, and linear discriminant analysis (LDA) to detect water quality anomaly in the 803 

dataset from 2017 GECCO IC (Muharemi et al., 2019). SVM shows the highest performance with 804 

an F1-score of 0.99 in cross-validation. Nevertheless, all the models have poor performance with 805 

the unseen test dataset with a maximum F1-score of 0.36. In the other two studies focusing on the 806 

dataset from GECCO IC 2018, LSTM demonstrates superior results, scoring a higher F1-score 807 

than traditional models such as LR and SVM with F1-scores of 0.80 and 0.78, respectively (Fehst 808 

et al., 2018; Qian et al., 2020).  809 

 810 

The existing research, including the three key studies using the GECCO IC datasets (Fehst et al., 811 

2018; Muharemi et al., 2019; Qian et al., 2020), has made significant progress in understanding 812 

anomaly in drinking water through ML. A notable trend in recent research is using real-time or 813 

online applications to reflect a crucial evolution toward practical, real-world implementations. 814 

Specifically, a study implemented an LSTM-based approach to detect anomalies in water quality 815 

focusing on turbidity and conductivity (Rodriguez-Perez et al., 2020) (Figure 4a). That study 816 
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highlights the efficacy of semi-supervised classification, which retains only normal values, in 817 

identifying abrupt changes and minor spikes in water quality. By contrast, supervised classification, 818 

which considers both normal and anomalous data, is more suitable in identifying long-term 819 

anomalies linked to gradual changes. Notably, the LSTM-based approach surpasses regression-820 

based autoregressive integrated moving average (ARIMA) in detecting these long-term anomalies. 821 

Another study introduced an innovative stacking ensemble model designed for contamination 822 

detection (Figure 4b) (Li et al., 2022). The model uses various water quality parameters such as 823 

total chlorine, pH, electrical conductivity, water temperature, TOC, and turbidity. That model 824 

integrates multiple predictors into a meta-predictor, trained through cross-validation. That 825 

approach enhances the ability of the model to discern distinct features across water quality 826 

parameters. The ensemble has predictors such as ANN, SVM with a linear kernel, linear regressor, 827 

extra trees, uniform weighted KNN, and an RF meta-predictor. The ensemble demonstrates 828 

superior performance in detecting contamination compared with an ANN benchmark method, 829 

achieving higher accuracy, lower false positive rates, and improved F1-scores.  830 

 831 

However, these models focus on single-site, one-dimensional time series data, neglecting the 832 

spatial relationships inherent in multi-site sensor data. This limitation could increase false alarm 833 

rates, particularly under conditions of high hydraulic variability. To address this issue, a follow-up 834 

study proposed a novel unsupervised, generative-adversarial-networks-based (GAN-based) 835 

multivariate method to detect multi-site contamination events (Figure 4c) (Li et al., 2023). That 836 

method effectively captures spatiotemporal patterns by transforming water quality data from single 837 

and multiple sites into superimposed images. The GAN-based model, having a generator and a 838 

discriminator, evaluates the degree of abnormality at each time step by generating anomaly scores. 839 
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The generator is trained to map historical image data to expected current images, while the 840 

discriminator differentiates between generated and actual normal images. That method is 841 

benchmarked against a multivariate unsupervised method using a minimum-volume-ellipsoid 842 

(MVE)-based event detection model (Oliker and Ostfeld, 2014). That method demonstrates 843 

superior performance in all contamination scenarios, including enhanced detection rates and 844 

reduced false alarms, particularly for sensor groups positioned at varying distances from the 845 

contamination source. Another unique ML approach can rapidly signal potential contamination 846 

risks in drinking water (Asheri Arnon et al., 2019). That approach uses an algorithm for the early 847 

detection of drinking water contamination against an unpredictable stochastic background. By 848 

extracting key features from the spectrophotometric characteristics of water, the algorithm can 849 

effectively identify contamination using a unique affinity measure (Asheri-Arnon et al., 2018). The 850 

measure compares the absorbance spectra of different water sources, thereby amplifying the 851 

feature dissimilarity between portable and contaminated water, followed by processing via SVM 852 

and post-processing. That chain of data processing generates a reliable early warning system for 853 

contamination events with low false positives and high true alarm accuracy. The pre-processing 854 

stage (the affinity measure and amplification) is essential to achieving high accuracy but may be 855 

unnecessary to obtain minimal false positives. 856 

 857 

7. Machine learning model distribution in safe drinking water supply  858 

We provide a macroscopic visual illustration to elucidate the distribution of ML models across 859 

research topics in safe drinking water supply (Figure 5). To facilitate a clear and concise visual 860 

representation, we group certain ML models under broader principal categories on the basis of 861 

their foundational architecture. For instance, models such as GA-ANN, Multi-layered-ANN, and 862 

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2
https://orcid.org/0000-0002-7299-9891
https://creativecommons.org/licenses/by/4.0/


