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Abstract 

 

After initial triaging using in vitro absorption, distribution, metabolism, and excretion (ADME) assays, 

pharmacokinetic (PK) studies are the first application of promising drug candidates in living mammals. 

Pre-clinical PK studies characterize the evolution of the compound’s concentration over time, typically 

in rodents’ blood or plasma. From this concentration-time (C-t) profiles, PK parameters such as total 

exposure or maximum concentration can be subsequently derived. An early estimation of compounds’ 

PK offers the promise of reducing animal studies and cycle times by selecting and designing molecules 

with increased chances of success at the PK stage. Even though C-t curves are the major readout from 

a PK study, most machine learning-based prediction efforts have focused on the derived PK parameters 

instead of C-t profiles, likely due to the lack of approaches to model the underlying ADME mechanisms. 

Herein, a novel deep learning approach termed DeepCt is proposed for the prediction of C-t curves from 

the compound structure. Our methodology is based on the prediction of an underlying mechanistic 

compartmental PK model, which enables further simulations, and predictions of single- and multiple-

dose C-t profiles.  

 

Keywords: Machine learning, deep learning, mechanistic modeling, pharmacokinetics, compartmental 

analysis, concentration-time, time-exposure, drug discovery. 
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1. Introduction 

Pharmacokinetic (PK) studies are an integral part of drug discovery to characterize drug’s exposure, 

which is determined by the compound’s absorption, distribution, metabolism, and excretion (ADME) 

processes [1], [2]. In contrast to PK studies, pharmacodynamics (PD) aims at understanding the drug’s 

concentration-effect relationship. Hence, the combination of PK and PD (PK/PD) informs about the 

time course of drug response, which is key for dose predictions [3]. In PK studies, concentration-time 

(C-t) curves, also known as time-exposure curves, are obtained at various timepoints after compound’s 

administration by a specific route and measured in a matrix, generally blood or plasma. To characterize 

C-t profiles, a variety of PK parameters can be derived, namely the area under the C-t curve (AUC), 

clearance (CL), half-life (t1/2), maximum achieved concentration (Cmax), or volume of distribution (Vd). 

Typically, PK behavior is first investigated in rodents after intravenous (i.v.) administration and might 

be followed by oral (p.o.) studies.  

 

The mathematical modelling of C-t profiles has been traditionally based on a set of theoretical body 

‘compartments’ through which the drug is distributed with linear kinetics [4]. Such compartmental PK 

models correspond to a system of ordinary differential equations (ODE), where a mass balance equation 

is defined for each compartment [5], [6]. Compartmental analyses have evolved towards physiologically 

based PK (PBPK) modeling[7], where the underlying ODE system is parameterized with physiological 

parameters, yielding more interpretable models. However, PBPK models are generally described by 

numerous compartments, leading to complex ODE systems (>100 equations). For predictive purposes, 

PBPK models are a method of choice with the integration of system- and compound-dependent 

parameters, including in vitro or in vivo data [8]. However, smaller compartmental models using up to 

three compartments are often sufficient to accurately model C-t curves from PK studies and provide 

important advantages such as the existence of analytical ODE solutions or more generalization ability 

due to the reduced set of parameters. Importantly, once the compartmental model is obtained for a 

compound, distinct administration scenarios can be simulated [6].  
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Machine learning (ML) advances have led to an increasing interest in ADME and PK predictions. Most 

ML efforts to predict compound properties have focused on in vitro ADME endpoints, such as intrinsic 

metabolic clearance and passive permeability, [9], [10], [11] and some approaches have also been put 

forward for an early ML-based prediction of in vivo PK parameters, either directly from chemical 

structure or from in vitro ADME data [12], [13], [14], [15], [16] [13], [17], [18], [19] [20], [21]. 

However, the direct ML-based prediction of C-t curves is an under investigated topic. To the best of 

our knowledge, the only ML approach for exposure-time curve prediction was recently proposed by 

AstraZeneca [13], but with limited success according to the authors. Their model predicted compound’s 

concentration at specific timepoints using in vitro data as input, preventing its application at the drug 

design stage, and without mechanistically modelling the underlying ADME processes. A strategy to 

merge the benefits of PBPK and ML was recently proposed by colleagues at Bayer [14], [22]. The 

authors proposed a surrogate ML model consisting of a neural network to map the inputs of a PBPK 

model to its AUC and Cmax readouts. The surrogate model circumvents the expensive computations of 

solving the large ODE system, but only estimates the derived PK parameters (AUC and Cmax). To obtain 

the C-t profile model’s output was mapped onto an actual PBPK model, [8] yielding considerable errors 

for both Vd and t1/2 (mfce of 7.9 and 3, respectively). 

