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Graphical Abstract 

 

Abstract 

Toxicity assessment of environmental chemicals is an integral aspect of assessing the 

sustainability of flora and fauna constituting the aquatic and terrestrial ecosystems. A wide 

variety of living organisms are constantly being exposed to these chemicals, most of which 

generate toxic effects. Due to the lack of experimental toxicity data of environmental 

chemicals, there arises a need to fill data gaps by in silico approaches. One of the most 

commonly used in silico approaches for toxicity assessment of small datasets is the 

Quantitative Structure-Activity Relationship (QSAR), which generates predictive models for 

the efficient prediction of query compounds. However, the predictions from these models are 

often erroneous for some compounds, and the reliability of the predictions from QSARs 

derived from small datasets is often questionable from a statistical point of view. This is due to 
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the presence of a larger number of descriptors as compared to the number of training 

compounds, which reduces the degree of freedom of the developed model. To reduce the 

overall prediction error for a particular QSAR model, we have proposed here the computation 

of the novel Arithmetic Residuals in K-groups Analysis (ARKA) descriptors. We have reduced 

the number of modeling descriptors, keeping the entire chemical space and preventing the loss 

of chemical information. We have used here five representative environmentally relevant 

endpoints (skin sensitization, earthworm toxicity, milk/plasma partitioning, algal toxicity, and 

rodent carcinogenicity of hazardous chemicals) with graded responses to which the ARKA 

framework was applied for classification modeling. On comparing the performance of the 

models generated using conventional QSAR descriptors and the ARKA descriptors, the 

prediction quality of the models derived from ARKA descriptors was found much better than 

the models derived from QSAR descriptors signifying the potential of ARKA descriptors in 

ecotoxicological classification modeling of small data sets. For the ease of users, a Java-based 

expert system has been developed that computes the ARKA descriptors from the input of 

QSAR descriptors.    

Keywords: ARKA descriptors, Machine Learning, Activity cliffs, Modelability, K-groups 

analysis    

 

Environmental significance 

The experimental data of chemical hazards for hundreds of endpoints being very limited, 

chemical regulatory authorities accept model-derived data for data-gap filling. However, the 

available sparse data for several endpoints are insufficient to develop statistically meaningful 

models forcing the modelers to use limited chemical features for final model development 

compromising the applicability domain and wide usability of the models for predictions. The 

problem of small data set classification modeling of ecotoxicity endpoints is addressed here by 
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introducing the concept of Arithmetic Residuals in K-groups Analysis (ARKA) as a novel 

method of dimensionality reduction which demonstrates enhanced external prediction quality 

compared to the corresponding quantitative structure-activity relationship (QSAR) models.  

 

1 Introduction 

A vast array of organic molecules found in the environment can potentially induce disruption 

in aquatic and terrestrial ecosystems [1]. This is brought about by different structural, 

physicochemical, and electronic properties of such molecules that enable them to exert toxic 

effects on different species of flora and fauna. A growing area of environmental research is to 

assess the ecotoxicological risk of these harmful chemicals using non-animal alternative 

approaches. A real threat to the entire biodiversity is the lack of experimental data on the 

toxicity profile of most of the chemicals existing in the environment that have resulted in a 

large data gap. Entry of such substances inside the living system, either directly or by the 

process of biomagnification, can cause a variety of adverse effects including the disruption of 

the endocrine system.  Therefore, the identification of these unknown “hazardous materials” is 

of prime importance for their safe disposal which will reduce the disruption in the ecosystem. 

Although extensive research is going on for the experimental toxicity assessment of these 

substances, they are often time-consuming and economically less viable. The limited 

availability of experimental ecotoxicological data warrants the need to shift toward 

computational methods for the quick, easy, and accurate predictions of the endpoints concerned 

[2, 3]. This is in line with regulatory bodies like the Organisation for Economic Co-operation 

and Development (OECD) [4] which encourage the use of in silico approaches, thus reducing 

time, animal suffering, expenses, and manpower associated with animal experimentations [5]. 

Since in silico approaches generate quick and accurate results, they can efficiently be used for 

data gap-filling [6]. This approach is also acceptable to regulations like the European Union 
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Registration, Evaluation, Authorisation and Restriction of Chemicals (EU REACH) [7] which 

accepts data generated from non-animal approaches. Since in silico approaches have 

worldwide acceptability, they can be considered useful tools to fill ecotoxicity data gaps, thus 

enabling the identification of toxic substances and their corresponding toxicophores.  

Among the in silico prediction approaches, the Quantitative Structure-Activity Relationship 

(QSAR) [8] has been one of the go-to methods for computational model development and 

predictions. In its basic form, QSAR generates a simple mathematical model that correlates 

various structural and physicochemical features with the endpoint of interest [8]. With the 

advancements in this field, researchers have identified that the features may not necessarily be 

linearly correlated to the response values, thus introducing the concept of a non-linear 

relationship. To accommodate such correlations, various Machine Learning (ML) modeling 

algorithms have been adopted that can effectively incorporate non-linear relationships [9,10]. 

These models are developed using a variety of algorithms that efficiently reflect the structure-

activity relationship. However, the only drawback that can be associated with the application 

of different ML modeling algorithms is the lack of interpretability of the features since most of 

the ML models have a “black box”, although the recent innovations have focused on the 

explainability of the ML models by introducing concepts like SHAP analysis [11] and Swiss 

knife [12]. The limitations associated with the QSAR approach are exemplified quite often in 

the case of small datasets. Due to the limited number of compounds, the models should ideally 

be developed using a lower number of descriptors to comply with the statistical requirements, 

but this reduces the reliability of prediction since it compromises encoding the proper chemical 

information. There are two ways to deal with it: the first is to adopt non-statistical approaches 

like Read-Across [13, 14], and the second is to adopt dimensionality reduction techniques to 

reduce the size of the descriptor matrix. While the former approach primarily does not reflect 

the quantitative contribution of the descriptors, the latter approach adheres to the QSAR 
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methodology. In the recent past, several studies on the applications of various in silico 

methodologies have been reported to accurately predict various ecotoxicity endpoints. Hung 

and Gini used a deep learning-based Quantitative Structure-Activity Relationship (QSAR) 

modeling to predict the mutagenicity of diverse chemicals [15]. Chatterjee et al., performed 

quantitative Read-Across using small datasets of nanoparticles to predict their toxicity [16]. 