Page 39 of 59 

DNN share foundational characteristics inherent with ANN. Consequently, to elucidate the 863 

overarching trends in model preferences across studies, we categorize these models as “NN-based.” 864 

This approach discerns the broader trends and preferences in ML model selection and also 865 

highlights the potential commonalities across research endeavors.  866 

 867 

NN-based and regression-based ML models are the top two frequently implemented in safe 868 

drinking water supply. NN-based models have significant applications in managing the production 869 

and demand of drinking water and accessing and controlling DBPs. The prominent role of NN-870 

based models in these two fields is not coincidental but rather from the synergy between the 871 

inherent characteristics of these fields and the strengths of NN-based models. Water management 872 

and DBP assessment often involve multifaceted, nonlinear, and high-dimensional data that demand 873 

robust modeling (Aliashrafi et al., 2021; Ates et al., 2022; Ghobadi and Kang, 2023). Given their 874 

capability to model complex non-linear relationships and handle various intricate data, NN-based 875 

models are an optimal solution in these contexts. For instance, the unpredictability and variability 876 

in water demand patterns or the multifarious factors influencing DBP formation both require a 877 

model that can discern patterns from large, intricate datasets (Ahmadpour et al., 2023; Avni et al., 878 

2015). Furthermore, the flexibility of NN-based models in accommodating changing inputs makes 879 

them promising in assessing the dynamic nature of drinking water quality. The wide applications 880 

of NN-based models in safe drinking water supply are due to this harmonious fit between the 881 

challenges posed by these fields and the advantages of these models.  882 

 883 

By contrast, while regression-based models are widely applied in drinking water research, they 884 

have suboptimal performances in certain contexts (Almheiri et al., 2021; Deng et al., 2021; Hong 885 
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et al., 2020; Legube et al., 2004; Lin et al., 2020; Rodriguez-Perez et al., 2020). The suboptimal 886 

performances do not undermine the value of regression-based models. However, their linear or 887 

predefined non-linear structures may limit their effectiveness, especially when compared with the 888 

adaptive and intricate abilities of NN-based models. 889 

 890 

The superior performance of NN-based models is widely acknowledged (Goodfellow et al., 2016). 891 

These general strengths become pertinent when NN-based models are applied to the complexities 892 

of drinking water research. First, unlike regression-based models which are limited by their linear 893 

or defined non-linear structures, NN-based models capture intricate, non-linear associations. 894 

Second, the mutable architecture of NN-based models allows them to modify their framework 895 

during training, optimizing alignment with the inherent data distribution. Lastly, given abundant 896 

data, NN-based models excel in discerning subtle data patterns because of their proficiency in 897 

processing high-dimensional input attributes, whereas regression-based models may have 898 

tendencies of underfitting. This proficiency of NN-based models is further enhanced by the use of 899 

techniques such as grid search for hyperparameter optimization, particularly crucial in fine-tuning 900 

the performance of NN-based models because of their complex architectures and the numerous 901 

parameters required (Daniel et al., 2023; Rodriguez-Perez et al., 2020). 902 

 903 

CNN-based models represent a specialized subclass of NN-based models adept at discerning 904 

patterns in images or other forms of multi-dimensional data (LeCun et al., 1989; Lecun et al., 1998). 905 

Therefore, we list the CNN-based models out of the broader NN category (Figure 5). The practical 906 

implications of CNN-based models are evident in drinking water research: They can interpret 2D 907 

fluorescence spectra and predict the formation of DBPs during disinfection (Peleato, 2022), 908 
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classify microbes using cell-level scattering images from drinking water (Luo et al., 2021; Xu et 909 

al., 2020), and identify cells in 3D drinking water biofilm images (Jelli et al., 2023). 910 

 911 

Other ensemble approaches are also widely applied in safe drinking water supply such as RF 912 

(Breiman, 2001), XGB (Chen and Guestrin, 2016), boosted decision trees (BDT) (Friedman, 2001), 913 

and stacking model (Wolpert, 1992). The core strength of these ensemble techniques is their ability 914 

to amalgamate predictions from several models, aiming to boost accuracy and diminish overfitting 915 

(Hastie et al., 2009). In drinking water research where data can be noisy, varied, and sometimes 916 

sparse, such strategies are invaluable. Several comparative studies have delved into the 917 

performance nuances of different ensemble models. A recurring observation in these investigations 918 

is that the slight edge XGB outperforms RF (Abdi and Mazloom, 2022; Park et al., 2020; Wu et 919 

al., 2020). Furthermore, BRT outperforms RF (Bagriacik et al., 2018). Interestingly, while XGB 920 

has consistent prowess, LightGBM, another gradient boosting framework, outperforms XGB 921 

