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Abstract 

Our study explores the current state of machine learning (ML) as applied to predicting and 

designing organic photovoltaic (OPV) devices. We outline key considerations for selecting the 

method of encoding a molecular structure and selecting the algorithm while also emphasizing 

important aspects of training and rigorously evaluating ML models. This work presents the first 

dataset of OPV device fabrication data mined from the literature. The top models achieve state-

of-the-art predictive performance. In particular, we identify an algorithm that is used less 

frequently, but may be particularly well suited to similar datasets. However, predictive 

performance remains modest (R2 ≅ 0.6) overall. An in-depth analysis of the dataset attributes this 

limitation to challenges relating to the size of the dataset, as well as data quality and sparsity. 

These aspects are directly tied to difficulties imposed by current reporting and publication 

practices. Advocating for standardized reporting of OPV device fabrication data reporting in 
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publications emerges as crucial to streamline literature mining and foster ML adoption. This 

comprehensive investigation emphasizes the critical role of both data quantity and quality, and 

highlights the need for collective efforts to unlock ML's potential to drive advancements in OPV. 

 

 

Introduction 

 

Early in the development of OPV devices, it was discovered that bulk heterojunction (BHJ) device 

active layers led to higher power conversion efficiencies (PCEs) than the simpler planar 

heterojunction.1 Since then, extensive work has been devoted to optimizing the morphology of 

BHJ active layers with various processing conditions (e.g., thermal annealing, solvent additives, 

concentration, solvent, etc).2–4 Consequently, it is well-understood that the device fabrication 

procedure (e.g., processing solvent, spin coating speed, annealing temperature) plays an 

important role in the morphology of the OPV active layer because the process of film formation is 

kinetically limited.5 The importance of morphology with respect to OPV device performance has 

been studied extensively,2,3,5 and plays a role in processes including exciton diffusion,6 charge 

separation and transport,7 and device stability.8,9 However, comprehending the intricate 

correlations between diverse materials and device fabrication parameters, and their collective 

influence on the final device performance poses an enduring challenge. This intricacy stands as 

a formidable barrier, impeding the accurate prediction of OPV device performance and 

contributing to the laborious and costly nature of the production processes. 

 

Given the many complex relationships and processes that ultimately determine OPV device 

performance, the potential of machine learning (ML) to accelerate the development of OPV 

materials and devices has emerged as a tantalizing promise. ML techniques could allow scientists 

to quickly screen potential combinations of donor (D) and acceptor (A) materials, or suggest the 

most appropriate device fabrication parameters for a given combination of materials. Previous 

efforts in using ML to predict the PCE of OPV devices have been focused exclusively on the donor 

and acceptor materials. Notably, the Harvard Clean Energy Project10–12  and others13–19 have used 

DFT-computed molecular descriptors to predict PCEs. A similar approach has recently 

incorporated genetic algorithms in an effort to design high-performing  non-fullerene acceptor-

based (NFA) devices.20–22 Others have generated one-hot encodings based on human intuition 

regarding molecular substructures.23 However, the most accurate models to date are those that 

have used high-throughput domain-specific descriptors.24–30 Notably, none of the aforementioned 

works incorporate information regarding the device fabrication parameters, which – as discussed 

above – are known to play an important role in determining PCE. 

 

In this work, we critically assess the state of ML for predicting PCE of OPV devices. We have 

curated a dataset of molecular structures, experimental device fabrication parameters and device 

performance, and evaluate the effect of various structural representations, ML algorithms, and 

device fabrication parameters on model performance. We also discuss difficulties related to 

gathering the dataset, as well as the considerations related to using experimental data from the 

literature, which is applicable to many materials domains outside of OPV. 
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Results & Discussion 

 

1. Data Curation 

In this section, we describe some of the most salient aspects of data curation. However, further 

details are provided in the Methods section. Broadly, the lack of uniform reporting standards and 

machine-readable data posed a significant challenge to compiling a large and complete dataset 

of OPV device fabrication and performance. 

 

To compile our dataset, we began with the dataset of 565 devices in Wu et al.,23 which only 

contained donor and acceptor names, short circuit current density (JSC), open circuit voltage (VOC), 

fill factor (FF), and PCE (Figure 1). We first evaluated the quality of the data by comparing 

reported PCE values with values calculated from the product of JSC, VOC, and FF: 

𝑃𝐶𝐸𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  =  𝐽𝑆𝐶 × 𝑉𝑂𝐶 × 𝐹𝐹 (1) 

and flagged points with a relative difference greater than 0.01, i.e. where: 

|𝑃𝐶𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 − 𝑃𝐶𝐸𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑|  >  0.01 × 𝑃𝐶𝐸𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  (2) 

This allowed us to quickly identify data points with incorrect or nonsensical entries. To gather the 

fabrication data for the 565 devices, we reviewed the 277 original reports from which the dataset 

was initially constructed and extracted information from the 565 individual devices. To accurately 

extract the desired parameters, each paper was checked by multiple scientists. We found a 

number of duplicates, unreliable reports or incorrect references in the original dataset, which were 

eliminated, leading to the 558 devices in the final dataset. 

 

 
Figure 1. Flowchart describing the steps involved in curating the first dataset of OPV device 

fabrication data, and testing and validation of representations and models. Eg
opt: optical excitation 

gap energy, ETL: electron transport layer, SMILES: simplified molecular-input line-entry system, 
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RF: random forest, ANN: artificial neural network, HGB: histogram gradient boosting, R2: 

coefficient of determination. 

 

We associated every donor and acceptor name with a molecular structure in the form of a SMILES 

(Simplified Molecular Input Line Entry System) string. This proved particularly challenging 

because of the diversity of polymer and NFA names, as well as frequent overlaps between 

material names. Due to the lack of a standardized naming convention for conjugated molecules 

and polymers, there are cases where numerous entries were ambiguously labeled as “P1,” 

despite having markedly distinct structures. On the other hand, research groups will sometimes 

use different names for the same molecular structure. For example, IT-F appears as F-ITIC, 

ITVfIC, ITIC3, and ITIC-F. In these instances, duplicate labels were replaced with a consistent 

name for the purpose of clarity. Finally, representing molecules with SMILES strings is limited. 

Polymers cannot be easily represented as the repeating, statistical entities that they actually are. 

While this is an active area of research,31–34 we simply encoded the structure of the monomer. 

Additionally, regioregularity – which is a factor for both polymers and NFAs – is not easily 

represented in SMILES notation. For example, IT-F and other NFAs with mono-substituted end 

groups are usually obtained as a mixture of three isomers, the populations of which play a role in 

determining PCE.35–38 However, SMILES forces us to choose a single isomer. 

 

To select film and device fabrication parameters, we considered fundamental processes in OPV, 

such as light absorption and exciton formation, exciton migration, charge separation, and charge 

migration to the electrodes. Each of these processes is influenced by specific parameters related 

to the donor, acceptor, and active layer casting conditions. The selection of parameters aimed to 

capture the relevant information for these processes. These parameters included donor and 

acceptor material properties (HOMO, LUMO, Eg
opt), donor:acceptor (D:A) ratio, solvent, total 

solids concentration, additive (and concentration), active layer thickness, thermal annealing 

temperature, hole transport layer (HTL), electron transport layer (ETL), hole mobility, and electron 

mobility. Other well-studied device performance characteristics such as effective mobility, 

Langevin prefactor, and Voc vs ln(I) slope were not reported with enough consistency to be 

included in the dataset. 