 

Herein, DeepCt is proposed as a novel deep learning strategy for the prediction of C-t profiles from 

compound’s structure and is applied to in vivo rat PK predictions. Our algorithm includes the direct 

prediction of PK compartmental models, leveraging the advantages of mechanistic and data-driven 

models. Specifically, a deep neural network is used for the prediction of a compartmental model’s 

parametrization from which the full C-t profile can be inferred. As the underlying compartmental model 

is analytically solved, surrogate models are not required and the ML model enables further applications, 

such as investigation of multiple dosing regimens.  
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2. Results and Discussion 

 

2.1. Principles of compartmental models' and C-t profiles’ predictions 

A deep learning approach to predict C-t curves solely from chemical structure was designed. In such 

algorithm, the input is a molecular representation and the constants of a compartmental model constitute 

the outputs. More details about the ML system are given in the following. Here, the model was applied 

to rat PK predictions, and an overview of the dataset used for modeling is shown in Figure S1. The 

dataset consisted of ~21,000 experiments, with ~13,000 and 9,000 from i.v. and p.o. administrations, 

respectively. Approximately 14,000 experiments were done using the blood as measurement matrix and 

~ 8000 using plasma. Most studies were done in Sprague Dawley rats (~17,000) and Wistar Han rats 

(~5000) with a few experiments also done using Lewis and Brown Norway rats (<1000). For model 

building and evaluation, the data was split into three subsets according to the measurement date: (i) 

training, 80%; (ii) validation, 5%; and test (15%) sets. Therefore, the model was generated with the 

oldest studies, whereas the model’s validation and testing was carried out with more recent data, which 

simulates prospective model’s usage in pharmaceutical industry. 

 

2.1.1. Prediction of compartmental models’ constants 

Figure 1a reports the schematic of a three-compartmental model, where the central compartment can 

be interpreted as the blood, the first peripheral compartment highly perfused tissues (e.g. muscles) and 

the second peripheral compartment as tissues barely perfused with blood (e.g. fatty tissues)[4] This 

compartmental system is mathematically described as an ODE system defined by a set of constants (see 

Section 4.3. Compartmental modeling). Specifically, the compartmental constants for i.v. 

administration are 𝐶𝐿!" ,  𝑉#,!."., 𝑄&,!.".,  𝑉&,!.".,  𝑄',!.".,  𝑉',.!.". and for p.o. administration are 

𝑘( ,  𝐶𝐿,  𝑉# , 𝑄&,  𝑉&,  𝑄',  𝑉' . In cases where  𝑄' = 0 and 𝑄& = 𝑄' = 0, two- and one-compartmental 

models’ solutions are obtained, respectively. 
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As illustrated in Figure 1b, a deep learning algorithm was developed to predict the constants of a 

compartmental model from molecular structure. For that, molecules were numerically encoded using a 

data-driven representation known as MELLODDY embeddings (see 4.4. Molecular representation).   

 

2.1.2. Prediction of C-t profiles 

From the compartmental model constants, the full C-t profiles and, subsequently, the PK parameters 

defining such curves can be derived. The model was trained using a combined loss containing the mean 

absolute error (MAE) of the predicted C-t profiles in logarithmic scale and a penalty for distribution 

into higher compartments. Model’s loss is given by  

 

𝐿𝑜𝑠𝑠 =
1
𝑛

.
1
𝑚

. | log 4𝐶!5𝑡)78 − log	(𝐶!5𝑡)7*+,-)| +
)∈&,…,0!∈&,…,1

𝑤
1
4
(𝑄&,!.". +  𝑉&,!.". + 𝑄&,*.2. +  𝑉&,*.2.)

+ 𝑤
1
4
(𝑄',!.". +  𝑉',!.". + 𝑄',*.2. +  𝑉',*.2.)							(1). 

 

Where n is the number of experiments in the respective batch used for model update and m the number 

of measured concentrations of experiment i at times 𝑡), 𝐶!5𝑡)7. Moreover, w is an empirical constant 

that controls the strength of the penalty, which was set to 0.1. In the situation of using only a two- or 

one-compartmental model, 𝑄',!.".,  𝑉',!."., 𝑄',*.2., 𝑉',*.2.  and/or 𝑄&,!.".,  𝑉&,!."., 𝑄&,*.2., 𝑉&,*.2.  would be 0. 

Total exposures (AUCs), clearance (CL), t1/2, Vd at steady state (Vss), mean residence time (MRT), area 

under the first moment curve (AUMC) and bioavailability (F) were derived from the predicted C-t 

curves, as detailed in the Methods section. 
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Figure 1.  ML algorithm for compartmental models and C-t curve prediction. Schematized are the (a) 

compartmental models, and (b) the deep neural network (DNN) used for prediction of compartmental constants 

with subsequent transformation to C-t curves and derivation of PK parameters.  

 

2.2. Evaluating C-t curves’ predictions 

The quality of C-t profile predictions was first investigated for an underlying model with two 

compartments. A variety of metrics were calculated to compare experimental and predicted C-t profiles 

in the test set. Specifically, the coefficient of determination (R2), Pearson’s correlation coefficient (r), 

https://doi.org/10.26434/chemrxiv-2024-vg9h7 ORCID: https://orcid.org/0000-0002-2992-3402 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-vg9h7
https://orcid.org/0000-0002-2992-3402
https://creativecommons.org/licenses/by-nc/4.0/


 8 

Spearman’s correlation coefficient (ρ), and median fold change error (mfce) were calculated for each 

curve. To assess model’s generalization ability, a temporal data splitting is often considered the gold-

standard for property predictions in industry [23], [24]. Here, models were evaluated on the most recent 

experiments (15%).  For comparison to recent work in literature [14], [22], models’ performance was 

also evaluated on a randomized test set.  

 

Table 1 reports the C-t curve prediction performance on the test sets, both with temporal and random 

compound data splits. For prospective applications, deep learning-based predictions showed a mfce ~2 

for i.v. and ~2.8 for p.o. administration. Correlation coefficients approached 1 for the i.v. predictions, 

and were 0.77 (r) and 0.58 (ρ) for p.o. Moreover, R2 illustrated predictive ability of the model for C-t 

curves after i.v. administration (0.66) but not for p.o. studies (-0.35). When evaluated on a random split, 

the model showed significantly improved performance measures, with a mfce of 2.45 compared to 2.81 

reached with a temporal split (two-sided Brunner-Muzel test). Complete statistics including p-values 

for the differences are shown in Table S1. 