(Abdi and Mazloom, 2022). Therefore, as gradient boosting algorithms continue to evolve, newer 922 

iterations such as LightGBM offers even more refined performance. However, while ensemble 923 

methods offer certain advantages, their efficacy is not universally dominant across scenarios. The 924 

best model is often contingent upon the nature of the problem, the characteristics of the data, and 925 

the specific objectives of the study. Ensemble models, with their ability to amalgamate insights 926 

from multiple “weak learners,” might excel in scenarios where data are diverse, noisy, and/or 927 

sparse (Fasel et al., 2022; Pang et al., 2018; Sluban and Lavrač, 2015). By contrast, for problems 928 

where the data structures are deeply hierarchical or when data patterns are straightforward, NN-929 

based models or regression-based models are more suitable. The crucial factor is to match the 930 

ability of the models with the specific demands and characteristics of the data sets. 931 
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 932 

We include (S)ARIMA, Kriging interpolation, SaTScan, LDFA, alpha and beta diversity analyses, 933 

UniFrac, and MVE in statistical models (Figure 5). These models are more deterministic and often 934 

rooted in foundational principles and established, theoretical, and/or empirical relationships. For 935 

instance, SARIMA and Kriging interpolation can capture temporal and spatial patterns, 936 

respectively (Guo et al., 2018; Tian et al., 2020). Alpha and beta diversity analyses and UniFrac 937 

quantify microbial community diversity and compositional differences (Li and Wu, 2019). These 938 

models typically operate under specific assumptions about the underlying data distribution or 939 

spatiotemporal relationships. By contrast, ML, especially deep learning, is more adaptive, learning 940 

patterns directly from the data without stringent assumptions (Khattak et al., 2022; Savadatti et al., 941 

2022; Singh et al., 2023).  942 

 943 

8. Challenges and outlooks  944 

While ML has made significant progress in drinking water research, several areas remain untapped, 945 

offering significant potential for exploration and improvement. Crucial topics, such as biofilm 946 

development, the assessment of AMR risks, and the evaluation of pathogen-related dangers in 947 

engineered water systems, are not fully explored. The untapped potential in these fields is immense, 948 

and the need to bridge the interdisciplinary divide is critical. 949 

 950 

One significant barrier is the disconnect between water experts and AI specialists. Water scientists 951 

and engineers may not be conversant with the nuances of AI, while AI technologists might lack 952 

knowledge of water treatment, supply, and distribution. This knowledge gap impedes the effective 953 

deployment of ML in enhancing safety drinking water supply. Addressing this dichotomy is 954 
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beneficial and essential, necessitating educational and collaborative efforts to build a shared 955 

understanding and to develop interdisciplinary skillsets. 956 

 957 

Further complicating the matter is the absence of standardized toolkits tailored to safe drinking 958 

water supply. Such standardization is vital for enabling consistent application across various 959 

research and implementation efforts. Uniformity in tools and approaches would not only 960 

streamline the processes but also bolster collaborative work, which is often fragmented across 961 

regions and specializations. 962 

 963 

Advancements in ML tools must cater to the unique challenges presented by safe drinking water 964 

supply. Water quality is affected by numerous spatiotemporal factors, requiring ML solutions that 965 

can adapt to and learn from these dynamic conditions. Thus, future studies should customize 966 

existing ML frameworks or innovate new ones that can grapple with the complexities inherent to 967 

safe drinking water supply. 968 

 969 

Looking to the horizon, the broader vision involves leveraging ML to address the global drinking 970 

water crisis. Issues such as water scarcity, the presence of emerging contaminants, and the 971 

formation of DBPs present a global challenge. ML tools have been predominantly developed with 972 

local or regional contexts, yet the drinking water crisis demands a global perspective. The ambition 973 

to harness ML for these global challenges is critical to ensuring water security worldwide. 974 

 975 

In pursuit of these goals, the integration of advanced ML models becomes a cornerstone in tackling 976 

the multifaceted issues tied to drinking water safety. Future endeavors should prioritize the 977 

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2
https://orcid.org/0000-0002-7299-9891
https://creativecommons.org/licenses/by/4.0/


Page 44 of 59 

promotion of open-access data sharing within and beyond the drinking water research community 978 

(Zhong et al., 2021). The endeavors will enhance collaboration, drive transparency, and support 979 

the reproducibility of scientific findings, which are the bedrock of robust research. Furthermore, 980 

establishing a comprehensive comparative framework to evaluate different ML models will be 981 

instrumental in identifying the optimal solutions for the challenges in drinking water research. By 982 

embracing these strategies, we can aspire to not just bridge existing knowledge gaps but also 983 

significantly elevate the role of ML in securing safe and more sustainable water supply. 984 

 985 

9. Conclusions  986 

Assessing and ensuring safe drinking water supply is a global challenge with conventional 987 

approaches. ML as a novel tool is promising in monitoring and protecting drinking water quality, 988 

especially in municipal engineered water systems. This review for the first time comprehensively 989 

summarizes the applications of ML in assessing and ensuring safe drinking water supply with a 990 

focus on water quality in engineered water systems. We compile the applications of ML from the 991 

physical, chemical, microbiological, and temporal perspectives. From the physical perspective, 992 