Banerjee and Roy integrated the concept of Read-Across into a statistical modeling framework 

and developed quantitative Read-Across Structure-Activity Relationship (q-RASAR) models 

to predict the androgen receptor binding affinity of environmental chemicals [17]. Srisongkram 

ensembled the predictions of Read-Across and Machine Learning-based QSAR to develop a 

stacked model for the prediction of skin cytotoxicity [18]. A simple computational workflow 

for the prediction of environmentally relevant endpoints may be important for regulatory 

purposes from the viewpoint of transparency and easy transferability of the models, as already 

reported in several previous studies [19, 20]. 

Small dataset modeling using the Quantitative Structure-Activity Relationship (QSAR) 

approach has been a very challenging job since a QSAR modeling data set needs to possess 

sufficient data points to perfectly train itself. To address this problem, different techniques like 

synthetic sample generation [21], double cross-validation [22], consensus predictions [23], etc., 

have been used in the literature. The deficiency of sufficient data points warrants the QSAR 

modeler to include a higher number of features (descriptors) to establish a linear relationship 

between the data points. In such cases, the statistical aspect is compromised as the ultimate aim 

of a modeler is to develop highly predictive models using a lower number of descriptors. 

Moreover, the application of a higher number of descriptors coupled with ML algorithms 

generally tends to generate overfitted models that may not perform well on an external set of 

data. On the flip side of the coin, using a lower number of descriptors may not be able to 

develop robust and effective models since there is a loss of chemical information associated 
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with the reduction in the number of descriptors. This calls for the development of new 

techniques that use a lower number of descriptors (i.e. a lower degree of freedom) while 

retaining the chemical information. This represents a form of dimensionality reduction 

technique that reduces the size of the descriptor matrix, yet retains the chemical information. 

While dimensionality reduction techniques like Principal Component Analysis (PCA) [24] and 

Partial Least Squares (PLS) [25] are already in use, we have presented here a simple form of 

dimensionality reduction technique – the ARKA descriptors, that effectively encode the 

chemical information of various descriptors in a particular form of computationally derived 

descriptors using an (A)rithmetic (R)esiduals in K-groups (A)nalysis approach. While 

developing models using a higher number of descriptors covers a wider chemical space as 

compared to models developed using a lower number of descriptors, such derived descriptors 

can encode the complete chemical information into a limited number of descriptors, thus not 

compromising the applicability domain of the developed models.   We apply the suggested 

ARKA descriptors to classification modeling of five small data sets of environmental context 

which were previously analyzed using linear discriminant analysis using conventional QSAR 

descriptors. We aim to examine the impact of using the novel descriptors on the external 

predictivity of the models. Additionally, we also apply different machine-learning-based 

classification modeling approaches for comparison purposes. 

 

2 Materials and Methods 

2.1 Collection of environmental toxicity datasets 

To evaluate the performance of the proposed novel descriptors and to check their performance 

on external data sets, we have taken five different environmental toxicity datasets. We have 

judiciously taken five sample ecotoxicity datasets, containing a limited number of data points, 
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for which previously reported classification-based QSAR models were already reported. The 

purpose of selecting such data is as follows:  

1. These data sets contain a limited number of data points. We are aiming here to address 

the problems of classification modeling of smaller data sets starting with a relatively 

large pool of descriptors. 

2. The availability of the already-reported QSAR modeling descriptors has helped the 

proper comparison of the conventional QSAR models with the models developed using 

ARKA descriptors.   

Dataset 1 represents the graded skin sensitization data of diverse organic chemicals as reported 

by Banerjee and Roy [26]. Dataset 2 consists of graded data for the chemical toxicity of 

earthworms as reported by Roy et al. [27]. Dataset 3 represents the graded data for milk/plasma 

concentration ratios of drugs and environmental pollutants as reported by Kar and Roy [28]. 

Dataset 4 consists of graded data on chemical toxicity towards Pseudokirchneriella subcapitata 

as reported by Pramanik and Roy [29]. Dataset 5 reports the graded form of rodent 

carcinogenicity potency data from the work of Kar et al. [30].  

2.2 The algorithm for the computation of the ARKA descriptors 

Paola Gramatica in one of her works stated that QSAR modeling is not “Push a Button and 

Find a Correlation” [31]. This is the driving force for researchers of the modern era to develop 

newer approaches to generating more efficient predictive ability of the models. Observing the 

pictorial architecture of an Artificial Neural Network published in Roy et al., 2015 [8], we 

thought a concept could be developed by clustering the descriptors, assigning a suitable weight, 

and storing as a composite value in a single descriptor specific for each cluster, giving rise to a 

concept of dimensionality reduction. Since one of the key motifs for this work is to stress the 

aspect of the simplicity of the computational approach thus allowing the broader scientific 

community to easily adopt the suggested strategy, we have used the same division of the 
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training and test sets as reported by the previous authors for the computation of ARKA 

descriptors making the comparison of their performance with the conventional descriptors an 

easy task. Please note that the objective of the current work is not to develop the best model 

for each endpoint, but to establish the usefulness of the proposed method of dimensionality 

reduction in the case of small data set modeling. The basic idea behind the computation of the 

ARKA descriptors is to group the conventional QSAR descriptors based on a predefined 

criterion and then assign weightage to each descriptor in each group. We decided to explore the 

predictive performance of ARKA descriptors initially in a classification QSAR modeling 

framework and thus selected the data sets having graded response data. Although it is possible 

to partition the features into K-groups, in the present work we have restricted the value of K to 

2 (corresponding to positive and negative classes). 

Since feature selection is an integral step that is performed on the training set compounds, it is 

implied that the authors of the source datasets have selected the features based on the training 

set compounds only. Therefore, from a statistical point of view, the calculations of the ARKA 

descriptors should ideally be based on the training set. The first step is to normalize the training 

set descriptors such that the range of values for each descriptor column is from 0 to 1. This was 

followed by the grouping of the active and inactive class data points. The computation of the 

mean values of a particular descriptor in both the active and inactive classes was performed, 

and their difference (positive class descriptor mean – negative class descriptor mean) and 

absolute difference were calculated. This is the methodology of the most discriminating feature 

selection technique or the molecular spectrum analysis [32, 33]. It is to be noted that in this 

work, we have not performed additional feature selection based on the absolute mean difference 

values as we have already used the selected features from the previous references, and we are 

only considering the difference and absolute difference in mean values. Conceptually, this must 

be clear that this operation should be done using the normalized (scaled between 0 and 1) 
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training set descriptor values and not using the standardized training set since the basic idea 

behind normalization is to bring the values of each descriptor into a same range, which is 

essential for the computation and comparison of the mean differences.  

