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Abstract 

The proportional amounts of monomers within a copolymer will greatly affect the 

properties of the material. However, as known as composition drift, the monomer ratio 

in a copolymer can deviate from the value expected from the raw material ratio due to 

differences in monomer reactivity. Hence, it is therefore necessary to optimize the 

polymerization process on the basis that this inevitable composition drift will take place. 

In the present study, styrene-methyl methacrylate copolymers were generated using a 

flow synthesis system and the processing variables were tuned employing Bayesian 

optimization (BO) to obtain a target composition. Initial trials employed BO to produce 

four candidate points per cycle, completing the optimization within five cycles, and the 

solvent-to-monomer ratio was identified as the most important variable. Subsequent BO 

tests employed 40 points per cycle and established that multiple sets of processing 

conditions could provide the desired composition, but with variations in the physical 

properties of the copolymers. The role of each variable in the radical polymerization 

reaction was elucidated by assessing the extensive array of processing conditions while 

evaluating several broad trends. The proposed model confirms that specific monomer 

proportions can be produced in a copolymer using machine learning while investigating 

the reaction mechanism. In the future, the use of multi-objective BO to fine-tune the 
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processing conditions is expected to allow optimization of the copolymer composition 

together with adjustment of physical properties. 

 

INTRODUCTION 

Polymeric materials have a wide range of applications in both everyday life and 

specialized high-technology sectors, including in packaging, automotive engineering, 

medical devices and photonics. This ubiquity renders polymer science a critical aspect 

of industrial research. One of the key determinants of polymer properties is the 

monomer proportions. Specifically, achieving an optimal composition during copolymer 

synthesis is of paramount importance, as this factor directly affects attributes such as 

mechanical strength and thermal stability.1–3 The relative reactivities of monomers are 

particularly significant and vary considerably, depending on the monomer combination 

that is used. This variability often leads to composition drift, a phenomenon where the 

actual monomer ratio in the copolymer deviates from the raw material ratio. Hence, this 

factor must be considered when designing a polymer synthesis to ensure that the 

synthesis process is robust against such deviations.4–8 Moreover, the development of 

synthetic processes for homogeneous polymers having balanced monomer ratios, while 

accounting for the inevitability of composition drift, is crucial, both to ensure product 

https://doi.org/10.26434/chemrxiv-2024-9n229 ORCID: https://orcid.org/0000-0002-4601-2432 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-9n229
https://orcid.org/0000-0002-4601-2432
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 4 

quality and to allow for scale-up to industrial production levels. 

 Historically, the exploration of new materials, including the design and process 

optimization stages, has been carried out primarily on an empirical basis, relying on 

iterative trial-and-error experimentation that consumes substantial time and resources. 

However, recent advancements in materials informatics, particularly machine learning, 

offer promising alternatives. As examples, machine learning techniques have been 

employed in composition searches,9–13 crystal phase and microstructure 

classifications14,15 and physical property predictions.16,17 Within the field of polymer 

chemistry, informatics is increasingly being applied to the design of polymers18–21 and 

the prediction of properties22–24 based on the use of molecular descriptors. Bayesian 

optimization (BO), in particular, has emerged as a powerful tool in many scientific 

disciplines, including materials science.25–29 This technique constructs a mathematical 

model using existing data and employs an acquisition function to quantitatively select 

experimental conditions for subsequent investigations. This data-driven approach 

obviates the need for experiential judgment and permits the identification of optimal 

conditions with fewer experimental iterations.30 As an example, Nagato et al. 

successfully applied BO to the identification of processing conditions that minimized 

the formation of defects in powder films while carrying out a limited number of 
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experiments.31 

 Given that BO is predicated on the acquisition of experimental data, numerous 

experiments are typically required for method validation and so it is advantageous to 

employ experimental techniques capable of generating abundant, highly reproducible 

data. In this context, high-throughput methods for materials exploration32–35 and 

analysis36–38 are increasingly being integrated with machine learning algorithms.39–41 