 

Table 1. C-t curve prediction performance. Reported are performance metrics for the evaluation of C-t curve 

predictions, including the coefficient of determination (R2), Pearson’s correlation coefficient (r), Spearman’s 

correlation coefficient (ρ), and median fold change error (mfce). Results are reported for the deep learning 

approach evaluated on time and random splits. Metrics considering replicated in vivo C-t measurements are also 

shown (exp. replicates). 

Route of 
administration 

Strategy R2 r ρ 
 

mfce 

i.v. Deep learning 
(time split) 

0.66 0.97 0.99 2.03 

Deep learning 
(random split) 

0.71 0.97 0.99 1.85 

Exp. replicates 0.96 0.99 1.00 1.20 

p.o. Deep learning 
(time split) 

-0.35 0.77 0.58 2.81 

Deep learning 
(random split) 

-0.18 0.79 0.64 2.45 

Exp. replicates 0.64 0.93 0.86 1.48 
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Since ML models’ quality rely on the underlying training data quality, experimental uncertainty across 

study replicates was also characterized [9]. Importantly, the experimental variability analyzed herein 

refers to the intra-study variability (replicates), which is typically lower than the inter-study variability 

(different animals, but same protocol, day, etc.) [25]. Performance metrics were also calculated using 

replicated PK experiments and are reported in Table 1. Even though results show higher variability in 

p.o. curves, deep learning-based prediction errors were substantially larger than the experimental 

uncertainty coming from replicate measurements. 

 

Figure 2 reports exemplary predictions of C-t profiles both for i.v. and p.o. scenarios, together with the 

measured data points (in red). These C-t curves correspond to prospective test compounds (temporal 

split). Visual inspection of the results indicate that i.v. curves’ predictions more closely resemble the 

experimental PK curves than p.o. predictions, as anticipated from the performance metrics. 

Measurements’ uncertainty is higher for p.o. compared to i.v. administration, indicating that the 

increased error of p.o. curve prediction might be due to the inherent ADME complexity of p.o. studies 

that lead to lower data quality.  

 

 

p.o. administration

i.v. administration

b

a
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Figure 2. Predicted C-t curves. Predicted C-t profiles (solid lines) are reported together with the measured data 

points (dots) for exemplary compounds in the prospective test set (time split). The first two rows show predicted 

i.v. curves (blue) and the two bottom rows p.o. curves (orange).  

 

 

2.3. Evaluating PK parameters’ predictions 

In the context of drug discovery projects and to make decisions about compound prioritization, derived 

PK parameters are often used instead of the full C-t curves. In previous publications, fundamental PK 

parameters have constituted the prediction tasks [12], [14], [18], [21], [22]. To further assess the quality 

of C-t curve predictions and their usefulness for early PK assessments, key parameters were derived 

from the predicted time-exposure curves.  

 

(A) Time split 

 

 

 

 

 

 

i.v. readouts

p.o. readouts Bioavailability
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(B) Random split 

 

(C) Model performance with time and random train-test splits 

 

Figure 3. Prediction of derived PK parameters from C-t curves. Shown are predicted PK readouts derived 

from the predicted C-t curves vs. the measured values for evaluations with (A) time and (B) random data splits. 

Readouts after i.v. administration are shown in the top row (orange), whereas p.o. readouts (blue) and 

bioavailability (green) are shown in the bottom row. (C) Reported are performance metrics for the prediction of 

derived PK parameters with random (light blue) and time (blue) data splits. The median and 99% confidence 

intervals (error bars) obtained through bootstrapping are shown. 

 

 

i.v. readouts

p.o. readouts Bioavailability
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Figure 3 reports the comparisons of predicted versus observed PK readouts for models’ evaluation of 

temporal and random data splits. Overall, endpoints from i.v. studies were estimated more accurately 

than the ones from p.o. studies, which is agreement with the increased accuracy of i.v. C-t curves’ 

prediction compared to p.o. profiles. When evaluated prospectively (Figure 3a and c), model’s mfce 

values ranged from 1.80 to 2 for most i.v.-related parameters. Furthermore, bioavailability was 

predicted with a mfce of 1.7, and AUC p.o. and Cmax p.o. predictions showed mfce  of ~2.7.  

 

Table 2. Derived PK parameter prediction performance. Reported are performance metrics for the evaluation 

of derived PK parameter predictions, including the coefficient of determination (R2), Pearson’s correlation 

coefficient (r), Spearman’s correlation coefficient (ρ), and median fold change error (mfce). Results are reported 

for the deep learning approach evaluated on time and random splits. 