After the computation of the mean difference and absolute difference values of the selected 

features, we have assigned the descriptors to two different clusters. Cluster 1 consists of 

descriptors having positive difference values while cluster 2 consists of descriptors containing 

negative difference values. It is to be noted that defining the number of clusters depends on the 

modeler, but in this work, we have adhered to simplicity and uniformity and defined two 

clusters for all the analyses on different datasets. Once the cluster membership has been 

defined, it is now essential to assign weightage to each descriptor of a particular cluster. A 

simple weighting strategy was adopted that defines the weightage of a particular descriptor of 

a cluster, which has been represented in Equation 1.  

𝑊𝑒𝑖𝑔ℎ𝑡𝑎𝑔𝑒 𝑜𝑓 𝑎 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟

∑ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟
    

(1) 

Once all the descriptors in the two different clusters have been assigned the corresponding 

weightage, the computation of the Arithmetic Residuals in K-Groups Analysis (ARKA) 

descriptors can be easily done. The selected QSAR descriptors of the training and test sets were 

standardized using the Java-based tool Scale1.0 available from the DTC Lab Supplementary 

Website [34]. In each of the standardized training and test data sets, the descriptor ARKA_1 

encodes the information for the descriptors in Cluster 1 (i.e. descriptors having positive 

difference values) and ARKA_2 encodes the information for the descriptors in Cluster 2 (i.e. 

descriptors having negative difference values). Both ARKA_1 and ARKA_2 were calculated 

as the weighted sum of the descriptors in their respective clusters. Considering a total of 5 

contributing descriptors for a particular response, suppose descriptors x1, x2, and x3 have 

positive difference values and are members of cluster 1, while descriptors x4 and x5 have 
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negative difference values and are members of cluster 2; the corresponding mathematical 

expressions for the computation of the ARKA descriptors have been represented in Equations 

2 and 3. 

𝐴𝑅𝐾𝐴_1 = 𝑤1 × 𝑥1 + 𝑤2 × 𝑥2 + 𝑤3 × 𝑥3                                                           (2) 

𝐴𝑅𝐾𝐴_2 = 𝑤4 × 𝑥4 + 𝑤5 × 𝑥5                                                                             (3) 

In Equations 2 and 3, the terms x1,….., x5 represent the descriptor values while w1,…., w5 

represent the corresponding weightage values. On generalizing the formulae, the computation 

of ARKA descriptors has been represented in Equation 4 where “n” represents the number of 

descriptors in a particular cluster.  

𝐴𝑅𝐾𝐴_𝑋 = ∑ (𝑤𝑖 × 𝑥𝑖)
𝑖=𝑛
𝑖=1                                                                                       (4) 

On application of the above-mentioned concept, the computation of the ARKA descriptors for 

the training and test sets was performed. The workflow for the computation of ARKA 

descriptors has been presented in Figure 1 

 

Figure 1. Workflow for the computation of ARKA descriptors and model development.  
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2.3 Model development and validation 

Initially, simple Linear Discriminant Analysis (LDA) models were developed separately using 

conventional QSAR descriptors and the ARKA descriptors by the Python-based Scikit-learn 

library [35] in Jupyter Notebook platform [36]. Twenty times fivefold cross-validation was 

performed to check the robustness of the developed LDA models. External and internal 

validation tests of the models were done using various standard classification-based validation 

metrics like Accuracy, Precision, Recall, F1 score, Matthews Correlation Coefficient (MCC), 

Cohen’s kappa (Ckappa), and the Area Under Curve (AUC) of the receiver operating 

characteristic (ROC). Additional Machine Learning (ML) models like Logistic Regression 

(LR) [37], Support Vector Machine Classifier (SVM) [38], and Random Forest Classifier (RF) 

[39] were also then attempted using selected features and corresponding ARKA descriptors. In 

each case, the hyperparameters were optimized using a GridSearchCV approach adhering to a 

fivefold cross-validation strategy. The performance of these ML models was evaluated by the 

classification-based validation metrics stated above. The comparison of various models using 

standard QSAR descriptors and ARKA descriptors was based on the f1_score, MCC, Ckappa, 

and AUC of the test set data to compare the predictive performances. These metrics most 

effectively reflect the prediction performance of the developed models for both the active and 

inactive classes. The MCC is utilized as a measure of the quality of binary classifications. It 

considers true and false positives and negatives and is generally regarded as a balanced measure 

that can be used even if the classes have different sizes.  Cohen's kappa coefficient is more 

informative than Accuracy when working with imbalanced data [40]. However, we have 

additionally reported the prediction accuracy of the ARKA models (for both the training and 

test sets) in the Supplementary Material (vide infra).  Among these different validation metrics, 

AUC can be deemed to be the most important metric as it reflects the complete classification 
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scenario since it compares the true positive rate with the false positive rate [41]. Thus, an 

analysis of variance (ANOVA) [42] of the enhancement of AUC values in the ARKA models 

compared with corresponding QSAR models for five data sets has also been done. 

2.4 Analysis of the Applicability Domain (AD) of the datasets 

With every model being developed, there comes the necessity to evaluate the chemical space 

that the model encodes. This chemical space can be termed the applicability domain (AD), and 

it is believed that compounds lying outside this chemical space can generate unreliable 

predictions. As stated previously, the general concept is that the greater the number of 

descriptors, the larger the chemical space the model encodes. However, since the main focus 

of this work is to reduce the number of descriptors yet generate better predictive models, it is 

essential to analyze the AD status of the models that were developed. This calls for the 

computation of the Leverage values [43] for the ease of identification of the structural outliers, 

separately using the QSAR descriptor matrix and the ARKA descriptor matrix for the training 

and test sets, and then identify the number of structural outliers. 