 

In extracting material properties (HOMO, LUMO, Eg
opt), we observed that multiple values were 

reported for the same material.  This may arise from a variety of factors: differences in purity, 

dispersity (in the case of polymers), measurement method, or measurement error.39 Using the 

reported values would result in data points with the sample molecular representation (i.e. 

molecular structure) having multiple different property values. Accounting for such variation in a 

ML model is nontrivial, and disentangling variations from experimental noise and differences in 

material composition was not possible. For materials with variation in the reported material 

properties, the mean was taken as the corresponding feature value. Some materials had identical 

values reported multiple times. Upon further investigation, this repetition was due to multiple 

papers citing a single source–often from the literature describing the synthesis of the material. If 

the repetition is greater than 10 times, only one of the entries is used in the calculation of the 

mean. Upon further investigation, it was determined that this was due to papers citing a single 

source (often the material property values reported in the paper describing the initial synthesis). 
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If the value was repeated more than ten times, we automatically discounted nine of the entries 

when fitting.  

 

Extracting active layer and device fabrication details often required digging through the paper’s 

supplementary information or references. D:A ratios were not consistently reported, requiring 

reviewers to refer to the paper’s methods section in order to calculate them from the total solids 

concentrations of the individual (D and A) solutions. Additionally, some papers reported either 

active layer thickness or spin coating speed, as they are related. Thus, the reporting of these 

parameters was inconsistent across papers. For optional fabrication features (solvent additive 

and concentration, thermal annealing temperature and time) it was assumed that if they were not 

reported, they were not used. 

 

 

2. Structural representations 

 

Machines cannot directly interpret molecular structure. Therefore, it is necessary to represent 

molecules and their structure in a machine-readable format. Choosing an appropriate 

representation is crucial to achieving accurate and interpretable models. We examined several 

methods for representing molecules in this task (Figure 2). The simplest such approaches 

represent a molecule with a binary value (one-hot encoding, OHE) or with values corresponding 

to material properties. OHE encodes the presence of a molecule in a data point as a binary (true-

false) bit in a vector wherein the position of each bit corresponds to a unique molecule, but 

provides no information about the identity or properties. When representing molecules simply with 

their material properties, we chose energetic quantities that are known to be relevant in OPV 

applications: HOMO and LUMO energy levels, the HOMO-LUMO energy gap (Eg
HL), and the 

optical excitation gap (Eg
opt).40 However, these descriptors still lack any information about 

molecular structure, which is relevant to solubility, solid-state packing and microstructure. Some 

information about molecular structure and physical properties can be encoded using Mordred 

descriptors, a set of computed numerical values describing two- and three-dimensional molecular 

properties, such as constitutional, topological, and electronic features.41 

 

Alternatively, molecules can be decomposed into substructures, or fragments, which are then 

encoded as arrays. Extended-connectivity fingerprints (ECFP) effectively capture local structural 

information and are a common cheminformatics tool for modeling structure-activity relationships 

and calculating structural similarity. ECFP breaks down molecular structures into circular 

topological fingerprints around each atom up to a set maximum radius and hashes the presence 

or absence of the substructure into a bit vector of set length – similar to OHE but for substructures. 

ECFP includes additional atomic characteristics including "heavy" atom count, valence minus the 

number of hydrogens, atomic number, atomic mass, atomic charge, the number of implicit and 

explicit hydrogens, and whether the atom is part of a ring.42 BRICS decomposes molecules into 

fragments of varying size based on common retrosynthetic and drug-like substructures, which are 

then encoded as arrays of varying length.43 This representation makes it possible to identify 

common substructures and analyze their impact on the overall molecular properties. 
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Molecular structure can naturally be represented by a graph where atoms are the nodes and 

bonds are the edges. However, encoding the graph is also non-trivial. Several line notations 

(string-based representations) have been developed for this purpose, wherein atoms are 

represented by specific characters and the bonds can be either explicit or implicit. SMILES 

captures both the topology and connectivity of atoms, enabling programmatic comparison and 

manipulation of molecular structures.44 SELFIES (Self-Referencing Embedded Strings) is a new 

system aimed at generative models in particular.45 Unlike SMILES which can have many invalid 

strings, every string of SELFIES characters is inherently valid. Recently, graph neural networks 

(GNN) have demonstrated state of the art performance on chemical regression tasks.46–49 

Molecules are represented as graphs; node and edge features are vectors associated with each 

atom or bond, describing properties of the node (ie. atomic number, hybridization, aromaticity 

etc.) or edge (ie. bond order, conjugation, stereochemistry). Global features contain information 

about the entire molecule. The GNN then aggregates the features for each node based on the 

graph connections into messages, which are then used to learn updated nodes and edges. The 

global node allows for message-passing between all the nodes in the graph, pooling the edge 

and node features into global features, and can be thought of as a node that is connected to all 

other nodes.50 A final aggregation layer takes the updated graph and outputs the final prediction. 

In addition, the embeddings generated by GNNs can be fed into other model architectures. To 

generate the graph embeddings, the GNN is trained to predict a relevant set of properties. During 

training, the GNN generates a learned representation (latent space) that captures information 

about the relationship between molecular structure and the target property. This representation, 

which is extracted from the embedding layer of the network, can then be used by another ML 

model to predict a separate target.47,51,52 
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Figure 2. Schematic representation of different 

structural encodings of the common donor 

polymer PTB7-Th. 

 

 

3. Model selection 

 

Another crucial aspect of building accurate models for predicting the properties of OPV devices 

is the choice of ML algorithm. Key considerations include whether the algorithm is appropriate for 

the task at hand (e.g., supervised, unsupervised, or reinforcement learning; classification or 

regression), the size of the dataset, whether information about the model’s uncertainty is required, 

the algorithm’s computational cost, and its interpretability. In this context, we evaluated eleven 

ML algorithms, which can be classified within five broad categories: non-parametric, linear, kernel-

based, tree-based, and deep learning (DL). Each algorithm has its own strengths, limitations, and 

assumptions. The choice of algorithm depends on the specific characteristics of the dataset, the 

nature of the problem, and the desired output. Researchers should carefully evaluate and select 

the most suitable model for their specific application in the context of organic photovoltaic devices. 