Route of 

administration 

Parameter R2 

(random/time-

split) 

r 

(random/time-

split) 

ρ 

(random/time-

split) 

mfce 

(random/time-

split) 

i.v. AUC 0.67/0.60 0.82/0.79 0.81/0.8 1.67/1.83 

AUMC 0.57/0.39 0.77/0.64 0.76/0.64 2.46/2.98 

CL 0.52/0.32 0.73/0.61 0.71/0.56 1.66/1.83 

Half-life 0.26/0.07 0.57/0.38 0.58/0.38 1.71/1.87 

Vss 0.35/-0.11 0.7/0.55 0.71/0.55 1.9/2.13 

MRT 0.37/-0.04 0.68/0.41 0.69/0.4 1.76/1.96 

p.o. AUC 0.57/0.54 0.76/0.74 0.75/0.73 2.4/2.68 

F 0.33/0.33 0.61/0.59 0.61/0.6 1.7/1.72 

Cmax 0.58/0.56 0.78/0.76 0.77/0.76 2.26/2.57 

 

Figure 3b shows the predicted versus observed PK readouts for the proposed model for a random subset 

of compounds. As expected, evaluating the same prediction approach on a random split led to 

significantly improved predictions for all parameters. The results are summarized in Table 2, 

witchcomplete statistics shown in Table S2. Mfce values of ~1.6 were obtained for AUC i.v., ~2.4 for 

AUC p.o. and ~2.3 for Cmax after p.o. administration (Figure 3b and c).  
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2.4. Comparison to the direct prediction of derived PK parameters 

As a control, the performance of PK parameters’ estimation from predicted C-t curves was compared 

to a direct ML-based prediction of rat PK parameters. A multi-task (MT) learning approach was used 

to predict four PK parameters, namely AUC i.v. and p.o, Cmax p.o., t(1/2) i.v. and MRT. As shown in 

Figure S2, a muti-task deep neural network (MT-DNN) was trained using the same molecular 

representation as input (MELLODDY embeddings). The MT-DNN model was composed by some 

shared layers as well as task-specific layers and was generated using the same training data. More 

specifically, model has been trained and evaluated using the same temporal data splits as the C-t curve 

model. 

 

 

Figure 4. Benchmarking PK parameter prediction. Performance measures are shown for the different predicted 

PK parameters and compared between direct prediction (light blue) and derived from the predicted concentration 

time profile. The bars show the median and the error bars are 99% confidence intervals. 

  

Figure 4 reports the comparison of both ML approaches in terms of the considered performance 

measures (complete statistics are shown in Table S3), and Figure S3 shows the predicted versus 

observed PK parameters from the direct ML-based PK readouts’ prediction. Overall, roughly equivalent 

performance was achieved with both models, showing that the prediction of complete C-t curves via 

prediction of a hidden compartmental model is not detrimental of predictive performance while it 

provides additional information. In contrast, for both Spearman’s and Pearson’s correlation coefficients 
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predictions via C-t curves yielded significantly improved estimations of PK parameters for 7 out of the 

9 considered parameters (only half-life and MRT were predicted slightly better with direct prediction).  

 

2.5. Benchmarking compartmental models’ complexity  

In our approach for C-t curves’ prediction, the complexity of the underlying compartmental model must 

be set (i.e. the number of distinct compartments).  To this end, the model was implemented for up to 

three compartments and models’ complexity was benchmarked. Figure 5 compares prediction 

performance for one-, two-, and three-compartmental models. Figure 5a shows models’ validation for 

C-t curve prediction, whereas Figure 5b reports the performance of predicted PK parameters (after 

derivation from predicted C-t profiles). When considering a two-compartmental model, the ML 

algorithm achieved promising performance for the prediction of C-t curves across all considered 

metrics. Reducing the number of compartments to one resulted in significantly worse predictions for C-

t curves as well as most derived PK parameters (p<0.01, Table S4), with the median R2 decreasing from 

~0.7 to ~0.4 for i.v, C-t curves’ prediction, indicating a tendency to underfitting. While a single 

compartment was usually not enough to model the distribution processes, three compartments did not 

result in significant differences compared to two compartments, neither for the prediction of C-t profiles 

nor derived PK parameters (p<0.01, Tables S4, S5, S6 and S7).  

 

Figures S4 shows the relationship between predictions and in vivo outcomes using one- and three-

compartmental models. For PK parameters’ prediction, results indicate that especially the half-lives are 

predicted differently. With a one-compartmental model there is no distribution phase and modelling it 

seemed necessary to improve the C-t curve predictions. Therefore, further evaluations were done with 

the consideration of a two-compartmental model. 
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Figure 5. Benchmarking compartmental models’ complexity. Performance evaluation for models with one, 

two or three compartments. (a) The goodness of individual curve predictions are shown with median R2 , r, ρ and 

mfce metrics (from left to right). Results are reported for both i.v. (orange) and p.o. (blue) administration. (b) 

Shown are mfce values for the derived PK parameters obtained from predicted C-t profiles. 

 

2.6. Benchmarking of model features  

Different sets of input features for the ML model were benchmarked. First, experimental conditions 

were encoded as input features in addition to the MELLODDY embeddings to assess whether this 

information could further improve the model. Moreover, other molecular representations were tested to 

compare with MELLODDY embeddings. To this end, the DeepCt model was trained using Morgan 

fingerprints as compound representation together with structural descriptors (see Methods). Moreover, 

an additional DeepCt model was generated based on predicted ADME properties as input features. 

Figure 6 reports the prediction performance for the C-t and PK parameters’ prediction across the 

different feature sets. 

ba
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Figure 6. Benchmarking different sets of input features. Performance comparison for models based on 

different sets of input features (MELLODDY embeddings, MELLODDY embeddings with the addition of 

experimental conditions, Morgan fingerprints and 2D descriptors, and MELLODDY-based ADME predictions. 