2.5 Development of the ARKA descriptor-calculating software 

To make the computations more user-friendly, we have developed a Java-based ARKA 

descriptor calculating software: ARKA_descriptors-v1.0, which will be freely available from 

the DTC Lab tools supplementary website [34]. This tool takes input from the training and test 

set files and calculates the corresponding ARKA descriptors for the training and test sets.   

 The detailed modeling analysis is represented in Figure 2. 
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Figure 2. Detailed workflow for the modeling analysis. 

2.6 Application of ARKA descriptors to chemical read-across analysis 

Read-across is a similarity-based data gap-filling nonstatistical approach, which uses the 

endpoint information for one or more chemical(s) to predict the same endpoint for another 

similar chemical (based on structural features or mechanisms of action) [44]. The enhanced 

usage of read-across is promoted by regulatory frameworks to minimize new animal testing 

[45, 46]. We have applied the ARKA framework in deriving chemical read-across predictions 

of the endpoints considered and compared the quality of predictions using those derived from 

chemical read-across obtained using chemical descriptors. We have applied the Gaussian 

kernel–based similarity in the quantitative read-across algorithm of Chatterjee et al. [16]. 

 

3 Results and Discussion 

We have used five representative ecotoxicity datasets for our experimental work to demonstrate 

the predictive ability of the models developed using ARKA descriptors. We selected these data 

sets considering that these are small to moderate-sized, and QSAR models were already 
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developed for these models. This makes our comparison task easier. We have used the same set 

of features (QSAR descriptors) as used in the original analyses for comparison purposes. This 

concept can be used in various other datasets as well and can be extremely useful in enhancing 

the prediction quality of classification models developed from small data sets assessing human 

health risk.  

 

3.1 Calculation of the ARKA descriptors 

The five different ecotoxicity datasets used for the computation and analysis of the ARKA 

descriptors have been provided in Excel sheets of Supplementary Materials SI-1. The ARKA 

descriptors were calculated using the procedure mentioned in the Materials and Methods 

section. A representative example of the calculation of ARKA descriptors on Dataset 2 has been 

provided in Supplementary Materials SI-2. Note that each sheet of SI-1 contains specific 

calculations, and the final ARKA descriptors have been computed on the penultimate and the 

last sheets of the workbook.   

3.2 Results of the Linear Discriminant Analysis (LDA) models 

It may be noted that the objective of the present study has not been to report new predictive 

models for various ecotoxicological endpoints but to demonstrate the usefulness of the ARKA 

approach over the conventional QSAR modeling approach for external predictions of 

ecotoxicological data. Thus, we used the same set of QSAR descriptors and the same modeling 

strategy as reported in the previous studies for the ecotoxicological endpoints studied here.  We 

like to emphasize that the performance of the ARKA descriptors will depend on the initial set 

of features selected for QSAR models. With a different set of selected QSAR features, the 

quality of ARKA models will accordingly vary. Thus, the performance of ARKA models should 

always be compared with the QSAR models developed with the corresponding conventional 

descriptors from which ARKA descriptors have been computed. The evaluation of the 
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predictive performance of the models developed using conventional QSAR descriptors and the 

ARKA descriptors was initially checked using a linear modeling framework. The Linear 

Discriminant Analysis serves as a perfect example to correlate the performances of the models 

developed using conventional QSAR descriptors and the ARKA descriptors. As evident from 

Figure 3, it is observed that in most of the cases, the LDA models generated using ARKA 

descriptors showed enhanced predictive performance (test sets) in terms of the validation 

metric values than the LDA models generated using a much higher number of conventional 

QSAR descriptors.  

 

 

 

3.3 Results of various Machine Learning (ML) models 

Once we have compared the performance of the conventional QSAR descriptors with the 

ARKA descriptors based on a simple linear modeling framework, we have also compared their 

predictive performances when subjected to an ML modeling framework. For this, we have 

adopted the Logistic Regression, Support Vector Machine, and Random Forest classifiers to 

generate ML models using the conventional QSAR descriptors and the ARKA descriptors, 

separately. In this manuscript, we have aimed to address the current ecotoxicity data gap of 

“hazardous materials” found in the environment. Since experimental toxicity testing has certain 

limitations, adherence to in silico approaches for data gap-filling is encouraged in regulatory 

settings. However, from a statistical point-of-view, models developed on small datasets should 

ideally encode a lower number of descriptors, capture the entire chemical space, and be 

sufficiently predictive, resulting in the reliability of the developed models. Therefore, this work 

aims to reduce the number of modeling descriptors (dimensionality reduction) while preventing 

the loss of chemical information. The success of the models developed using the ARKA 
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descriptors is evident from the enhanced prediction quality (for test set compounds) as 

compared to the corresponding conventional QSAR models, which is represented in Figure 3. 

Please note that while validating the models (QSAR or ARKA), the predictions for the test set 

compounds have been compared to the experimental observations while the models were 

developed solely from the training set compounds. Apart from the enhancement of the 

prediction quality metrics (like f1-score, MCC, Cohen’s kappa, and AUC-ROC) in the majority 

of the cases, the use of ARKA descriptors was further supported by the reduced number of 

structural outliers as compared to the conventional QSAR descriptors, which proves that the 

entire chemical space has been preserved. From Figure 3, it is clear that in most cases, the 

predictive performance (test sets) of a particular ML model is better when the ARKA 

descriptors have been used and not when the conventional QSAR descriptors have been used. 

The optimized hyperparameter setting used to develop the ML models has been represented in 

Table S1 in Supplementary Materials SI-3. We have additionally reported now the prediction 

accuracy of the ARKA models (for both the training and test sets) in the Supplementary 

Materials SI-3 (Table S2).  Although in some cases the statistical quality of models (training 

sets) is somewhat inferior (but well acceptable statistically) for ARKA models compared to 

QSAR models, we are interested here in exploring the enhancement of predictive performance 

of the models on the test sets using ARKA descriptors, and hence only test set statistics are 

reported here (Figure 3). 
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Figure 3. Results of the external prediction quality (heatmap of quality metrics) of different 

models developed using conventional QSAR descriptors and ARKA descriptors (Ndesc = the 

number of descriptors). 
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3.4 Evaluation of the predictive performance of the models developed using conventional 