ML is useful in managing drinking water production and demand and monitoring drinking water 993 

pipeline failures. From the chemical perspective, ML is promising in assessing and controlling 994 

DBPs, monitoring and mitigating heavy metals, and tracking nitrification in drinking water. From 995 

the microbiological perspective, ML can monitor and mitigate OPs, detect Cryptosporidium and 996 

Giardia, assess biofilm development, assess AMR risks, and study microbial communities in 997 

municipal water, especially in engineered water systems. In addition, ML is a useful tool in 998 

assessing drinking water quality from the temporal perspective, especially in detecting accidental 999 
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drinking water contamination. Taken together, ML is feasible in assessing and ensuring drinking 1000 

water quality with a great potential to mitigate the global water crisis.  1001 
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference

Predicting water 
production and demand

Water production 
prediction

GA-ANN and ML-
ANN

T, COD, and 
operational 
parameters

Water 
production of 

DWTPs

MSE, 𝑅!, MAPE GA-ANN 𝑅!=0.93 > ML-ANN Zhang et al., 
2019

Short-term water 
demand prediction

GRUN, ANN, and 
SARIMA

Historical water 
demand data

15-min and 24-
h prediction of
water demand

MAE,  MAPE, RMSE, 
NSE

GRUN > ANN and SARIMA Guo et al., 2018

Water demand 
prediction

DAN2,  FTDNN, and 
KNN

Daily water 
production and 
monthly water 
consumption

Daily, weekly, 
and monthly 

water demands

MAPE, accuracy, 𝑅!, 
MSE, and SSE

DAN2 accuracies: 96% to 98% Ghiassi et al., 
2017

Monitoring pipeline 
integrity

Pipe burst localization FL-DenseNet Pressure 
measurements

Burst occurring 
likelihood per 

pipe

Accuracy 62.35% to 98.58% Zhou et al., 2019

Pipe failure prediction AdvaML, Cox-pH, 
SRF, and SSVM

Pipe data and 
climate data

Failure/Hazard 
Index

C-index AdvaML ≥ 0.8 > Cox-pH, SRF, and 
SSVM

Almheiri et al., 
2021

Disaster index 
prediction on WTS

RF and XGB Facility 
specification and 
operational data

Disaster index RMSE and 𝑅! XGB  𝑅!	= 0.86 > RF Park et al., 2020

Earthquake damage 
prediction

RR, LR, BRT, and 
RF

Earthquake-
related variables 

and pipe attributes

Binary 
classification of 
damage status

TE, TEP, RMSE, MAE, 
MASE, MPSE, SN, SP,

TSS, and AUC

BRT > RR, LR, and RF in overall 
performance

Bagriacik et al., 
2018

Table 1 Machine learning to ensure safe drinking water supply from the physical perspective 

GA-ANN, Artificial neural network with genetic algorithm; ML-ANN, multi-layered artificial neural network; T, temperature; COD, chemical oxygen demand; DWTPs, drinking water 
treatment plants; MSE, mean squared error; 𝑅!, coefficient of determination; MAPE, mean absolute percentage error; GRUN, gated recurrent unit network; SARIMA, seasonal 
autoregressive integrated moving average; MAE, mean absolute error; RMSE, root-mean square error; NSE, Nash-Sutcliffe model efficiency; DAN2, dynamic artificial neural network; 
FTDNN, focused time-delay neural network; KNN, K-nearest neighbor; SSE, summing the squared differences; FL-DenseNet, fully-linear DenseNet; AdvaML, advanced meta-learning; 
Cox-pH, cox-proportional hazards; SRF, random survival forest; SSVM, survival support vector machine; C-index, concordance index; WTS, water treatment system; RF, random forest; 
XGB, extreme gradient boosting (XGBoost); RR, repair rate; LR, logistic regression; BRT, boosted regression trees; TE, error in total count; TEP, percentage error in total count; MASE, 
median absolute suburb error; MPSE, Median percentage suburb error; SN, sensitivity; SP, specificity; TSS, true skill statistics; AUC, area under the receiver operating characteristic (ROC) 
curve.  
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference
Optimizing drinking 
water disinfection 

DBPs formation 
prediction 

ANN, SVM, and 
GEP

pH, T, 𝐶"#! , 𝐶$%"/'($, 𝑡 𝐶)*+, MSE, RMSE and 
𝑅!