(a) The goodness of individual curve predictions are shown with median R2, r, ρ, and mfce metrics (from left to 

right). Results are reported for both i.v. (orange) and p.o. (blue) administration. (b) Reported are mfce values for 

the derived PK parameters obtained from predicted C-t profiles. 

 

2.6.1. Encoding experimental conditions 

The inclusion of experimental information as input was investigated. The dose, measured matrix (i.e. 

blood or plasma) and formulation (i.e. solution or suspension) were encoded as features. Results did not 

show evidence that such additional features improved predictions (Figure 6). Complete statistics are 

shown in Table S8 for C-t curve predictions and Table S9 for derived PK readouts. No statistically 

significant improvement could be found for the prediction of C-t curves (p<0.01, Brunner-Munzel test).  

 

2.6.2. Alternative molecular representations 

The effect of using different molecular representations as input to the model was also explored. Models 

were also generated based on (i) Morgan fingerprints of radius 2 and 1024 bits [26] concatenated with 

two-dimensional structural descriptors [27], and (ii) the predicted ADME property profile (from the 

MELLODDY model). To use the predicted ADME property profile, instead of calculating the model’s 

embeddings, MELLODDY model’s output predictions are used as features for our ML algorithm. For 

this we used 33 endpoints corresponding to in vitro ADMET (solubility assays, permeability assays, 

ba
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intrinsic clearance in different species, etc.). MELLODDY embeddings resulted in the best performance 

for both the prediction of C-t curves as well as the derived PK readouts (Figure 6). Statistically 

significant improvements of using the MELLODDY embeddings (p<0.01, two-sided Brunner-Munzel 

test) were found both compared to using the predicted ADME (Table S10 and S11) as input as well as 

the Morgan fingerprints (Table S12 and S13). 

 

2.7. Prediction of C-t profiles for multiple dosing schemes 

The deep learning-based estimation of the compartmental constants that describe C-t curves enabled 

the investigation of multiple dosing regimens. In such settings, the drug is repeatedly administered in 

order to achieve plasma concentrations above a minimum therapeutically active concentration level and 

below a toxic concentration level. 

 

DeepCt generated with MELLODDY embeddings, and an underlying two-compartmental model was 

used. With the predicted compartmental model’s parameters, an easy extension of single dosing to 

different multiple dosing regimens was explored. Subsequent administered dose was added at selected 

timepoints to the central compartments or to the gastrointestinal tract in the case of  i.v. or p.o. 

administration, respectively. Figure 6 shows C-t profiles over five days for two exemplary marketed 

non-Novartis compounds, namely Venetoclax (ABT-199, here Compound 1) and Rivaroxaban (BAY 

59-7939, here Compound 2). These profiles were the result of simulating three dosing regimens with a 

dose of 1mg/kg every 6, 12 and 24 hours for both p.o. and i.v. administrations.). Compound 1 had a 

higher half-life than compound 2, and a 24h dosing interval already led to visible accumulation after 

multiple dosing, which is only visible for more frequent dosing for compound 2. This is in agreement 

with published data, with Rivaroxaban exhibiting a short half-life of 0.9h (0.89h predicted by DeepCt) 

in rats [28], while Venetoclax is known to exhibit longer half lifes of several hours (>10h in human 

[29], 3.66 predicted by DeepCt) . All in all, our simulations demonstrate that ML-based predictions of 

the underlying compartmental PK models enable the prediction even more complex readouts than single 

dose C-t curves. 
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Figure 6.  Prediction of C-t profiles for multiple dosing schemes. Predicted C-t curves are reported for two 

compounds after both i.v. and p.o. administration, respectively. Dosing every 24h hours (top row), every 12 hours 

(middle row) and every 6 hours (bottom row) is shown with a 1 mg/kg dose each.   

24h dosing

12h dosing

6h dosing

Compound 1 – Venetoclax (ABT-199) Compound 2 – Rivaroxaban (BAY 59-7939)
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3. Conclusions 

In this work, a novel ML based approach was developed for the prediction of C-t curves and the 

underlying compartmental PK model constants. Our model only takes as input the molecular structure 

and predicts the parametrization of the corresponding PK compartmental model, which is a standard 

technique for modeling the ADME processes that govern the shape of C-t profiles. Given the 

compartmental parameters, C-t curves are obtained as the analytical solution of the respective ODE 

system.  

 

Using the developed ML model, C-t profiles were predicted with reasonable accuracy, with median fold 

change errors of 2.0 and 2.8 after i.v. and p.o. administration, respectively. Moreover, results showed 

that PK parameters (e.g. AUC, F, etc.) derived from the predicted C-t curves exhibit similar accuracy 

to their direct PK prediction without modelling the underlying compartmental model. Hence, DeepCt 

keeps state-of-art performance while providing with valuable additional information, namely a 

mechanistic PK model that goes beyond the derivation of PK readouts and enables further simulations. 

Our work demonstrates first applications of our ML methodology beyond single dose studies and shows 

how the predicted compartmental model can be used to simulate the time profiles of multiple dosing 

schedules solely from chemical structures.  

 

Some challenges remain and might be further considered in future work. For instance, as the absorption 

process adds additional complexity, C-t curves after p.o. administration showed larger experimental 

uncertainty and were also substantially harder to predict than i.v.,. Identifiability of the compartmental 

models might play an important role, as multiple solutions can explain the same or similar C-t curves. 