QSAR descriptors and ARKA descriptors 

A comprehensive evaluation of the predictive performance of the different models using the 

two different classes of descriptors has been performed by a voting approach. In this approach, 

a modeling algorithm was taken one at a time and its predictive performance using the QSAR 

descriptors and ARKA descriptors was evaluated using four different essential external 

validation metrics, namely f1_score, MCC, Ckappa, and AUC. The purpose of considering 

these metrics is that they are capable of providing the complete picture of the classifiability of 

the models by considering the correct and incorrect predictions of the actives and the inactives 

in an unbiased manner. Moreover, these metrics especially AUC can handle imbalanced data 

and do not provide results that are biased to a particular class (actives or inactives). Moreover, 

AUC is a very suitable metric for comparing different models considering that this is derived 

from consideration of multiple threshold values [47]. In this study, for each endpoint, we have 

compared a model developed using conventional QSAR descriptors and another model using 

ARKA descriptors, using the same machine learning algorithm and the same dataset. The 

model with a higher value of a particular metric has been assigned a value of 1 for that metric. 

while the other model with a lower value of the metric has been assigned 0. If the values of a 

particular metric are equal for both models, an equal value of 0.5 each has been assigned. This 

was done for all the different external validation metrics stated above, using all the different 

modeling algorithms (LDA, LR, SVM, and RF), for all five different datasets as shown in 

Figure 4. A sum was calculated demonstrating the count of winner votes, specific for a 

particular validation metric, for both the QSAR and ARKA descriptors, and the validation 

metric with a higher count in QSAR or ARKA was considered the winner. An overall evaluation 

was done to get a comprehensive idea of the performance of the QSAR descriptors and the 
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ARKA descriptors. In this case (represented as “composite” in Figure 4), the count of voted 

winners for a particular validation metric in a particular modeling algorithm was taken into 

consideration, and the final voting is based on the sum of the voted winners among the QSAR 

and ARKA descriptors. For example, in the case of f1_score for the LDA model, we find that 

Datasets 1 and 2 have voted winners for the ARKA descriptors, while Datasets 3-5 have voted 

winners for the QSAR descriptors. Since a greater number of winners is observed using the 

QSAR descriptors, it received a composite vote of 1 while the ARKA descriptors received a 

composite vote 0. Similar to the individual datasets, a sum was computed to count the voted 

winners. From the final analysis in the composite set, it was found that the AUC, MCC, and 

Ckappa of the models derived from the ARKA descriptors were clear winners, i.e., these 

models showed enhanced performance with the ARKA descriptors, while the F1_score showed 

equal performance for both the QSAR and ARKA descriptors. The complete picture of this 

analysis has been represented in the form of a heat map in Figure 4. 
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Figure 4. Heat map demonstrating the voting results and how the models developed using 

ARKA descriptors showed enhanced predictive performance. 1 indicates a winner model for a 

particular metric, 0 indicates a loser model for a particular metric and 0.5 indicates a tie.  

 

We have now additionally compared the enhancement of model quality for different data sets 

and different modeling algorithms taking AUC-ROC as the objective function and performed 

an analysis of variance of the change of AUC-ROC values due to the factors of data sets and 

modeling algorithms. The results show there has been indeed an enhancement of prediction 

quality on using ARKA descriptors in most of the cases (Table 1). The analysis of variance 

(ANOVA) results of the enhancement of AUC values in ARKA models compared with 

corresponding QSAR models for five data sets showed that the variations in the enhancement 

values were due to neither the structures of the datasets, nor the Machine Learning algorithms 

employed. This enhancement in the quality has been brought about by the ARKA descriptors, 

signifying their importance 

 

Table 1. The enhancement of AUC-ROC (test set) due to the use of ARKA descriptors 

compared to QSAR descriptors 

Data set  LDA SVM RF LR ANOVA results 

1 0.02 0.03 -0.04 0.02 Row (data set) effect (insignificant): 

2 0.01 -0.08 0.03 0 F1(df 4,12) = 0.14 (p = 0.965) 

3 0.02 0.02 -0.04 0.01 Column (Modeling method) effect 

4 0.04 0.04 0.02 0.01 (insignificant):  

5 -0.03 0.02 0.05 -0.05 F2 (df 3,12) = 0.45 (p = 0.722) 

 

3.5 Analysis of the Applicability Domain (AD) of the models developed from QSAR 

descriptors and ARKA descriptors   
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For the proper evaluation of a particular model, it becomes imperative to consider the 

applicability domain, i.e., the chemical space that the model encodes. The general idea is that 

a model generated using a larger number of descriptors encodes a wider chemical space as 

compared to a model generated using a lower number of descriptors. This is due to a loss of 

chemical information when the number of descriptors is low. However, in our novel approach, 

although the number of descriptors was reduced, this approach ensured that the entire chemical 

space was covered. However, for the complete picture and the identification of the number of 

structural outliers, we have computed the Leverages of the QSAR and ARKA descriptor 

matrices for all five different datasets. On analysis of the number of outliers, it was observed 

that the number of outliers computed using the ARKA descriptors was not only lower in all 

five different test sets but also lower in four of the five different training sets as well (Table S3 

in Supplementary materials SI-3). This suggests that while modeling with the individual 

QSAR descriptors, there is some loss of information, but while computing ARKA descriptors, 

such information is retained.  

 

 

3.6 Establishing a generalized relationship between ARKA_1 and ARKA_2 with the 

observed activity values – the identification of potential activity cliffs and less confident 

data points 

As mentioned in the previous sections, the descriptors having a higher normalized mean value 

in the active class of compounds of the training set than in the inactive class are encoded into 

the ARKA_1 descriptor, and the other descriptors are encoded in ARKA_2. To estimate their 

relationships with the active and inactive class of compounds, we have generated violin plots 

representing ARKA_1 vs Activity and ARKA_2 vs Activity for both the training and test sets 

in all 5 different datasets (the results of Dataset 1 are given in Figure 5 and the results of other 
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data sets in Figure S1 of Supplementary Materials SI-3.). As a general observation from Figure 

5 and Figure S1, the median values of the ARKA_1 descriptor in the active class are higher 

than the inactive class for both the training and test sets. Similarly, the median values of the 

ARKA_2 descriptor are higher in the inactive class than the active class for both the training 

and test sets, thus justifying the probable outcome. Also, from a representative example of 

Dataset 2 (Figure S2 in supplementary Materials SI-3), it is observed that in most of the 

active compounds, the values of ARKA_1 are positive and those of ARKA_2 are negative. 