Recent developments in microchemistry have led to the investigation of polymerization 

through flow synthesis, initially facilitated by micromixer-based systems.42–47 Flow 

synthesis offers several benefits, including homogeneous mixing, efficient heat 

exchange, precise residence time control and scalability48–50, making it a suitable 

candidate for integration with machine learning techniques.51–57 Warren et al. previously 

developed a polymer synthesis and analysis platform that allowed RAFT polymerization 

to be automated and used this system to explore the trade-off between molar mass 

dispersity and monomer conversion58. In our previous work, we developed a flow 

copolymerization system based on a microflow mixer and explored the relationship 

between process conditions and reactivity ratios in styrene - methyl methacrylate (St-

MMA) and glycidyl methacrylate - MMA copolymers.59 This prior study also 

incorporated the prediction of physical properties when using unlearned molecules as 
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monomers (that is, molecular extrapolation prediction) based on the use of density 

functional theory calculations to model MMA-based copolymers.60 The present research 

employed BO to identify the optimal conditions for synthesizing St-MMA copolymers 

with targeted compositions. The findings presented herein are expected to enhance the 

efficiency of polymer design and synthesis and also catalyze further innovations. 

Moreover, synergistic combinations of BO and flow copolymerization systems as 

demonstrated in this work are likely to have a wide range of applications in industrial 

settings. 

 

METHODS 

Polymer synthesis and characterization 

A binary copolymer consisting of St and MMA was produced via a free radical process 

using the flow synthesis apparatus depicted in Figure 1. This apparatus was employed in 

our previous studies and has been demonstrated to be capable of reproducible and 

precise synthesis with little variation in polymer properties, meaning that it is suitable 

for generating data amenable to machine learning applications.59,60 Various processing 

parameters (the proportion of St in the raw materials, the proportion of MMA, the 

amount of initiator, the solvent-to-monomer ratio (SM), the flow rate (which in turn, 
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determined the reaction time) and the reaction temperature) were involved in the 

synthesis of individual copolymer specimens. During these trials, Bottle-1 contained the 

St, initiator and solvent while Bottle-2 held a mixture of MMA, initiator and solvent. 

The flow apparatus used in this work allowed the reaction time and monomer ratio to be 

readily adjusted by modifying the flow rates. However, it should be noted that the SM 

value and initiator proportion were determined during the preparation of the reagent 

mixture in each bottle and thus could not be changed merely by adjusting the flow rate. 

Figure 1. Diagram of the flow synthesis reactor. Streams from two bottles, each 
containing one monomer along with the initiator and solvent, were combined 
using a micromixer such that copolymers were synthesized at specific 
temperatures. 
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Additionally, although the reaction temperature could be varied, this was not a simple 

process because some time was required for thermal equilibration with each change. 

Henceforth, the present work differentiates between easily adjustable process variables 

referred to as “soft process variables” (comprising the reaction time and monomer ratio) 

and less easily adjustable parameters referred to as “hard process variables” (that is, the 

SM value, initiator concentration and reaction temperature). 

 The copolymers synthesized in this work were analyzed using ultra-high-

performance liquid chromatography (UHPLC) to determine the monomer 

polymerization percentages (M1 and M2) and the compositions of the copolymers. It 

should be noted that the UHPLC system was not integrated into the flow synthesis 

apparatus but rather was a separate analysis. These values were calculated as 

 𝑆𝑡	(𝑜𝑟	𝑀𝑀𝐴)	𝑐𝑜𝑛𝑣. (%) = 01 −	 !!
!"
3	× 	100  (1) 

and 

𝑆𝑡"! =	
#$%#$	×	$%	()*+.-

#$%#$	×	$%	()*+.-.	#//0#$	×	//0	()*+.-
	× 	100, (2) 

where R0 is the mass fraction of each monomer prior to the reaction, Rt is the mass 

fraction of each monomer at reaction time t, and Stfr and MMAfr are the proportions of 

each monomer employed in the raw materials mixture in the synthetic procedure. To 
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assess the robustness of this analysis, multiple replicate analyses were performed to 

obtain the experimental error for monomer conversion in the form of a standard 

deviation, which was determined to be 0.19%. A total of 314 copolymers were 

synthesized using Latin hypercube sampling (LHS) and BO to determine the synthetic 

conditions. Details of the experimental and analytical conditions are provided in the 

Electronic Supplementary Information (ESI) for this paper. 