 

Model performance can be quantified based on a number of different parameters including R2 

score, root mean square error (RMSE), and mean absolute error (MAE). These metrics all capture 

different aspects of model performance. However, we have observed that the correlation 

coefficient (R) is occasionally reported instead of the R2 score, and as the sole performance 

metric.23,24,28–30 This is not a robust metric since R only captures the linear correlation between 

true and predicted values while the R2 score quantifies the deviation of the model prediction from 

the ground truth. However, while the Pearson R statistic is less strict in evaluating the model 

performance, a model with high R score may indicate modest success in training, and can still 

provide predictions that approximate the ground truth up to some correction term. In order to gain 

a better statistical understanding of the variability in model performance, cross-validation should 

be performed. This provides information on the variability of the model with different train and test 

sets. We achieve this by carrying out 5-fold cross-validation from seven independent random 

seeds which provide 35 different train and test set combinations. Given that the random seeds 

are independent, we can determine variability based on the standard error of the mean. Finally, it 

is also important to carefully apply feature scaling so as not to overestimate the model’s 

performance. The training set features should be scaled first, ensuring a standardized feature 

space that the models can learn from, and then that scaling should be applied to the test set 

features. If all features are scaled together, this can result in data leakage between the train and 

test sets, implicitly encoding information about the train set into the test set, providing 

overestimates on the model performance.53,54 

 

Linear methods are the simplest: they assume that there is some linear relationship between the 

input features and the target value, which can be used to predict the target value based on a 

linear combination of the input features. One of the greatest advantages to linear regression is 

the interpretability of the model: linear effects are easy to quantify, and to describe. As expected, 

multiple linear regression (MLR) is only usable with relatively low dimensional input data (material 
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properties), where it achieves an R2 score of 0.35±0.03. Linear models are not able to effectively 

handle binary (OHE, ECFP) or sequence-based (SMILES, SELFIES) features. 

 

Non-parametric models such as k-nearest neighbors (KNN) make no assumptions about the 

distribution of data from which a sample is drawn. The algorithm computes the distances from the 

nearest number of datapoints (k) around the new datapoint (i.e. test set) to predict the property of 

the new datapoint. The distance algorithm and k can be user-defined or vary based on the local 

density of points. KNN is simple and versatile but can be computationally expensive for large 

datasets.55 While KNN is most often used for classification tasks, it can also be employed for 

regression. In regression, KNN predicts the average target value of the k nearest points in the 

training set. Because the KNN algorithm simply predicts the average of the nearest data points, 

it performs remarkably well across many different representations. In fact, its performance is 

comparable to or better than much more complex models in the cases of OHE (R2 = 0.31±0.03), 

material properties (R2 = 0.43±0.03), SMILES and SELFIES (R2 = 0.41±0.03 and 0.41±0.04, 

respectively), and even graph embeddings (R2 = 0.43±0.03). 

 

Kernel methods apply a non-linear transformation (e.g. radial basis function, polynomial, sigmoid, 

etc) to the input features, known as the kernel trick, which can then be used in many different 

algorithms. Support vector regression (SVR) uses this approach to find an optimal hyperplane in 

the same or higher dimension that maximizes the margin (distance) between the hyperplane and 

the nearest data points while also minimizing the prediction error. SVR is effective for handling 

high-dimensional or non-linear data and outliers. However, it does not scale efficiently for very 

large datasets. Kernel ridge regression (KRR) is a regularization technique that takes advantage 

of the kernel trick in order to learn a linear relationship in the kernel space, and a non-linear 

relationship in the original space similar to SVR. Unlike SVR, KRR uses a squared error loss while 

SVR calculates the loss from the distance between the test set and the decision boundary of the 

hyperplane which is determined by the user (i.e. epsilon). Gaussian process regression (GPR) 

also uses the kernel trick, but it takes a Bayesian approach. GPs are probabilistic models that 

learn the probability distribution (posterior) over all data points. A prior distribution, typically a 

Gaussian distribution, over all possible functions to model the data must be specified, with the 

covariance of the distributions determined by the kernel function. The updated distribution or 

posterior distribution incorporates information from the prior distribution and the dataset using 

Bayes’ theorem which is then used to make predictions on new, unseen data points. It is 

particularly useful for small datasets and can capture complex relationships with uncertainty 

estimates. The biggest disadvantage of GPs is the high computational demand which remains a 

challenge for high-dimensional and large datasets. In general, KRR and GPR are out-performed 

by other methods on all representations except for ECFP, where the Tanimoto kernel56 can be 

employed, leading to good predictive performance (R2 scores of 0.52±0.02 and 0.56±0.02, 

respectively). On the other hand, SVR is comparable to the top methods for most representations, 

including R2 scores of 0.53±0.03 with ECFP and 0.56±0.03 with Mordred descriptors. 

 

Decision trees are commonly used for both classification and regression. Decision trees are 

interpretable and versatile, making them valuable for a wide range of applications in data analysis 

and prediction. They work by recursively partitioning the data into subsets based on feature 
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values, ultimately leading to a tree-like structure where each leaf node represents a predicted 

outcome. However, they are prone to overfitting since every data point can be explained with 

sufficient tree depth. This can be mitigated by using ensemble methods and carefully selecting 

the model parameters such as tree depth. We evaluate a number of different ensemble tree-

based methods including: random forest (RF), gradient boosted trees (XGBoost),57 natural 

gradient boosting with uncertainty estimation (NGBoost),58 and histogram gradient boosting 

(HGB), the implementation of which is inspired by LightGBM.59,60 Tree-based methods are able 

to handle non-linear relationships within the feature space, perform automatic feature selection,61 

and can be interpreted by analyzing the decision boundaries established by the trees. RF is an 

ensemble of decision trees trained on various bootstrapped subsets of the entire dataset, with 

features randomly selected for branches within the trees. A final prediction and uncertainty is 

attained by consensus of the ensembles. XGBoost is an optimized implementation of gradient 

boosting that sequentially combines many weak individual predictive models to form a strong final 

ensemble predictive model, with each subsequent model trained to correct the errors of the 

previous models. However, this comes with trade-offs in the form of lack of interpretability, trial-

and-error hyperparameter tuning, and higher computational cost. NGBoost is similar to XGBoost, 

also learning the errors of previous trees through boosting, but predicts the parameters of a 

distribution rather than the regression value directly. NGBoost is useful when uncertainty 

estimation is desired and  offers better interpretability through the analysis of the predicted 

distributions. HGB regression is much more efficient by virtue of first binning the input features 

and building the trees off of bins rather than floating point values. As a result, the number of split 

candidates and the computational cost are significantly reduced. As an added benefit, one of the 

bins is reserved for missing values, which is very useful for incomplete datasets as will be 

discussed below. The tree-based methods discussed above are almost indistinguishable in terms 

of predictive performance, except for XGBoost which performs slightly worse. Most importantly, 

tree-based methods perform best with ECFP (between R2 = 0.58±0.02 and 0.59±0.02), and 

Mordred descriptors (between R2 = 0.56±0.03 and 0.6±0.03) because ECFP and Mordred 

descriptors extract relevant chemical and molecular features unlike other molecular 

representations such as SMILES or one-hot encodings.  

 

We also evaluated two common DL model architectures: multi-layer perceptron (MLP) neural 

networks (NN) and GNNs. MLPs are versatile and powerful models that have been shown to be 

capable of learning complex relationships between the input features and target variables. These 

models are made up of multiple interconnected layers of neurons with non-linear activation 

functions (e.g. ReLU, sigmoid, tanh). The weights and biases of the neurons are optimized over 

many iterations using gradient descent and backpropagation via the connections between 

neurons to minimize the loss function (mean squared error). However, they require careful 

architecture design, parameter tuning, and large quantities of training data. GNNs are neural 

network architectures designed to handle data that can be represented in the form of a graph. 