SVM > ANN and GEP Singh and Gupta 
2012

Linear/log linear, 
and RBF-ANN

pH, T, UV254, CDOC , 
𝐶"#! , 𝐶#-,./01%_3%, 

𝐶4("!54, and 𝐶4*#$54

𝐶*66, Accuracy, AAE RBF-ANN > linear/log linear Lin et al., 2020

Linear/log linear, 
and RBF-ANN

pH, T, UV254, CDOC , 
𝐶"#! , 𝐶#-,./01%_7#--_3%, 
𝐶4("!54, and 𝐶4*#$54

𝐶)*+, Accuracy and rp RBF ANN > linear/log linear Hong et al., 2020

Linear/log linear 
BP-ANN, and 

RBF-ANN

𝐶*8, 𝑅! RBF ANN:0.799 > BP ANN and 
linear/log linear

Deng et al., 2021

DTB 𝐶4*"$%, 𝐶4*$%" 	:	;<, 
pH, TDN,	𝐶4("!54

, TOC, and 𝐶4*#$54 

𝐶)*+=	and	𝐶*66, 𝑅! and MSE 𝐶)*+=: R2 = 0.56 
𝐶*66,: R2 = 0.65

Pan et al., 2023

MLR, NN, RF, 
GPR and SVR

T, 𝐶#-,./01%_3%, DOC, 
Turb, pH, Leit, and 

UV254 

𝐶)*+,, 𝐶*66,, 
𝐶'$64, 𝐶$>8, and 

𝐶)$>

MSE SVR, GPR > NN > RF > MLR Hu et al., 2023

Spectroscopic 
detection of DBPs

AE-NN, AE, PCA, 
and PARAFAC

Fluorescence spectra 𝐶)*+,	and	𝐶*66, MAE, MSE AE-NN > AE > PCA > PARAFAC Peleato et al., 
2018

MLP, CNN, 
PARAFAC-MLP, 
PCA-MLP, and 3-

way PLS

𝐶)*+,, 𝐶*66,	,
and 𝐶)$+,	

CNN > MLP, PARAFAC-MLP, 
PCA-MLP, and 3-way PLS

Peleato, 2022

DBPs formation 
mechanism analysis

MLR Chemical descriptors THM yield 𝑅!	and	RMSE R2 = 0.91 Bond and 
Graham 2017

RF, SVR-RBF, 
SVR-linear, MLP, 

and MLR

Chemical descriptors HAAs formation 
potential 

RF > SVR-RBF, SVR-linear, MLP 
and MLR

Cordero et al., 
2021

Table 2 Machine learning to ensure safe drinking water supply from the chemical perspective 

DBPs, Disinfection by-products; GEP, gene expression programming; 𝐶"#! , Br concentration; 𝐶$%"/'($ , dissolved organic carbon normalized chlorine dose; 𝑡, contact time; 𝐶)*+,, 
trihalomethane concentration; linear/log Linear, linear/log linear regression models; RBF-ANN, radial basis function ANN; UV254 , ultraviolet absorbance at 254 nm; CDOC , dissolved 
organic carbon concentration; 𝐶#-,./01%_3% , residue chlorine concentration; 𝐶4("!54 , nitrite concentration; 𝐶4*#$54  , ammonia concentration; 𝐶*66,, haloacetic acids concentration; AAE, 
average absolute error; 𝐶#-,./01%_7#--_3% 	, residual free chlorine concentration; rp , regression coefficients; BP-ANN, back propagation ANN; 𝐶*8, , haloketones concentration; DTB: 
decision tree boost; 𝐶4*"$%  , monochloramine concentration; 𝐶4*$%"	:	;<, dichloramine and organic chloramines concentration; TDN, total dissolved nitrogen; TOC, total organic carbon; MLR, 
multiple linear regression; GPR, Gaussian process regression; SVR, support vector regression; Turb, turbidity; Leit, electric conductivity of the water; 𝐶'$64 , dichloroacetonitrile 
concentration; 𝐶$>8 , chloropicrin concentration; 𝐶)$> , trichloropropanone concentration; AE-NN, autoencoder-neural network; PCA, principal component analysis; 
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Table 2 Machine learning to ensure safe drinking water supply from the chemical perspective 

PARAFAC, parallel factors analysis; MLP, multi-layer perceptron network; CNN, convolutional neutral network; 3-way PLS, 3-way partial least squares; 𝐶)$+,	, trichloromethane 
concentration; 𝐶4*%$% , monochloramine concentration; MLP, multilayer perceptron.
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference
Optimizing drinking 
water disinfection 

Prediction of bromate 
formation by 

ozonation

MLR and ANN 𝐶?, pH, 𝐶"#! , T, UV, 
DOC, Alk, and 

𝐶4*#$54

𝐶"#(&! 𝑅!	 ANN = 0.98 > MLR Legube et al., 
2004

Prediction of 
MP/organic 
contaminant 

abatement during 
ozonation

RF pH, Alk, DOC, and 
FEEM

Oxidant exposures 𝑅!	and	RMSE 𝑅!	: 0.904 Cha et al., 2021

MLR, SVM, DT, 
RF, and DNN

NIa, ELUMO, EHOMO, 
and CEne_val,min

log 𝑘(& 𝑅!	,	MSE, MAE 
and 𝑄-@A"  