Similarly, for most of the inactive compounds, the values of ARKA_1 are negative and those 

of ARKA_2 are positive. Similar observations may also be checked with other data sets (for 

example, the results from Dataset 1 are given in Figures S3 and S4 of Supplementary 

Materials SI-3). 
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Figure 5. Violin Plots of ARKA_1 vs Activity and ARKA_2 vs Activity for the training and 

test sets (Dataset 1). 
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3.7 Dataset modelability from ARKA descriptors 

 

Figure 6. Generalized interpretation to identify activity cliffs, borderline compounds, less 

modelable data points, and less confident data points based on their positions in the ARKA_2 

vs ARKA_1 plot. Note that this interpretation is a “model independent” process, where simply 

the values of ARKA_1 and ARKA_2 are efficient enough to identify the nature of the data 

points. 

 

A scatter plot of ARKA_2 vs. ARKA_1 descriptors for the training/test set compounds may 

indicate the modelability/model performance of the data set. Using knowledge from the data 

distribution of the violin plots, it can be inferred that the active compounds would most likely 

be present in the second quadrant of the scatter plots (where ARKA_1 is positive and ARKA_2 

is negative), and the inactive compounds would most likely be present in the fourth quadrant 

(where ARKA_1 is negative and ARKA_2 is positive). Generally, based on the analysis of the 

studied data sets, for a confident classification of a data point into the positive and negative 

classes, it is found that the absolute values of both ARKA_1 and ARKA_2 descriptors should 

be more than 0.5 and their absolute difference is expected to be more than 0.75.  Any point 
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very near to the X or Y axis will have low decidability for classification purposes. As per Figure 

6, the 2nd and 4th quadrants signify confident positives and negatives, respectively. If a negative 

(or inactive) compound is found in the 2nd quadrant or a positive (active) compound in the 4th 

quadrant, these may be potential activity cliffs reducing the modelability of the data set (in the 

case of the training set) or potential prediction cliffs indicative of poor prediction performance 

(in the case of the test set). Again, the compounds falling in the 1st and 3rd quadrants represent 

less confident data points for classifiability. Any misclassified compound falling in these 

quadrants as shown in Figure 6 may be less confident activity/prediction cliffs.  

 

We illustrate this (Figure 7) with Dataset 1 where the scatter plot of ARKA_2 vs. ARKA_1 

shows five positive activity cliffs (compounds 260, 278, 320, 362, and 370) and one negative 

activity cliff (compound 93) in the training set, and on comparing the definition of activity 

cliffs based on Banerjee-Roy similarity coefficients sm
1 and sm

2 (Banerjee and Roy, 2023), it 

was found that all the six compounds identified as activity cliffs from the training set, as 

evidenced from the plot of Figure 7, complying with both the approaches (i.e., ARKA 

descriptors and Banerjee-Roy similarity coefficients). In the case of the test set, one active 

compound (compound 349) and two negative compounds (compounds 74 and 94) were 

identified as the potential prediction cliffs (poor prediction performance potential). It is 

interesting that compound 74 was identified as a poor prediction potential data point also based 

on Banerjee-Roy similarity coefficients sm
1 and sm

2 (Banerjee and Roy, 2023). It is also 

observed that sm
1 and sm

2 identify a greater number of activity cliffs as compared to ARKA_1 

and ARKA_2. This is because the sm
1 and sm

2 method detects additional activity cliffs that fall 

in either 1st or 3rd quadrants or near the axes thus showing less confidence in their activity cliff 

behavior since the ARKA criteria for determining activity cliffs are more strict than that of 

Banerjee-Roy coefficients. A similar observation was made in Dataset 2 (Figure S5 of 

https://doi.org/10.26434/chemrxiv-2024-jqkjv ORCID: https://orcid.org/0000-0003-4486-8074 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-jqkjv
https://orcid.org/0000-0003-4486-8074
https://creativecommons.org/licenses/by-nc-nd/4.0/


Preprint version dated 29.03.2024 

27 
 

Supplementary Materials SI-3). Thus, the ARKA descriptors may be used in detecting 

serious activity/prediction cliffs and understanding the modelability of a data set. This may be 

exercised even in case of regression modeling problems considering the whole data set 

response mean as the threshold and then classifying the response values as positives or 

negatives. For initial modelability analysis (when the contributing features are not known), one 

may proceed with computing the ARKA descriptors starting with the (whole) pretreated pool 

of descriptors while for the final model development, one should use only the selected features. 

In the case of Dataset 3, the scatter plot of ARKA_2 vs. ARKA_1 for the training set (Figure 

S6 in Supplementary Materials SI-3) shows poor modelability of the data set (the negative 

data points in the fourth quadrant are near the Y-axis) while the plot for the test set (Figure S6) 

shows poor quality of projections in the fourth quadrant suggesting poor information content 

of the QSAR descriptors for predictions of the endpoint (consistent with the poor model 

performance as per Figure 3). This is evident just from the ARKA descriptor scatter plot even 

without performing any modeling. 

 

 

Figure 7. Representative scatter plots of ARKA_2 vs ARKA_1 for the training and test sets of 

Dataset 1.   
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3.8 Analysis of the conventional QSAR descriptors encoded in ARKA_1 and ARKA_2  

This section of the manuscript will detail the various conventional QSAR descriptors that are 

encoded within the ARKA descriptors in the present study. 

Case study 1: MDF analysis of descriptors contributing to skin sensitization potential of 

diverse organic chemicals 

The dataset used for this study (Dataset 1) reports the skin sensitization data of harmful organic 

chemicals based on a local lymph node assay (LLNA) of murine species. The basic chemical 

theory behind skin sensitization is that the skin proteins act as nucleophiles and the sensitizers 

act as electrophiles [48]. As evident from our clustering analysis, two descriptors contributed 

to ARKA_1 while 12 descriptors contributed to ARKA_2. The descriptors contributing to 

ARKA_1 have a positive difference value signifying a higher mean value in the positive 

compounds, while the ones that contributed to ARKA_2 have a negative difference value 

signifying a higher mean value in the negative compounds. The descriptors gmin and 

minsssCH represent the minimum atom E-state value in a molecule and the minimum E-state 

value of a tertiary carbon atom, respectively. These descriptors have a near-equal contribution 

to ARKA_1, as evident from the weightage values (Figure 9). As these descriptors refer to the 

electronic environment of a molecule, they have a significant contribution towards electrophilic 

properties in the molecules, making them active skin sensitizers. On the other hand, the 

descriptors B06[C-N], B04[N-O], B10[C-O] depict the presence or absence of atom pairs 

C…N, N…O, and C…O at the topological distances of 6, 4, and 10 respectively, and they have 

higher contributions than most of the other descriptors contributing to ARKA_2. As evident 

from these 2D-atom pair descriptors, it is evident that they indicate the presence of heteroatoms 

rich in electrons, thereby reducing the electrophilic properties of the compounds (Figure 8).  
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Figure 8. Analysis of the descriptors potentiating and inhibiting skin-sensitizing properties of 

a molecule. 