GNNs can effectively learn relationships and patterns in molecular structures because local 

features can be influenced by distant atoms and bonds through message-passing.46,49,62 Here we 

utilize the GraphNets architecture for GNN prediction, and the ChemProp message passing 

networks for generating the molecular embeddings.47–49,63,64 
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The tree-based models (RF, HGB, XGB, NGB) significantly outperform the DL models (i.e. MLP 

and GNN) because they are insensitive to irrelevant features and can learn irregular functions.61 

Given the small size of our dataset, the limitations of DL models are pronounced. DL models can 

easily overfit to a small training set by learning from spurious correlations of irrelevant features 

and predict inaccurate output values. 

 

The best DL model (MLP trained on ECFP, R2 = 0.46±0.04) performs well because the ECFP 

representation extracts relevant features from the molecular structure,42 making the inherently 

challenging task of learning the most relevant features from sparse and low quantity data less 

difficult for the MLP algorithm. In addition, DL models are biased towards smooth functions which 

make it challenging for the model to learn from tabular data and discrete data, as is the case with 

this dataset.61 Interestingly, while the GNN regressor struggled due to the size of the dataset, the 

graph embeddings extracted from the GNN embedder combined with a tree-based or kernel-

based prediction model outperformed the direct prediction of PCE from the graph. 

 
Figure 3. Heatmap of model performance for predicting PCE from the molecular structure of the 

donor and acceptor materials as measured by the R2 score. Tree-based models (RF, XGBoost, 

HGB, and NGBoost) perform best on a dataset of this size (558 points). Structural representations 

based on ECFP and Mordred descriptors perform best across the board. Numbers in each cell 

correspond to the average R2 score of the model over seven independent five-fold cross-

validations±the standard error of the mean. Gray cells correspond to models that were not tested 

or failed to yield reasonable results (0 ≤ R2 ≤ 1). Heatmaps for the RMSE, MAE and R (for 

comparison to other published works only) scores are presented in Figure S1. 
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Independent of model choice, the best representations are found to be material properties, ECFP, 

Mordred descriptors, and graph embeddings (model performance in Table S1). OHE is a good 

baseline representation in that if the same model performs worse with a new representation, it is 

likely that the new representation is uninformative. OHE performs poorly across all of the models 

because none of the chemical, substructural, or atomic characteristics are captured. We find that 

most representations perform significantly better than OHE. However, when only including 

fabrication conditions, the nature of which will be detailed in Section 4, the difference is very small. 

This suggests that fabrication conditions alone are not very informative. None of the models that 

were evaluated were able to take advantage of the sequence information in SMILES and 

SELFIES, explaining their poor performance. Models such as long short-term memory (LSTM) 

networks may be useful. However, the dataset is likely too small for the LSTM network to 

accurately learn the syntax and grammar of string-based representations in addition to accurately 

learning the complex relationships between the representation and properties.65,66 

 

Despite the modest R2 scores, we find that our top-performing models (RF and HGB) either match 

or surpass the state-of-the-art for other similar OPV datasets (Figure S2).22,29 In particular, we 

achieve better predictive performance (R2 = 0.5±0.03) using only ECFP and the material 

properties available in the dataset in comparison to the performance (R2 = 0.4) achieved when 

using computed descriptors.22 

 

We also explored the ability of multi-output models for predicting PCE. While the most common 

approach is to predict PCE as the single output, PCE can also be predicted as the product of its 

components – JSC, VOC, and FF (Equation 1). We selected three models: two that natively support 

multi-output regression in scikit-learn (RF, HGB), and an artificial neural network (ANN) made in 

PyTorch, which is similar to the MLP described above (further details available in Methods). The 

models were trained concurrently on PCE, JSC, VOC, and FF. Model scores for PCE prediction 

were calculated using Equation 1 from the predicted JSC, VOC, and FF (Figure S3). Ultimately, 

model performance was not significantly different between directly predicting PCE (Figure 3) and 

predicting PCE from JSC, VOC, and FF. However, we observed that all models were able to predict 

JSC much better than VOC, despite heuristics suggesting a strong correlation between VOC and 

LUMOA – HOMOD,67 which suggests that this problem is worth further investigation. 

 

 

4. Introducing fabrication features 

 

Empirically, device fabrication parameters are known to play a role in determining the PCE of 

OPV devices.2,3 The same can be observed in our dataset. The most common donor and acceptor 

combination is PBDB-T and ITIC with 11 occurrences. The PCEs of the PBDB-T:ITIC devices 

range from 7.3% to 11.2%, a significant difference for top-performing devices in different papers. 

 

Encoding scalar device fabrication features such as energy levels, annealing temperature or the 

D:A ratio is straightforward. However, encoding categorical features is more challenging. In the 

case of OPV device fabrication, these are (i) solvent, (ii) solvent additive (if used), (iii) the hole 
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transport layer, HTL, and (iv) the electron transport layer, ETL. Similarly to the donor and acceptor 

materials, these categorical features could be encoded using one-hot encoding or as labels. 

However, as seen with OHE of the active layer materials, these encodings are not informative for 

a ML model. The HTL and ETL were encoded with their energy levels, as determined from 

literature reports (Table S2). The solvent and solvent additive were encoded with physicochemical 

descriptors obtained from the HSPiP database (Table S3).68 

 

The features beyond molecular structure were split into four broad categories: material properties 

(as in Figure 3), film fabrication parameters (fabrication), device architecture, and electrical 

characterization. As outlined in Figure S4, the features were combined into the different subsets 

when training models. The correlation between each set of features and the output variables were 

evaluated using both Pearson’s correlation coefficient (R) and Spearman’s rank correlation 

coefficient (⍴). R is a measure of the extent to which two variables are linearly correlated, while ⍴ 

is a measure of rank correlation (i.e. the extent to which two variables are correlated through 

some monotonic function). Feature correlations (R and ⍴) with PCE are relatively low (Figures 

S5-S8). Only some of the material property features show moderate correlation with PCE (|R| > 

0.3 or |⍴| > 0.3): donor HOMO and LUMO, and all acceptor properties (HOMO, LUMO, HOMO-

LUMO gap, and optical gap). These stronger correlations are expected from what is known about 

the function and design of OPV devices. Of the processing and device architecture features only 

active layer thickness and spin coating speed show weak correlation with PCE (|R| > 0.15 or |⍴| > 

0.15). There is also only moderate correlation at best (|R| ≤ 0.28 and |⍴| ≤ 0.25) between the 

selection of solvent and solvent additive with PCE. There are two potential explanations for this. 

First, the identity and physical properties of solvents and solvent additives are known to strongly 

influence the performance of OPV devices through a number of factors (e.g., material solubility 

and rate of evaporation).4,5 Second, it is possible that there is also a degree of spurious correlation 

between solvent or solvent additive and PCE because higher-performing materials are more often 

dissolved in particular solvents. 

 

As discussed in greater detail below, a small number of features (total solids concentration and 

spin coating speed in particular) were missing from many of the data points (Figure 4a). These 

features were excluded in order to maximize the size of the dataset on which the models were 

trained (Figure 4b). The top structural representations, ECFP and Mordred descriptors, were 

chosen for further evaluation with device fabrication features. 
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Figure 4. (a) Percentage (left) and amount of 

data (right) missing from key categories. (b) 

Relative (left) and absolute (right) dataset sizes 

of subsets of processing parameters. 