RF: 𝑅!	 = 0.9113 Shi et al., 2022

DTB and SDT 𝑘(&  model: AMR, 
minHBa, nX, and 
MDEC-24 ; 𝑘B(#  

model: AMR,
SssO, and meanI

𝑘(&  and 𝑘B(# 𝑅!	and	RMSE DTB: 𝑅!	 > 0.97 Gupta and 
Basant, 2016

Estimation of the 
TOrCs removal

MLR, ANN, and PC-
ANN

𝐶(& , TOC, 
𝑘(&,()*+ 	and	𝑘C	(*,)(#$

TOrCs removal 𝑅!	and	RMSE PC-ANN: 𝑅!	 = 0.934 Park et al., 2015

Nitrification 
surveillance

Nitrification episodes 
classification

NB 16S rRNA profiling Nitrification 
episodes: stable or 

failure 

AUC 0.83 Gomez-Alvarez 
and Revetta, 

2020

Estimate NOx 
concentrations

SVR NOx absorbances at 
various wavelengths 

𝐶4(, RMSE and 𝑅! RMSE < 0.04 Hossain et al., 
2021

Heavy metal monitoring 
regulation 

Pb ions concentration 
detection

SVR S11 Pb concentration RMS 0.71 Oh et al., 2021 

Spatial concentration 
mapping of heavy 

metal

MLGI (NN - PSO + 
EBK)

Geographical 
coordinates

Spatial 
concentration maps

MSE and r r ≈ 1.0 De Jesus et al., 
2021

Temporal-spatial map 
generating of Al 

residue

Kriging interpolation Spatial and temporal 
data

Temporal-spatial 
distribution of 

residual Al

- - Tian et al., 2020

As adsorption removal 
prediction

LightGBM, XGB, 
GBDT, and RF

adsorbent dosage, 𝑡, 
𝐶EF_.G.A, pH, T, AMOFs, 

and Nanions

Adsorptive 
removal of As(V)

AAPRE, RMSE 
and 𝑅!

LightGBM > XGBoost > GBDT > RF Abdi and 
Mazloom, 2022

Heavy metal  removal 
prediction

MLP-ANN and 
RBF-ANN

adsorbent dosage, 𝜏, 
and pHinit

Al, Cd, Co, Cu, Fe, 
and Pb ions 

removal efficiency 

MSE and 𝑅! RBF-ANN > MLP-ANN Hamidian et al., 
2019

Table 2 Machine learning to ensure safe drinking water supply from the chemical perspective (cont.)

𝐶? , Disinfectant concentration and contact time product; Alk, alkalinity; 𝐶"#(%!, bromate concentration; FEEM, fluorescence excitation−emission matrix; DT, decision tree; DNN, deep neutral 
network; NIa , norm descriptors; ELUMO and EHOMO, energy of the lowest unoccupied molecular orbital and energy of the highest occupied molecular orbital; CEne_val,min , minimum valence shell 
orbital energy on carbon atom; 𝑄-@A" 	, external validation parameter; SDT, single decision tree; 𝑘(% 	and 𝑘B(# 	, the rate constants for the reactions of O3 and 𝑆𝑂=.5	respectively; AMR, 
antimicrobial resistance; minHBa, minimum E-states for (strong) hydrogen bond acceptors; nX , number of halogen atoms; MDEC-24, molecular distance edge between all secondary and 
quaternary carbons; SssO, sum of atom-type E-state: –O– ; meanI, mean intrinsic state values I;https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
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TOrCs, trace organic compounds; PC-ANN, principal component ANN; 𝐶(% , applied ozone dose; 𝑘(%,'()* 	and 𝑘C	(*,)(#$ 	, rate constants of O3 and ˙OH of TOrCs; NB, naïve Bayes; AUC, 
area under the curve; NOx, nitrite and nitrate; S11, reflection coefficient; MLGI (NN-PSO+EBK), machine learning and geostatistical interpolation (neural network with the particle swarm 
optimization and empirical Bayesian kriging); r, Pearson’s correlation coefficient; LightGBM, light gradient-boosting machine; GBDT, gradient boosting decision tree; 𝑡, contact time; 
𝐶EF_.G.A  , initial arsenic concentration; AMOFs, metal–organic frameworks surface area; Nanions , presence of anions; AAPRE, average absolute percent relative error; pHinit , initial pH.