This effect is usually more pronounced for p.o. administration than for i.v. An additional limiting factor 

is the heterogeneity inherent to in vivo PK datasets, since data was generated at multiple laboratories, 

with different formulations, and strains, among others.  
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Taken together, the deep learning model DeepCt enables the prediction of PK C-t curves from chemical 

structures and is trained end-to-end using measured concentrations. Given that our model reaches state-

of-art performance for PK parameters (e.g. AUC, bioavailability) but also predicts an underlying PK 

compartmental model and C-t profile, it can be envisioned that DeepCt and derivates of it will become 

a preferred approach for in vivo PK predictions. 
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4. Materials and Methods  

4.1. Protocol of in vivo rat PK studies 

The animal experiments were performed in accordance with the global Novartis Animal Welfare Policy 

and Standards and to the Animal Welfare legislation and regulations of the country where the study was 

conducted (USA or Switzerland). All rodents used here were obtained from approved vendors and were 

kept under standard conditions after their arrival at the test facilities. They were acclimatized for several 

days and were housed under controlled environmental conditions (optimal health conditions, 22 °C in 

a special, acclimatized pathogen-free animal room with 12h dark-light cycles) with ad libitum access 

to standard food and tap water before dosing and during the entire experimentation period. 

 

The PK studies were conducted as discrete dosing or cassette dosing (i.e., mixture of 6 compounds 

dosed simultaneously). For rat PK studies, four to six days before drug administration, male Sprague 

Dawley rats (body weight 250-300 g) were anesthetized, and then, under aseptic conditions, two 

catheters were surgically implanted into the left and right jugular veins for drug administration and 

blood collection, respectively. The catheters were exteriorized at the neck. Animals received analgesic 

treatment before surgery and subsequently at appropriate times after surgery, and animals were kept 

individually in standard cages. After recovery, the cannulated rats were dosed either intravenously via 

the catheter at a dose of 1 mg/kg of drug substance solubilized in a mixture of N-1-methylpyrrolidone 

(NMP) and polyethylenglycol 200 (PEG200) with an administration volume of 0.5 mL/kg or orally by 

gastric gavage at a dose of 10 mg/kg as a suspension in a mixture of Methylcellulose and Tween 80 

with an administration volume of 5 mL/kg. At different time points, over 24 h after dosing, blood 

(EDTA, ~10-20 µL) was collected via the other catheter. Immediately after collection, these whole 

blood samples were frozen on dry-ice and then stored at −20°C until LC/MS/MS analysis for parent 

drug determination. For bioanalytical investigation of blood samples, protein precipitation was 

performed by mixing an aliquot of blood with acetonitrile and centrifuged at 4 °C. The supernatant was 

transferred into a microtiter plate and an aliquot of each sample was injected into the LC-MS/MS system 

for analysis. Due to the utilization of a large data set, comprising many years of measurements at 
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Novartis, parts of the protocol might differ for some of the compounds measured in PK studies. For 

instance, some studies might have carried out in plasma or for Wistar rats. 

 

Analysis of the experimental concentration curves was done using a non-compartmental approach, 

according to internal PK guidelines. The PK calculations were performed on individual concentration 

profiles. All calculations were based on the compounds’ free form. Briefly, the apparent terminal slope 

λz (rate-constant in h-1) of the semilogarithmic concentration-time curve was estimated between at least 

the 3 last measured time point concentrations (with a square of correlation coefficient, also named 

goodness of fit statistic, R2 > 0.75); then the apparent elimination half-life (t1/2,z) was calculated as t1/2z 

= ln2 / λz. The areas under the curve (AUC) were calculated by the linear trapezoidal rule for increase 

and logarithmic for decrease and extrapolated to infinite time as AUC = AUClast + Clast/λz, where 

AUClast is the area under the curve between zero and the last measurable time point (tlast) and Clast the 

last measurable blood concentration (i.e. last level data above the limit of quantification). The 

extrapolation of the AUC from the last time point to infinite (i.e. Clast/λz) did not exceed 25% of the 

AUCinf. Systemic plasma clearance (CL) data were calculated as: CL = Doseiv/AUCiv. The oral absolute 

bioavailability (%) was estimated using the dose-normalized AUC oral/intravenous percentage. The 

maximal blood concentration observed after oral administration corresponds to Cmax. 

 

4.2. Dataset preparation and description 

Rat i.v. and p.o. studies in blood or plasma were considered for modeling. For cases with blood/plasma 

partition coefficients available, corrections were applied to transform plasma to blood concentrations. 

Dosage forms were solution or suspension, and only single dose studies were kept. Concentrations 

below quantification limit were considered as missing values. Instances with missing concentrations 

were also included in the dataset since they might be due to compounds with fast clearance. Experiments 

were discarded for animals with less than two concentration values measured or a unique concentration 

value in all the experiment. 
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The final dataset contained ca. 21000 rat experiments, of which ca. 8000 were i.v. and 13000 p.o. 

administrations (Supporting Figure 1). 

 

The data set was split into training (80%), validation (5%), and test (15%) sets, depending on the study 

report date. The training set was used for model generation, the validation set for early estopping (as 

further detailed in Section 4.4.) and the test set for prospective performance evaluation. 