 

Although the KRR and GPR models with ECFP structural representations, which used the 

Tanimoto kernel, performed well, we were not able to evaluate their performance when device 

fabrication features are included. Although mixing different kernels is possible, it is unclear 

whether it would be meaningful and how the weights would be learned.51,56 The Tanimoto kernel 

calculates distance based on all 4096 ECFP features while device fabrication feature distances 

would be calculated one at a time. As such, assigning correct weights would be non-trivial. 

 

Instead, we evaluate top-performing algorithms with ECFP and Mordred representations: SVR 

and the tree-based algorithms (RF, HGB, XGBoost, NGBoost). When combined with device 

fabrication parameters, Mordred descriptors slightly outperform ECFP for encoding molecular 

structure of the donor and acceptor materials on average (Figure 5), however the difference is 

not statistically significant. For example, the performance of RF models increases from R2 = 

0.58±0.03 to R2 = 0.60±0.02.  

 

Additional features do not significantly increase performance over the models simply trained on 

molecular structure. Performance of all tree-based models except HGB degrades by ca. 0.01-

0.02 between models trained on molecular structure and material properties compared to models 
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trained on molecular structure and the fabrication subset of features. This can be attributed to the 

fact that the material properties features do not contain missing data and are closely tied to 

molecular structure. That is not the case for the other features in the fabrication and device 

architecture subsets. Furthermore, adding the device architecture subset of features significantly 

decreases model performance for all but HGB across both ECFP and Mordred molecular 

descriptors. This may be related to the imbalanced selection of HTLs and ETLs in OPV device 

fabrication. 

 

Empirically, device fabrication parameters are known to be important factors in OPV device 

performance. The lack of improvement in model performance when including these features 

suggests that it may be due to the quality of the training data. The top-performing model is HGB 

trained on Mordred descriptors and any of the device fabrication feature subsets (R2 = 0.61±0.03). 

This may be due to the fact that HGB can handle missing data points, and therefore is capable of 

learning input feature-target relationships even from data points with missing features (e.g. total 

solids concentration and spin coating speed). 

 

 
Figure 5. Heatmap of model performance as measured by the R2 score for predicting PCE from 

molecular structure and various subsets of OPV device fabrication parameters. Numbers in each 

cell correspond to the average R2 score of the model over seven independent five-fold cross-
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validations±the standard error of the mean. Heatmaps for the RMSE and MAE scores are 

presented in Figure S9. 

 

The top ML model architecture, HGB, using Mordred descriptors for molecular structure and 

trained on all available features achieves an R2 score of 0.61±0.03. The model predictions are 

poor for data points where the true PCE is below 5%. Predictions in this range are as high as ca. 

12%. This is to be expected because this range is under-represented in the dataset and therefore 

the model sees fewer examples on average. A similar phenomenon can be observed in the high-

PCE tail of the distribution. In both cases, predictive errors tend toward the points with the highest 

density in the dataset (ca. 10% PCE). Additionally, there are no predictions near the maximum 

PCE (15.71%). The same phenomena are observed for models with different molecular 

representations and data (Figure S10). 

 

Notably, a model trained on Mordred descriptors and the device architecture subset of features 

(Figure 6) is not significantly better than the same model trained on only Mordred descriptors, 

which achieves a R2 score of 0.6±0.03 (Figure 3). This suggests that the models’ performance is 

limited by the quality of the underlying data. 

 

 
Figure 6. Scatter plot of predicted PCE from the 

top model (HGB trained on the device 

architecture subset of features). Data is 

aggregated over all five folds of each of the 

seven randomly seeded cross-validation splits. 

The opacity of the hex-binned cells corresponds 

to the count of predictions within each cell. The 

dashed line represents ideal predictions. 

 

https://doi.org/10.26434/chemrxiv-2024-d20px-v2 ORCID: https://orcid.org/0000-0001-5238-0058 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-d20px-v2
https://orcid.org/0000-0001-5238-0058
https://creativecommons.org/licenses/by/4.0/


 

Finally, we evaluated the performance of the HGB model when including features related to 

charge carrier mobility: log(hole mobility) and log(electron mobility) from space charge-limited 

current (SCLC) diode measurements, as well as the ratio of the two. The resulting model 

performance is significantly better (R2 = 0.68±0.02, Figure S11) than anything else reported in the 

literature. However, including these values does not make a lot of sense from a practical 

perspective. In order to predict the PCE of a device, one would already need to have measured 

the hole and electron mobilities. This involves fabricating a device with a modified electrode 

architecture, and is therefore less efficient than simply measuring the device’s performance 

experimentally. 

 

 

5. Handling missing values in real-world data 

 

Datasets gathered from historical or literature sources are often imperfect. One of the most 

common drawbacks is incomplete reporting of values, or missing values. Our datasets face a 

similar challenge in that most of the processing and device fabrication features are missing data. 

As seen in Figure 4, the missing values are spread among a large percentage of the data points 

such that only 14% of datapoints (79) have all of the features that were considered (i.e., excluding 

polymer molecular weights and charge carrier mobilities). While roughly half of the features are 

not missing many values (less than 4%), total solids concentration, spin coating speed, and 

thickness features (active layer, HTL, ETL) are missing significant amounts of data. The lack of 

active layer, HTL, and ETL thickness data is understandable given the difficulty of measuring 

thickness on the tens to hundreds of nanometers scale. However, not reporting total solids 

concentration (21% missing, 115 data points) and spin coating speed (52% missing, 292 data 

points) cannot be easily excused as these are fundamental and easily obtained experimental 

parameters when fabricating OPV devices. 

 

To address the issue of missing values, we can try to impute data. Imputing can help to fill in 

missing data based on various statistical treatments and assumptions about its distribution. We 

explored imputing data using some of the most common imputation techniques: mean, median, 

most-frequent, uniform- and distance- kNN, and iterative. The simplest imputing strategies are 

mean, median and most-frequent, which replace missing values with the mean, median and mode 

of the available data, respectively. Mean imputing is most useful when the standard deviation of 

the distribution is relatively small and data is missing at random. On the other hand, median 

imputing is more suitable for distributions where there are outliers because it is less sensitive to 

them. Finally, most-frequent (or mode) imputing is not suitable for imbalanced distributions, as is 

the case for some of the features in our dataset. In kNN-based imputing strategies, missing values 

are completed using the mean of the k (usually five) nearest samples in the dataset. They 

leverage the similarity between instances and are effective when data points with similar attributes 

tend to have similar outcomes. The distance between samples can be measured in two ways. 

Uniform kNN imputing assigns equal weights to all neighboring points, whereas distance-based 

kNN imputing weighs neighbors by the inverse of their distance. Therefore, closer points will have 

a greater influence than those that are more distant. Iterative imputation, also known as multiple 

imputation, is an advanced technique that involves an iterative process to fill in missing values. 
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The process is usually based on modeling the relationships between features, and iteratively 

refining the imputations. Multiple imputations are combined to provide a more robust estimate of 

the missing values, considering the uncertainty associated with the imputations. The downside of 

iterative imputing is that it is computationally expensive and does not scale well. 