 

Case study 2: MDF analysis of descriptors contributing to the chemical toxicity to earthworms 

The dataset used for this study (Dataset 2) reports the chemical toxicity of diverse organic 

chemicals to earthworms. As evident from our clustering analysis, the descriptors B03[O-O] 

(presence or absence of O…O at the topological distance 3), ETA_Psi_1 (hydrogen bonding 

propensity and/or polar surface area), B02[O-S] (presence or absence of O…S at the 

topological distance 2) and X3A (lower degree of branching) have a positive difference value 

and contribute to ARKA_1. Similarly, descriptors like B09[C-C] (presence or absence of C…C 

at the topological distance 9), MLOGP2 (squared Moriguchi o/w partition coefficient), 

ETA_Beta (depicting electron richness), and MLOGP (Moriguchi o/w partition coefficient) 

contribute to ARKA_2. Among the descriptors contributing to ARKA_1, it is observed that the 

descriptor B03[O-O] (higher electronegativity) has a significantly higher contribution than the 

others (Figure 9). Additionally, the descriptors ETA_Psi_1, and B02[O-S] have similar 
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contributions and X3A has the least contribution. Similarly, among the descriptors contributing 

to ARKA_2, B09[C-C] (molecular size and hydrophobicity) contributes the maximum, 

MLOGP2 and ETA_Beta have near-equal contributions, and MLOGP has the least contribution.  

Case study 3: MDF analysis of descriptors contributing to the milk/plasma concentration 

ratios of drugs and environmental pollutants 

The dataset used for this study (Dataset 3) reports the data for milk/plasma concentration ratios 

of drugs and environmental pollutants. The cluster analysis suggests that the descriptors 

ETA_EtaP_B_RC (indicating branching), nCrs (number of sp3 hybridized secondary carbons 

present in a ring), and S_tsC (electronic environment of an acetylenic carbon atom) contribute 

to the ARKA_1 descriptor (positive class). Similarly, the descriptors nAB (depicting the 

number of aromatic bonds present in the compound), nRCONHR (depicting the number of 

secondary aliphatic amides present in the compound), and Jurs-DPSA-1 (depicting the 

difference in the partial positive solvent-accessible surface area and the partial negative 

solvent-accessible surface area) contribute to the ARKA_2 descriptor (negative class). As 

evident from the contributions of the descriptors constituting ARKA_1, nCrs has the highest 

contribution while ETA_EtaP_B_RC has the lowest contribution (Figure 9). Similarly, in the 

case of ARKA_2, the descriptors nAB and nRCONHR have similar and highest contributions 

to ARKA_2.  

Case study 4: MDF analysis of descriptors contributing to the toxicity towards P. subcapitata 

The dataset used for this study (Dataset 4) reports the toxicity of organic chemicals towards P. 

subcapitata. Like in the previous cases, the features were clustered based on the difference 

values. Since all the features had a positive difference value, this was the only set that used 

only one ARKA descriptor (ARKA_1) to generate models. Among the different features, MW 

(denotes the molecular weight of the compound) had the highest contribution towards 

ARKA_1, which was followed by the contributions of Atype_C_24 (representing fragments 
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containing secondary carbon atom), 2χv (denoting size and shape) and S_aaaC (representing 

fused ring system) (Figure 9). 

Case study 5: MDF analysis of descriptors contributing to rodent carcinogenicity potential 

The dataset used for this study (Dataset 5) reports the rodent carcinogenic potency. On 

assigning clusters to the descriptors, it was observed that the descriptor MAXDP (a measure 

reflecting the electrophilicity of a molecule) contributes to ARKA_1. Similarly, the descriptors 

Wap (denoting the Wiener index, i.e., the edge count through the shortest path between all pairs 

of non-hydrogen atoms), nRNNOx (representing the number of N-nitroso groups that are 

aliphatic), and Cl-086 (depicting the presence of Cl atoms attached to an sp3 hybridized carbon 

atom) contribute to ARKA_2. As evident from the weightage values, among the three 

descriptors contributing to ARKA_2, the descriptor nRNNOx is observed to have the highest 

contribution in the computation of the ARKA_2 descriptor (Figure 9).  

The details of the descriptors contributing to ARKA_1 and ARKA_2, for all the five different 

datasets, have been represented in Figure 9. 
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Figure 9. QSAR descriptors that are encoded in ARKA_1 and ARKA_2 for all five different 

datasets. Note that the model for dataset 4 is derived from only one ARKA descriptor 

(ARKA_1). 
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3.9 Application of the ARKA framework to chemical read-across predictions 

We have applied the ARKA descriptors for chemical-similarity-based read-across classification 

analysis for all the considered endpoints and compared the results with the predictions obtained 

from conventional QSAR descriptors (Table 2). The application of the Gaussian kernel-based 

similarity [16] showed that the ARKA framework outperforms the conventional QSAR 

descriptors in the external prediction quality for most of the data sets. This warrants further 

studies on the application of the ARKA framework in similarity-based cheminformatics 

studies. 