 

4.3. Compartmental modeling 

Compartmental analysis is commonly used in PK to model the kinetic behavior of a compound in the 

body after administration [30], [31]. A three-compartmental model (Figure 1a) is defined by absorption 

(in case of p.o. administration, modelled by the rate constant ka), distribution from the central 

compartment to both the first and second peripheral compartment (modelled by intercompartmental 

clearances Q1 and Q2 and compartmental volumes V1 and V2, respectively) and elimination from the 

central compartment only (modelled by CL). Here, distribution to the peripheral compartments only 

happens from the central compartment. Using linear kinetics and for a p.o. bolus, this compartmental 

model results in the following ODE system for the concentration 𝐶3(𝑡) in the gut, 𝐶#(𝑡) in the blood, 

𝐶&(𝑡) in the first peripheral compartment and 𝐶'(𝑡) in the second peripheral compartment: 

 

 
𝑑𝐶3(𝑡)
𝑑𝑡

= −𝑘( ⋅ 𝐶3(𝑡)    (2) 

 

 
𝑑𝐶#(𝑡)
𝑑𝑡

= 𝑘( ⋅ 𝐶3(𝑡)  −  
𝐶𝐿
𝑉#
𝐶#(𝑡) −

𝑄&
𝑉#
𝐶#(𝑡) +

𝑄&
𝑉&
𝐶&(𝑡) −

𝑄'
𝑉#
𝐶#(𝑡) +

𝑄'
𝑉'
𝐶'(𝑡)   (3) 

 

 
𝑑𝐶&(𝑡)
𝑑𝑡

=
𝑄&
𝑉#
𝐶#(𝑡) −

𝑄&
𝑉&
𝐶&(𝑡)   (4) 

 

 
𝑑𝐶'(𝑡)
𝑑𝑡

=
𝑄'
𝑉#
𝐶#(𝑡) −

𝑄'
𝑉'
𝐶'(𝑡)   (5) 
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This system can be solved by initializing 𝐶3(0) using the loading dose, and setting 𝐶&(0) = 0 as well 

as 𝐶'(0) = 0. In case of an i.v. bolus, ka is set to 0 and 𝐶#(0) defined by the dose. 

This initial value problem is then solved by the following function.  

Let  

𝑎4 = 𝐶𝐿 ⋅ 𝑄' ⋅
𝑄5

𝑉&𝑉'𝑉5
       (6) 

 

𝑎& =
𝐶𝐿 ⋅ 𝑄5
𝑉&𝑉5

  +   
𝑄' ⋅ 𝑄5
𝑉'𝑉5

  +  
𝑄' ⋅ 𝑄5
𝑉'𝑉&

  +  
𝑄' ⋅ 𝐶𝐿
𝑉'𝑉&

+  
𝑄' ⋅ 𝑄5
𝑉&𝑉5

    (7) 

 

𝑎' =
𝐶𝐿
𝑉&
  +   

𝑄'
𝑉&
  +  

𝑄5
𝑉&
  +  

𝑄'
𝑉'
+  

𝑄5
𝑉5
    (8) 

 

𝑝 = 𝑎& −
𝑎'5

3
     (9) 

 

𝑞 =
2𝑎'5

27
−
𝑎&𝑎'
3

+ 𝑎4     (10) 

 

𝑟& = N−
𝑝5

27
         (11) 

 

𝑟' = 2𝑟&
&
5        (12) 

 

𝜆 =
1
3
arccos T−

𝑞
2𝑟&

U      (13) 

 

𝛼 = −4cos(𝜆) 𝑟' −
𝑎'
3
8      (14) 
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𝛽 = −Tcos T𝜆 +
2𝜋
3 U

𝑟' −
𝑎'
3 U

     (15) 

 

𝛾 = −Tcos T𝜆 +
4𝜋
3 U

𝑟' −
𝑎'
3 U

      (16) 

 

The final concentration over time 𝐶#(𝑡) in the central compartment, i.e. the blood, is defined as: 

𝐶#(𝑡) = 𝐷5𝐴	𝑒678 + 𝐵	𝑒698 + 𝐶	𝑒6:87       (17) 

Where D is the dose and, in the case of an i.v. bolus, A, B and C are: 

 

𝐴 =
4𝑄&𝑉&

− 𝛼8 4𝑄'𝑉'
− 𝛼8

𝑉#(𝛼 − 𝛽)(𝛼 − 𝛾)
       (18) 

 

𝐵 =
4𝑄&𝑉&

− 𝛽8 4𝑄'𝑉'
− 𝛽8

𝑉#(𝛽 − 𝛼)(𝛽 − 𝛾)
       (19) 

 

𝐶 =
4𝑄&𝑉&

− 𝛾8 4𝑄'𝑉'
− 𝛾8

𝑉#(𝛾 − 𝛼)(𝛾 − 𝛽)
       (20) 

 

In the case of p.o. administration A, B and C are given by the following equations: 

𝐴 =
𝑘( 4

𝑄&
𝑉&
− 𝛼8 4𝑄'𝑉'

− 𝛼8

𝑉#(𝑘( − 𝛼)(𝛼 − 𝛽)(𝛼 − 𝛾)
       (21) 

 

𝐵 =
𝑘( 4

𝑄&
𝑉&
− 𝛽8 4𝑄'𝑉'

− 𝛽8

𝑉#(𝑘( − 𝛽)(𝛽 − 𝛼)(𝛽 − 𝛾)
       (22) 
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𝐶 =
𝑘( 4

𝑄&
𝑉&
− 𝛾8 4𝑄'𝑉'

− 𝛾8

𝑉#(𝑘( − 𝛾)(𝛾 − 𝛼)(𝛾 − 𝛽)
       (23) 

 

These equations solve the ODE system for a compartment model with three compartments. When 𝑄' =

0, the solution for a two-compartmental model is obtained, whereas 𝑄& = 0 and 𝑄' = 0 refers to the 

one-compartmental model’s solution. 