 

While imputing data can be a valuable technique to enhance the quality and completeness of a 

dataset, it can also be unproductive (no change in model performance) or even counterproductive 

(degraded model performance). If the proportion of missing data is large (30-40%), imputing may 

lead to inaccurate results. It may also be counterproductive in instances where there is a pattern 

to which data is missing, or where missing data is associated with specific characteristics or 

factors because the ML model can potentially learn from such correlations. Finally, imputation 

may be challenging in datasets with intricate dependencies between variables, as is likely the 

case for OPV materials and devices. Ultimately, imputing data did not change model performance 

in any measurable way (Figure S12). This suggests that the models are limited not only by the 

quantity of data, but also by their quality. 

 

 

6. Analyzing the dataset 

 

Device performance: 

A zeroth order approximation of the quality of the dataset can be easily obtained by simply 

examining the distribution of target value, PCE. The average of the PCE values in the dataset is 

8.43±3.09% and the median is 9.02%, with maximal and minimal values of 15.71% and 0.01%. 

This covers a large range of the PCE values reported in the literature with the data skewed more 

toward large values. However, the PCE values top out at 15.71%, which can be explained by the 

age of the included papers. The distributions of values that make up the PCE equation are similar, 

although VOC values are distributed more normally (Figure S13). To ensure the accuracy of the 

original PCE data, we calculated the number of PCE values that deviated from the PCE calculated 

from the analytical equation. We found that 101 (18.1%) of original PCE values deviated by more 

than 1% multiplied by the calculated PCE. This allowed us to quickly identify problematic data 

points, which were most often due to human errors in data entry: either 𝐹𝐹 ×  100, or data was 

taken from the wrong device. Those points were amended, and the calculated PCE was used as 

the final target variable. 

 

Materials properties: 

There are 143 unique donor polymers, and 261 unique acceptor molecules. As seen from the 

heatmap in Figure S14, there are four common donors (PTB7-Th, J71, P3HT, and PBDB-T) and 

three common acceptors (ITIC, ITIC-4F, and m-ITIC). This is consistent with the field’s general 

approach to materials design: scientists either design a donor or acceptor, and then that material 

is tested with a well-understood and easily available benchmark material. However, this results in 

sparsity and imbalance within the literature. Additionally, most combinations of materials are 

unexplored, and the D:A combinations that are present in the dataset mostly occur once or twice. 

Only for pairs of the most common materials (e.g., PTB7-Th and ITIC) are there a significant 

number of duplicate reports. 
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Donor material energy levels (HOMO, LUMO) and energies (Eg
opt, Eg

HL) do not fit cleanly within 

a distribution (Figure S15) primarily due to the low number of unique molecular structures (143), 

while the same features for acceptors form smoother distributions due to the larger number of 

unique molecular structures (261). In both cases, over-represented materials are clearly visible 

by the large counts in material property values. Additionally, it should be noted that measuring 

energy levels of materials is often imprecise, and that there are known issues with the most 

common technique, cyclic voltammetry (CV).39 Polymer properties are much less frequently 

reported. We were only able to find 202 values of Đ (36% of the dataset), 185 for Mn (33%), and 

106 for Mw (19%). Few papers even mention polymer molecular weight or dispersity, and many 

that do simply refer to a previous paper where the value was initially reported. The molecular 

weights and dispersities of commercial materials are barely reported. 

 

Active layer processing: 

Here, the dataset begins to reflect the true degree of imbalance in the literature data (Figure 

S15). This can be attributed to human propensity for round numbers,69–71 as well as picking the 

most convenient option. For example, although the D:A ratio is incredibly easy to vary, the most 

common values are 1 and 0.5 (i.e., 1:2 D:A). Similarly, only three solvents (CF, CB, o-DCB) and 

only two solvent additives (CN, DIO) make up the vast majority of entries. Consequently, relatively 

little of the solvent property space has been sampled (Figures S16 and S17). 

 

Total solids concentration is most often 20 mg/mL even though there are reports of 

concentrations between 6 mg/mL and 37.5 mg/mL (Figure S15 and Table S4). Additionally, data 

points are concentrated around round numbers such as 10, 15, 20 and 25 mg/mL. Unfortunately, 

115 entries did not have any information about total solids concentration (or individual solution 

concentration from which we could calculate TSC). This hole in the dataset is particularly 

egregious since it is one of the easiest numbers to report. The fact that 21% of the entries do not 

have this data suggests that we as a community of editors and reviewers are not paying close 

enough attention to the reproducibility of published data. The same can be applied to another 

parameter that can be recorded with ease: spin coating speed. The two most common values are 

2000 rpm and 3000 rpm. However, only 48% of entries (266) reported spin coating speeds even 

though the entries in this dataset are restricted to those devices fabricated by spin coating. The 

same biases are also evident in the distributions of annealing temperature and time, although 

these data are reported more regularly. Finally, although the distribution of active layer thickness 

values is quite smooth and uniform, the values are centered at 100 nm, with the mode being 

exactly 100 nm. This is statistically unlikely, and is characteristic of either rounding from human 

bias, inaccurate measurements, or both. 

 

Device architecture: 

The same bias in variable selection is observed in the distribution of HTL layers, where MoOx 

and PEDOT:PSS make up the vast majority of interlayers (Figure S15). The choice of ETL is only 

slightly more varied with Ca, PDINO, ZnO, and PFN-Br making up the vast majority of ETLs. As 

with solvents and solvent additives, the consequence of these selections is that relatively little of 

the interlayer or energy level range has been explored. However, this is likely due to the relative 
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difficulty of finding appropriate interlayer materials compared to solvents and additives. Reporting 

of interlayer thicknesses is sparse (360 for HTL, 256 for ETL) and biased toward round numbers 

(10, 20, 30 nm) as well. 

 

 

Conclusions 

 

We have curated a first-of-its-kind dataset of OPV device performance, molecular structures, and 

device fabrication parameters, with 558 data points. Assembling the dataset proved to be a 

significant challenge due to the heterogeneity of data reporting practices in the literature, namely 

the lack of consistent reporting requirements for device fabrication details and a lack of consistent 

reporting formats. We then explored a variety of molecular structure encoding methods (from one-

hot encoding to graph embeddings) and ML models (from MLR to GNN), and discussed the 

advantages and disadvantages of each choice. 

 

We found the HGB model, a gradient-boosted decision tree-based algorithm, to be best at 

predicting PCE from molecular structure, and from molecular structure and device fabrication 

features. Despite modest R2 scores of ca. 0.6, this reflects the state-of-the-art predictive 

performance for PCE. The same HGB algorithm outperformed models trained on a dataset almost 

twice the size (ca. 1000 data points) of ours,22 and matched the performance of models when 

trained on a dataset more than double the size of ours (ca. 1300 data points).29 The performance 

of the HGB algorithm may be in part attributed to its ability to extract maximal information by 

incorporating missing values – of which there are many – with its binning strategy.59 

 

There are a number of ways in which model performance could be improved. Firstly, the “big p, 

small n” problem – where the number of variables or features (p) is much larger than the number 

of observations or data points (n) – might be overcome by simply adding additional data points. 

The quality of the dataset could also be improved by including more varied device fabrication 

procedures for each material combination. The current iteration of the dataset primarily includes 

only the top performing device from each donor:acceptor combination found in a paper. However, 

there are often others that may provide additional information despite lower PCE values. 

Furthermore, most reported PCE values correspond to the best single device, and not an average 

of multiple replicates, due to current reporting practices. 