Table 2. Effects of ARKA descriptors on the chemical read-across-based external predictions 

using the Gaussian kernel function for five data sets (Ndesc = the number of descriptors, 

MCC = Matthews Correlation Coefficient, Ckappa = Cohen’s kappa)* 

Dataset Descriptors Ndesc f1_score MCC Ckappa AUC 

1 QSAR 14 0.729 0.21 0.209 0.66 

 ARKA 2 0.699 0.235 0.227 0.66 

2 QSAR 8 0.6 0.42 0.412 0.78 

 ARKA 2 0.645 0.472 0.467 0.79 

3 QSAR 6 0.361 -0.079 -0.079 0.43 

 ARKA 2 0.375 -0.144 -0.143 0.49 

4 QSAR 4 0.9 0.753 0.723 0.95 

 ARKA 1 0.923 0.812 0.795 1 

5 QSAR 4 0.917 0.713 0.673 0.96 

 ARKA 2 0.917 0.713 0.673 0.95 

*The winner metric values are shown in bold. 
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3.10 Limitations and Future Prospects 

With every new method being developed, the associated limitations show the avenues for future 

prospects. This analysis is essential for the mitigation and generation of further possibilities 

that ultimately lead to progress in science. In this particular method of dimensionality 

reduction, we have stressed the modeling of small datasets, considering mainly the 

environmental aspects where the toxicity and ecotoxicity data are limited, amplifying the need 

for data gap-filling. Primarily, the two ARKA descriptors (ARKA_1 and ARKA_2) should be 

employed for modeling small datasets that do not have a very large number of modeling 

descriptors. When larger datasets with a considerably higher number of QSAR features are 

involved, the computation of only two classes of ARKA descriptors becomes somewhat of an 

oversimplification, since there is a high chance that the information of the larger pool of 

descriptors may not be efficiently encoded in just two classes of ARKA descriptors. From a 

general conscience, this calls for the need to develop a greater number of ARKA descriptors by 

dividing the original QSAR descriptor pool into K-groups (“K-groups analysis”), instead of 

just two groups. By generating a somewhat greater number of ARKA descriptors, a lower 

number of features get encoded into a single ARKA descriptor, which reduces noise and 

redundancy. However, it may differ from case to case depending on the complexity of a data 

set. For example, within the results of the reported five datasets, Dataset 1 had the highest 

number of compounds (n = 471) and the highest number of descriptors (Ndesc =14), and it was 

observed that the models developed using two-descriptors (ARKA_1 and ARKA_2) had better 

predictive performance than the QSAR models developed using 14 descriptors (Data set 1). In 

this work, we have worked on classification-based models and compared the predictive 

performance of the models generated using conventional QSAR descriptors and ARKA 

descriptors. However, this method of dimensionality reduction can also be explored when the 
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response values are quantitative, leading to the development of regression-based models. To 

develop the regression-based models, the scheme for the computation of the descriptors may 

remain the same and these descriptors may be submitted to a regression-based modeling 

algorithm. However, in the initial step where we have grouped the active and inactive classes 

of the training compounds, this grouping should be done taking a certain value as the threshold 

(preferably the experimental response mean of the training compounds) in case of regression 

modeling, since this will contain quantitative data for the endpoint values. In addition, the 

correlation (r) of a particular descriptor with the response can also be possibly used as a 

substitute for the residual value and weightage may be assigned based on the r-value of a 

particular descriptor (with the training set response). Additionally, the computation and 

assignment of the weightage to each descriptor can be customized. In this work, we have 

chosen a simple arithmetic weighing strategy but other modelers may also use a customized 

weighing strategy based on their choice. One can apply different weighting summation 

schemes as applied in the computation of mixture descriptors from multi-component chemical 

mixtures using various algebraic expressions like Quadratic mixture descriptors, Logarithmic 

mixture descriptors, etc. [49]. 

 

The ARKA descriptors can also play an important role in the similarity assessment of chemicals 

for regulatory decision-making. The plot of ARKA_1 vs ARKA_2 can not only identify 

potential activity cliffs but can also help one to understand the similar types of chemicals that 

are grouped in a cluster – a basic form of Read-Across. Additionally, it is also possible to 

identify the chemical nature and possible adverse outcome pathways (AOPs) of the close 

congeners using the concepts of Read-Across [50, 51] and quantitative read-across structure-

activity relationship (q-RASAR) [26, 52]. This approach can not only be used in assessing 
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environmental/ecotoxicity endpoints but can also be extended to other fields like drug 

discovery [53]. 

 

4 Conclusion  

As a thumb rule for any statistical modeling analysis for small datasets, there should be a 

minimal number of descriptors used for modeling. This enhances the degree of freedom of the 

developed model and increases the statistical reliability. In this particular work, we have used 

the same amount of chemical information from the descriptors used in the previously reported 

ecotoxicological QSAR models and encoded them in such a way that has significantly lowered 

the number of modeling descriptors – ARKA descriptors (a form of dimensionality reduction 

technique). On retraining the model using ARKA descriptors, it was observed that the models 

generated using ARKA descriptors had better predictivity (for the test sets) as compared to the 

previously published QSAR models, which was evident from various classification-based 

statistical validation metrics (Mathews correlation coefficient, Cohen’s kappa, f1 score, and 

AUC-ROC) that provide an unbiased result in evaluating the classification ability of a model 

into the actives and the inactives even for imbalanced data sets. To ensure that this observation 

was not limited to a particular modeling algorithm, we have trained various additional Machine 

Learning (ML) models using the QSAR descriptors and ARKA descriptors separately, the 

comparative prediction results of which strengthen our inference. From the modeling exercise 

on five diverse ecotoxicity data, we observe that in most of the cases, models developed using 

ARKA descriptors outperform the predictive ability of the models developed using 

conventional QSAR descriptors. Additionally, the two ARKA descriptors can potentially 

identify activity cliffs, less confident data points, and less modelable data points; the results 

obtained in this study comply with the previously reported method of the detection of activity 

cliffs utilizing the concept of chemical similarity [26].  
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Therefore, we infer that the models generated using ARKA descriptors can quickly and 

efficiently identify toxic environmental chemicals with enhanced predictivity, thus leading to 

increased reliability of the predictions. However, there is room for further development of the 

approach by its applications in regression-based and/or read-across approaches, classification 

modeling of larger ecotoxicity data sets, and exploring other customized ways of weighing 

strategies in deriving ARKA descriptors. Lastly, we like to infer that although this work shows 

that the predictive performance of the models developed using ARKA descriptors supersedes 

the predictive performance of models developed using conventional QSAR descriptors in the 

majority of the studied cases, all computational models are not 100% accurate since every 

model is associated with some errors and uncertainties in predictions. We feel that experimental 

testing is confirmatory of any kind of developed hypothesis and there should not be over-

dependence on any kind of computational models.  
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