 

4.4. Non-compartmental analysis 

Non-compartmental analysis is used to derive PK parameters from the C-t curves [32].Total exposures 

over time for p.o. administration, 𝐴𝑈𝐶*.2., and for i.v., 𝐴𝑈𝐶!.". are calculated from the curves by the 

trapezoidal rule. Similarly, the 𝐴𝑈𝑀𝐶!."., i.e. the area under the first moment curve, is calculated using 

the trapezoidal rule from the first moment curve , which is given by the concentration times time C(t)*t. 

From the total exposures 𝐴𝑈𝐶!."., 𝐴𝑈𝐶*.2. and corresponding doses 𝐷!.". and 𝐷*.2., biovailability F is 

then calculated by  

 

𝐹 = ;!.#.<=>$.%.
;$.%.<=>!.#.

    (24). 

 

Clearance (CL) is defined as  

 

𝐶𝐿 = ;!.#.
<=>!.#.

    (25). 

 

Half-life t1/2 is calculated from the tail of the C-t curves by 

  

𝑡&
'?
= @A(')

&'()*
+,&!.#.-+,&!.#.,'()*

      (26), 
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where 𝐴𝑈𝐶!."., E(F8 is the AUC from time t=0 to the time where the concentration fell to 10% of its 

maximum, which we done here by 𝐶E(F8.  

 

Mean residence time (MRT) is calculated by  

 

𝑀𝑅𝑇 =	<=G>!.#.
<=>!.#.

   (27) 

 

Moreover, the volume of distribution at steady state, 𝑉FF, is then calculated by 

 

𝑉FF = 𝑀𝑅𝑇 ∗ 𝐶𝐿       (28). 

 

4.5. Deep learning model architectures and training 

Two deep learning models were generated. The principal model is to predict compartmental models’ 

constants and, subsequently, the C-t profile (DeepCt). The second model was generated as a control 

benchmark for the prediction of the derived PK parameters from molecular structure.  

 

For both deep learning strategies, AdamW optimizer [33],  early stopping [34], and cyclical learning 

rates [35] were applied. For early stopping, training was stopped after 10 epochs without further 

improvements on the validation set, and the best model was selected. For the cyclical learning rate 

scheduling, a base learning rate of 0.0001, a maximum learning rate of 0.01, and the “triangular2” 

cycling mode were chosen, and the number of iterations of one cycle was set to four times the batch 

size. A weight decay of 0.01 and a batch size of 32 were used. The final models are always an ensemble 

of 10 replicates, trained with different random initializations. Models are implemented in Python using 

PyTorch [36], scikit-learn [37], scipy [38] and numpy [39] libraries. 
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4.5.1. Compartmental models and C-t prediction 

The models used for C-t profile predictions have five fully connected layers with 256 hidden units. Each 

layer is preceded by a dropout layer with a dropout rate of 0.3 and followed by batch normalization and 

ReLU activations. The loss function was the mean absolute error of the natural logarithm of the 

predicted and measured concentrations, respectively, together with an additional penalty on 

contributions of higher compartments (see section 2.1.2 for details).  

4.5.2. Derived PK parameters 

Models for derived PK readout prediction had three fully connected shared layers and three additional 

fully connected layers for each task. Each layer had 256 hidden units. The prediction tasks were AUC 

for both i.v. and p.o routes, Cmax for p.o., and t(1/2) for i.v., which constituted the four output units of 

the network. The parameters Vss, CL and F were subsequently derived from the beforementioned 

predictions. Dropout layers (with a rate of 0.3), batch normalization, and ReLU activations were also 

considered. For this model, the loss function used was the mean absolute log error. 

 

4.6. Molecular representation 

Molecules were represented using the embeddings of a cross-pharma federated learning model termed 

MELLODDY.  In the MELLODDY project, ten pharmaceutical companies built multi-task ML models 

through federated learning on a platform audited for privacy and security. Training data consisted of 

2.6+ billion confidential activity data points, 21+ million physical small molecules, and  40+ thousand 

assays in on-target and secondary PD and PK[40] . Herein, the encodings from the last layer for a 

regression MELLODDY model were used as molecular representation and fed into the deep learning 

models for PK predictions. 

 

For comparison, other molecular representations were tested. To this end a model using Morgan 2 

fingerprints (bit-based, 1024 bits) [26] as well as structural descriptors calculated using RDKit [27], as 

described in Section 2.6.2. 
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4.7. Performance metrics 

The fold change is a major criterion for assessing the performance of PK predictions [18], [41], [42], 

which can be aggregated for multiple predictions as the median fold change error mfce and is given by 

 

mfce = exp	(median(log(𝑥) − log	(𝑥*+,-)))           (29). 

 

Other error measures we used are R2, Pearson and Spearman correlations as well as the root mean 

squared error (RMSE). 

 

4.8. Statistical analysis 

Statistical significance of the differences of model performance was assessed by bootstrapping the test 

set and calculating p-values using the Brunner-Munzel test [43]. To account for the multiple testing 

problem originating from testing different readouts and performance measures simultaneously, p-values 

were further corretec for the FWER using Holm’s approach [44].
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