 

Our findings underscore the challenges stemming from mining literature data and inherent data 

quality issues. Although recent advances in literature mining with large language models are 

promising, the ultimate problem is one of data quality and not quantity.72–74 Standardizing data 

reporting in OPV-related publications becomes crucial. Establishing minimum reporting standards 

will streamline literature mining and enable the adoption of ML methodologies within the OPV 

domain. There has long been discussion in the literature about standards for reporting PCE 

measurements.75–79 While there are currently no standards or requirements for reporting how OPV 

devices are made, similar steps forward have recently been proposed for inorganic phosphors80 

and perovskite photovoltaics.81 

 

https://doi.org/10.26434/chemrxiv-2024-d20px-v2 ORCID: https://orcid.org/0000-0001-5238-0058 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://www.zotero.org/google-docs/?JlkDcN
https://www.zotero.org/google-docs/?kHo9mP
https://www.zotero.org/google-docs/?09fp8f
https://www.zotero.org/google-docs/?GstrBA
https://www.zotero.org/google-docs/?zX1y41
https://www.zotero.org/google-docs/?gHi9K6
https://www.zotero.org/google-docs/?cn9x1c
https://doi.org/10.26434/chemrxiv-2024-d20px-v2
https://orcid.org/0000-0001-5238-0058
https://creativecommons.org/licenses/by/4.0/


 

There is much that can be learned from the ongoing discussions within the organic chemistry 

literature by recognizing the similarities between predicting OPV device performance and 

predicting reaction yields in organic chemistry sheds light on shared complexities. Both domains 

face challenges involving two molecular structures as input features, processing variables, sparse 

data, non-smooth response surfaces, and biases in reported data, notably the underreporting of 

negative results.69,82–85 Acknowledging these parallels emphasizes the broader challenges in 

predictive modeling within chemistry-driven domains. Addressing these challenges necessitates 

enhanced dataset quality and size, and standardized data reporting.84,86,87 

 

This comprehensive understanding highlights the pivotal role of data quality, underscores the 

importance of standardized reporting practices, and emphasizes the collective effort required to 

enhance dataset quality and modeling techniques, ultimately unlocking the full potential of ML in 

driving innovation within the OPV and broader chemistry domains. 

 

 

Methods 

 

All data, code, and figures pertaining to this work are publicly available in a GitHub repository: 

https://github.com/aspuru-guzik-group/Beyond-Molecular-Structure-ML-for-OPV-Materials-

Devices. 

 

1. Encoding molecular structures 

 

The molecular structures in the original dataset were provided as two large ChemDraw files.23 To 

automatically extract SMILES strings, the ChemDraw files were first converted to structure-sata 

files (.sdf), which could then be converted into a pandas dataframe by RDKit’s 

Chem.PandasTools module. However, the labels corresponding to each structure could not be 

maintained during the conversion. As a result, structures were manually cross-referenced to the 

ChemDraw files and against the literature. Through this process, we found many identical 

structures with different labels, and different structures with the same labels. 

 

In the file, sidechains were shortened to numbered R groups (e.g. R1, R2), each of which 

corresponded to a different structure. Automatic R group replacement as implemented in RDKit’s 

ReplaceSubstructs was not possible because SMILES and SMARTS cannot process the 

presence of different R groups. To automate the sidechain assignment process, we developed a 

method that uses placeholder metal atoms. Each R group was mapped to a placeholder metal 

atom and to the corresponding SMILES string. First, the R groups in the SMILES strings were 

replaced with the corresponding metal atoms. Then, the metal atoms were replaced with the full 

sidechain in the resulting RDKit Mol object using RDKit’s ReplaceSubstructs function. Finally, the 

cleaned structure was returned as a canonicalized SMILES string. 

 

2. Structure verification 
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When cleaning the data, we found errors in the structural assignments of the original ChemDraw 

files, as well as in our original conversion from ChemDraw to SMILES. One of the most common 

errors were misassigned sidechains. Given the dataset’s size (558 data points with 143 unique 

donors and 261 unique acceptors), we implemented a semi-automated cleaning procedure. 

Structures with multiple unique labels were identified automatically. Tanimoto similarities were 

calculated for each pair of unique donor or acceptor labels. When the Tanimoto similarity was 

unity, we reviewed the structures manually. Most often, the same molecular structure was labeled 

with different names – a common issue in the literature. In those cases, we selected a principal 

label and replaced all occurrences with that label. Incorrect structures or incorrect sidechain 

assignments had to be verified manually because no suitable automated solution was identified. 

For this, we wrote a script to iterate through each unique SMILES, display the structure, check it 

against the structure in the associated paper (by DOI), and apply corrections if necessary. 

 

3. Gathering device data 

 

Data are not reported consistently across the literature, whether that be format, completeness or 

location in the manuscript. When extracting data from papers, certain steps were taken as 

precautions or to maximize the amount of data extracted. Below we provide as thorough a 

description as possible of our procedure in order to record possible sources of error, and to guide 

readers. 

 

Broad caveats: 

● We frequently found that different values were reported in the main text and SI, with little 

information available to determine the correct value. We either selected a value that was 

most logical based on our expertise, or took the average of the two values if they were 

close. 

● Certain features were often simply reported as ranges (e.g., spin speed, thicknesses, etc.). 

In these instances, we entered the average of the minimum and maximum values. 

 

 

Material properties: 

● HOMO and LUMO energies measured by ultraviolet photoelectron spectroscopy (UPS) 

were prioritized, followed by cyclic voltammetry.39 

● When LUMO energies were not directly reported, HOMO + Eg
opt was accepted. 

● Eg
HL was calculated from the difference between the fitted HOMO and LUMO energy 

values. 

● HOMO/LUMO: Identical donor and acceptor molecules had variable HOMO/LUMO levels 

from paper to paper. Thus, both previous papers from the same research group or widely 

accepted universal UPS measurements were utilized in place of the omitted/variable 

values. Furthermore, when values for Eg
opt were not reported, values were extracted by 

extracting the absorption onset from figures using WebPlotDigitizer 

(https://automeris.io/WebPlotDigitizer/).88 

● Information about polymer molecular weight was very challenging to obtain. Mw, Mn and Đ 

are not consistently reported. Often, we were required to follow a trail of references 
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through a group’s publications to find the original synthesis, and assumed that the 

molecular weight distribution of the polymer was the same in subsequent reports. 

● If two of Mw, Mn and Đ were reported, the third value was calculated. 

 

Active layer fabrication: 

● D:A ratios were not always reported, but could often be calculated based on the reported 

donor and acceptor concentrations. Additionally, when papers reported data from multiple 

devices with different D:A ratios, they often reported a range of D:A ratios (e.g., 1:1.1 to 

1:1.6). In this case, we took the center of the range of weight ratios (e.g., 1:1.35). 

● When solvents were presented as a mixture, they were often reported as a percentage by 

volume (% v/v). From this, a ratio of the two solvents presented was calculated (e.g., 15%, 

v/v = 6.667:1). 

● When recording reported solvent additives, some papers would include the additive, but 

not provide the additive percentage. In these cases, the solvent additive was included, 

while the concentration (%) was omitted, resulting in an incomplete data point. 

● If a solvent system was reported as a ternary mixture (e.g., o-DCB:CB:DIO 1:1:0.3), the 

minority solvent was recorded as an additive and its concentration was calculated from 

the ratio. 