Table 2 Machine learning to ensure safe drinking water supply from the chemical perspective (cont.)
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference

Surveilling and 
mitigating opportunistic 

pathogens 

To simulate conditions 
for preventing 

legionleosis outbreak

NARA Q and T T profile of the water 
tank

Accuracy >97% Sincak et al., 
2014

Bacterium clustering K-means 16S rRNA profiling Clusters of bacteria - - Moodley and 
Haar 2019

Spatio-temporal 
clustering of higher-
risk, serogroup and 

contamination levels 
prediction of 

Legionella spread

SaTScan, XGB, 
LR, and SVM 

Survey, spatial and 
meteorological info., 

and risk level to 
Legionella; 

Higher-risk level 
clusters;

serogroup of a 
sample and the 

contamination level

Accuracy and F1-
score

XGBoost > SVM > LR Brunello et al., 
2022

Analyzing drinking 
water microbial 

communities 

Water source tracking Bayesian-based rep-PCR and ARA Source membership - RMSEp < RMSEc Ritter et al., 2003

ARA Source distribution RMSE Greenberg et al., 
2010

Bacterial 16S 
ribosomal RNA gene 

sequences

Source proportion 𝑅! ≥ 0.8 Knights et al., 
2011

RF ARA Source classification ARCC 82.3% Smith et al., 2010

Microbial 
contamination 

prediction

XGB, KNN, NB, 
SVM, NN and RF

Weather, hydrologic 
and land cover data

Source classification Accuracy and 
AUC

XGBoost > RF > KNN > NN > SVM 
> NB

Wu et al., 2020

Hidden features of 
bacterial communities 

unveiling

Alpha and Beta 
diversity analyses 

Sequencing data of 
the bacterial 
community

Clustering properties 
of bacterial 
community

Unweighted 
UniFrac score 

- Pinto et al., 2014

UniFrac - - Unweighted/weigh
ted UniFrac score 

- Lozupone et al., 
2011; Bruno et 

al., 2018; Ling et 
al., 2018; Li et 

al., 2017

Table 3 Machine learning to ensure safe drinking water supply from the microbiological perspective

NARA, Neural network designed on approximate reasoning architecture; Q, flow rate; rep-PCR, repetitive element polymerase chain reaction; ARA, antibiotic resistance analysis; RMSEp, 
RMSE for posterior probability averaging estimator; RMSEc, RMSE for classification method estimator; ARCC, average rates of correct classification; NN, neural network. https://doi.org/10.26434/chemrxiv-2024-cc4jd-v2 ORCID: https://orcid.org/0000-0002-7299-9891 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference

Parasite detection Image classification of 
Cryptosporidium and 
Giardia morphology

CNN Cell level scattering 
image

Classification of 
Cryptosporidium, 
Giardia, or others

Accuracy Accuracy: 95.6% for 
Cryptosporidium and 99.5% for 

Giardia

Xu et al., 2020

Multiple 
classification or 

binary classification

Accuracy, 
precision, recall, 

and F1-score

Accuracy > 99.6% Luo et al., 2021

Cryptosporidium and 
Giardia contamination 

intensity prediction

LDFA Microbiological, 
physicochemical, and 

meteorological 
parameters

(oo)cyst 
concentrations of 
Cryptosporidium 

and Giardia 

Accuracy Accuracy: 75% for Cryptosporidium 
and 69% for Giardia

Ligda et al., 2020

Biofilm development 
assessment 

Biofilm development 
analysis

RT and RF System physical and 
hydraulic 

characteristics, 
sampling and 

incubation,  and
physico-chemical of 

water

HPC R RF: 0.898 Ramos-Martínez 
et al., 2016

Single-cell segmentation 
in 3D biofilms

StarDist OPP
(CNN-based)

3D biofilm image Cell identification Precision and OSA OSA = 3%
Precision depends on IoU threshold

Jelli et al., 2023

Risk analysis and 
source tracking of 

antimicrobial 
resistance 

Relative risk of AMR 
prediction

LR, DT, and RF T, pH, ORP, EC, 𝜌, 
TDS, Sal, P, DO, Turb, 

and 24h rainfall

Relative risk score Accuracy, 
precision, recall, 

F1-score and AUC

RF: AUC = 0.88 > DT, LR Wu et al., 2022

ARG pollution source 
tracking

Bayesian-based Metagenomic 
signatures of ARGs 
and microbial taxa

Relative 
contributions of 

ARGs

- - Chen et al., 2019

Broad-spectrum ARG 
profiles

Proportion of 
pollution sources of 

AGGs

r r = 0.98 Wang et al., 2023

Table 3 Machine learning to ensure safe drinking water supply from the microbiological perspective (cont.)