● If active layer thickness for a particular device was not reported in a paper, we substituted 

the thickness of a similar device in the same paper if the total solids concentration and 

spin coating speed were the same. Otherwise, the data point was omitted. 

 

Device performance characterization:  

● Hole and electron mobilities were often not reported or reported inconsistently. HOD or 

EOD mobilities were recorded only if measured for the blend, and not for single material 

devices 

● Reports of charge extraction by linearly increasing voltage (CELIV)89 measurements for 

the “faster carrier” were excluded as this did not specify whether hole or electron mobility 

were recorded. 

● From each set of parameters of VOC, JSC, FF, we calculated the PCE with the formula PCE 

= VOC x JSC x FF. When comparing these with reported values within the dataset, we 

looked for errors > 1% of the PCE values. In these cases, we compared the values in the 

dataset and those in the relevant paper. We often found that values had simply been 

misreported. The most common errors were: (i) inconsistent reporting of FF as either a 

percentage or a fraction (i.e. a 100-fold discrepancy in FF), (ii) values reported for a 

different device, or (iii) reported PCE had rounding errors. Because of these 

discrepancies, we chose to use our calculated PCE instead of the reported PCE values. 

 

4. Cleaning fabrication data 

 

The weight ratio of donor to acceptor materials in OPV formulations is most commonly reported 

as “donor:acceptor”, e.g. 1:1. The ratios were recorded using this convention when gathering the 

data. To convert this feature into a scalar value, we calculated the ratio of donor to acceptor. For 

example, 1:1.5 would be encoded as 0.667. 
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To reduce the number of incomplete data points, we replaced annealing temperatures and times, 

as well as solvent additives with default values. Devices that were not annealed were assigned 

default annealing temperatures of 25 ºC and times of 0 minutes. Formulations that did not use a 

solvent additive were assigned a solvent additive label of “_” and an additive concentration of 0%. 

 

Common donor and acceptor materials were assigned many different energy level values in the 

dataset. However, our models have no way of accounting for that variability, which can arise from 

a number of possible sources.39 To standardize the reported energy levels, we fit Gaussian 

distributions to any material with two or more unique energy level values, and replaced them with 

the fitted mean. However, certain materials were reported to have the same exact energy level in 

multiple papers. Upon further investigation, we found that this is due to works simply reporting a 

value from another paper. In instances where the same energy level value occurred more than 

ten times for a given material, we only counted it once when performing the Gaussian fitting. 

 

5. Pre-processing 

 

Molecular encodings (one-hot, SELFIES, BRICS, ECFP) and descriptors (Mordred) were 

generated from canonical SMILES. One-hot encodings were generated using Scikit-Learn’s 

OneHotEncoder class. SELFIES strings were generated using the SELFIES package’s encoder.45 

BRICS representations were generated using RDKit’s Chem.BRICS module.90 ECFPs were 

generated separately for the donor and acceptor and concatenated together using RDKit’s 

GetMorganFingerprintAsBitVect method.90 To be able to fully disambiguate molecules with 

identical conjugated cores only differing by sidechain length, we used ECFP10 fingerprints with 

2048 bits (Table S5). Mordred descriptors were generated using the Mordred Python package.41 

All Mordred descriptors with null values or for which the variance in the dataset (donor and 

acceptor molecules) was zero were removed. Graph embeddings were generated by training a 

GNN to predict the HOMO, LUMO, and  Eg
opt for each molecule and then extracting the resulting 

global feature before the final prediction layer. These embeddings implicitly contain information 

about the structural and optoelectronic properties of the molecules, which are then appended 

together for the prediction task. 

 

SMILES, SELFIES, and BRICS are alphanumeric representations of variable length, incompatible 

with ML models. Therefore, they must be tokenized (i.e., converted into numeric representations) 

and “padded” so that all vectors are of the same size. Tokenizing creates a mapping between the 

unique symbols in a representation and integer values. The mapping is used as a reference for 

encoding each individual molecule. In order to achieve a consistent length across the dataset, the 

tokenized sequences were adjusted to the length of the longest sequence by post-padding with 

the appropriate amount of zeros. 

 

When training exclusively on molecular structures represented by ECFP, the Tanimoto kernel 

was used for KRR and GP models. 
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As described in Figure S4, models trained on molecular structure and processing parameters 

were supplied with specific subsets of the features, and data points with any missing values were 

dropped. Data points with missing values were not removed from the training set of the HGB 

models. When descriptors were used for solvent additives, devices in which solvents additives 

weren’t used were substituted with zeroes, except for the HGB models in which case they were 

left as missing values. 

 

Certain models such as MLP are sensitive to the scale of feature values. To mitigate this, we 

applied min-max and/or standard scaling using Scikit-Learn’s MinMaxScaler and StandardScaler. 

In the case of GPs, all features were scaled using the uniform QuantileTransformer. Scaling was 

also applied to the target values. Typically, target values were subjected to standard scaling, 

except in the case of MLP model architectures where min-max was also used. Crucially, the 

features were scaled based on the values in the training set. Scaling training and test sets together 

introduces data leakage into the model, which results in overestimation of model performance.53,54 

 

6. ML model optimization and evaluation 

 

The multioutput ANN was built using PyTorch consisting of 1 input, 1 embedding, 2 ortholinear 

layers and 1 output layer with 3 output nodes for each target variable. The GNN prediction model 

was built using Tensorflow and Sonnet, using the GraphNets architecture.47,50,91 For the graph 

embeddings, two separate networks were used for the donor and acceptor molecules, before the 

final embedding was appended to give a prediction, similar to work done in Greenman et al.92 The 

embedder GNNs, based on the ChemProp architecture,49,64 are trained to predict the HOMO, 

LUMO, and optical gap energies from the molecular graphs, and the embeddings are the global 

pooled features before the final prediction layer. The multi-output GNN model was trained using 

the mean squared loss averaged over the properties, until early stopping was reached at the 

minimal validation loss, with a 85/15 train/validation split. The GP model was built using 

GPyTorch, with the Tanimoto kernel for the bit-vectors (ie. fingerprints, and one-hot encoding 

based features), and the radial basis function kernel for all other features.51,93 

 

Model performance was evaluated with 5-fold cross-validation.53 In addition, we used seven 

different random seeds for 5-fold splitting. In this way, we generated 35 different training and test 

sets. 

 

Models that were deemed to be more sensitive to hyperparameters (KNN, MLP) were subjected 

to an inner loop of Bayesian hyperparameter optimization using the BayesSearchCV class of 

Scikit-Optimize before being trained on the full training set.94 The Bayesian cross-validation 

search performs 5-fold cross-validation on the training fold and Bayesian optimization to estimate 

the ideal model hyperparameters efficiently. The hyperparameters from the best model in the 

inner loop were used for the model trained on the full training set. Ranges for hyperparameter 

optimization were selected based on common values and expert intuition. 

 

To assess overall model performance, we evaluated average R2, root-mean-square error 

(RMSE), mean absolute error (MAE), and Pearson correlation coefficient (R) over the 35 test sets. 
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Variation in model performance was assessed based on the standard error over the 35 test sets 

with a sample size of 7 (the number of independent seeds). Predictions, scores and parity plots 

for all models can be found in the GitHub repository. 
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