LDFA, linear discriminant function analysis; RT, regression trees; HPC , heterotrophic plate count; OSA, over-segmentation abundances; IoU, intersection-over-union; ORP, oxidation-
reduction potential; EC, electrical conductance; 𝜌, resistivity; TDS, total dissolved solids; Sal, salinity; P, pressure; DO, dissolved oxygen; 24h rainfall, 24h accumulated rainfall; ARG, 
Antimicrobial resistance genes
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Topic Task Model Inputs Outputs Metrics (Selected) Performances (Selected) Reference

Anomalies and 
contamination events 

detection

Anomalies detection LR, LDA, SVM, 
ANN, DNN, RNN, 

and LSTM

T, 𝐶$%(" , pH, Redox, 
Leit, Turb, and Q

Event (Boolean) F1-score SVM: F1-score = 0.36 Muharemi et al., 
2019

LSTM LSTM: F1-score = 0.80 Fehst et al., 2018

LR, RF, XGB, 
xgbDART, and 

LSTM

LSTM: F1-score = 0.78 Qian et al., 2020

LSTM and 
ARIMA

Turb and Leit b.Acc, F1-score,  
and MCC

LSTM > ARIMA Rodriguez-Perez 
et al., 2020

Stacking-based 
and ANN

Cl2, pH, Leit, T, TOC, 
and Turb

F1-score, R2, and 
MSE

Stacking > ANN Li et al., 2022

GAN-based and 
MVE-based 

FAR, F1-score, 
and EDR

GAN > MVE Li et al., 2023

Contamination event 
detection

SVM Cl2, EC, pH, T, TOC, 
and Turb

Three-class-event 
classification

Accuracy and 
EDR

Accuracy: 0.83-0.97 Oliker and 
Ostfeld, 2014 

DW classification: 
potable vs. contaminated

SVM UV-absorbance 
readings

Contamination event Confusion matrix False alarm: 0.19 Asheri Arnon et 
al., 2019 

Table 4 Machine learning to ensure safe drinking water supply from the temporal perspective 

LDA, linear discriminant analysis; RNN, recurrent neural network; LSTM, long short-term memory; 𝐶$%(" , chlorine dioxide concentration; Redox, redox potential; xgbDART, extreme 
gradient boosting with dropouts meet multiple additive regression trees; ARIMA, auto-regressive integrated moving average; b.Acc, balanced accuracy; MCC, Matthews correlation 
coefficient; Cl2, total chlorine; GANs, generative adversarial networks; MVE, minimum volume ellipsoid; FAR, false alarm rate; EDR, event detection rate.
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Figure 1. (a) Input and output variables used for modeling and the proposed hybrid artificial neural network 

framework for prediction of drinking water production. Reproduced with permission from Zhang et al., 2019. 

Copyright 2019 Elsevier. (b) Schematic of fully-linear DenseNet (BLIFF) model for accurate identification of 

burst locations in EWS networks. Reproduced with permission from Zhou et al., 2019 (CC BY 4.0). 

(a)

(b)
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Figure 2. (a) Schematic of radial basis function (RBF) artificial neural network (ANN) model for prediction of 

disinfection by-products (DBPs). Reproduced with permission from Lin et al., 2020, Copyright 2020 Elsevier. (b) 

Schematic of autoencoder model for prediction of DBPs. Reproduced with permission from Peleato et al., 2018, 

Copyright 2018 Elsevier. (c) Schematic of random forest (RF) model for prediction of micropollutant abatement. 

Reproduced with permission from Cha et al., 2021, Copyright 2021 American Chemical Society. (d) Prediction of 

nitrate and nitrite concentrations over support vector regression (SVR) model. Reproduced with permission from 

Hossain et al., 2021 (CC BY 4.0). 

(a)

(c)

(b)

(d)
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Figure 3. (a) Deep-learning-based workflow for single-cell measurements in three-dimensional 

biofilms. Reproduced with permission from Jelli et al., 2023, Copyright 2023 Elsevier. (b) 

SourceTracker was performed to investigate the pollution sources of antimicrobial resistance genes 

(ARGs) in household drinking water. Reproduced with permission from Wang et al., 2023, Copyright 

2023 Elsevier. 

(a)

(b)
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Figure 4. (a) Detection of technical anomalies in water quality using artificial neural network (ANN) 

model. Reproduced with permission from Rodriguez-Perez et al., 2020, Copyright 2020 American 

Chemical Society. (b) A stacking ensemble model for contamination event detection using multiple 

water quality parameters. Reproduced with permission from Li et al., 2022, Copyright 2022 Elsevier. (c) 

Detection of contamination events using generative adversarial network (GAN) model. Reproduced 

with permission from Li et al., 2023, Copyright 2023 Elsevier. 

(a)

(c)

(b)
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Figure 5. Machine learning model distribution across drinking water supply research topics

Abbreviations: NN, Neural network; KNN, K-nearest neighbor; RF, random forest; SVM, support vector machine; XGB, extreme gradient boosting; LR, logistic regression; 
BDT, boosting decision tree;  GEP, gene expression programming; DT, decision tree; SVR, support vector regression; PCA, principal component analysis; 
CNN, convolutional neutral network; LDA, linear discriminant analysis;  RNN, recurrent neural network;  LSTM, long short-term memory; 
GAN, generative adversarial network.
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