 

Bayesian Optimization Algorithm 

The BO method is a technique that can be used to efficiently explore explanatory 

variables that can be adjusted to minimize (or maximize) the output of an objective 

function, which is to be optimized.61 In the present research, five process variables (the 

concentration of initiator, SM value, St proportion in the raw materials, reaction 

temperature and reaction time) were assessed as explanatory variables while the St 

proportion within the St-MMA copolymer was used as the objective outcome. Previous 

experiments59 demonstrated that the monomer reactivity ratio can change depending on 

the synthesis conditions. This can occur even at an St concentration is 50%, which is 

close to the azeotropic boiling point of the St-MMA system. As a test case, the goal of 

the present study was to achieve an St proportion of 50 mol% within the copolymer. The 
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variable to be optimized to remove the effects of negative differences was defined as 

𝑦 = 	 (Target	St	proportion	in	copolymer	 − 	Actual	St	proportion	in	copolymer)1. 

 (3) 

Since the target St proportion in the copolymer for this experiment was 50 mol%, the 

values of y ranged from 0 to 2500, with values closer to 0 indicating a composition 

closer to the target. A Matern 5/2 kernel was used to perform Gaussian regressions 

during these calculations. The Matern 5/2 covariance function was defined as 

	 𝑘(𝑥, 𝑥′) = 	01 +	√34
5
+	 34

%

65%
3 𝑒𝑥𝑝 0− √34

5
3	 (r	=	|x	–	x’|)	 (4)	

where θ is a scaling parameter. The Matern kernel is a smoothing function between the 

exponential kernel and RBF kernel, and was selected for use in this work because it was 

considered best suited to the analysis of the data. 

 The monomer reactivity values for St and MMA are 0.52 and 0.46, 

respectively.62 It was unlikely that the monomer proportions in the St-MMA copolymers 

would deviate significantly from the nominal values due to the similar reactivity ratios 

for St and MMA as well as the target St proportion of 50 mol%. Therefore, this work 

focused solely on the St proportion in the copolymer. In addition, the difference 

between the St proportion in the initial monomer feed and that in the actual copolymer 

was assumed to be random and normally distributed. A 95% confidence interval for this 
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variable was then calculated based on the standard deviation of the initial data (data 

obtained from 50 initial points, described below), and this interval was set as the search 

range for the St proportion (Table 1). Herein, the search range refers to the range of 

experimental conditions that BO may propose. BO was performed using the BoTorch 

Python library63 while selecting Expected Improvement as the acquisition function. An 

LHS process was used for initial point sampling, obtaining 50 such points based on the 

maximin criterion. Figure 2 illustrates the initial point sampling method employed in  

Figure 2. Plot of 50 initial points created using LHS. Initial point generation was 
performed with minimal bias within the search area. Following this, LHS was 
used to obtain five points in the hard process variable space then 10 points with 
changed values in the soft process variable space, for a total of 50 initial points. 
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Table 1. BO ranges for the variables considered in this work. 
 Process variable Range 
Initiator concentration (mol%) 1 - 10 
SM value 1 - 10 
St proportion (mol%) 36.2 - 82.2 
Reaction temperature (°C) 50 - 90 
Reaction time (min) 2 - 30 
 
Table 2. Initial point sampling ranges during LHS. 
 Process variable Range 
Initiator concentration (mol%) 1 - 10 
SM value 1 - 10 
St proportion (mol%) 0 - 100 
Reaction temperature (°C) 50 - 90 
Reaction time (min) 2 - 30 

 

this study while the LHS search range is provided in Table 2. Because it was time-

consuming to vary the so-called hard process variables, LHS was first carried out in the 

hard process variable space to obtain five points. Subsequently, based on these points, a 

further LHS was conducted in the soft process variable space to obtain 10 experimental 

conditions per hard process variable, resulting in a total of 50 initial points. Details 

concerning these initial points can be found in the ESI. 

 During the BO, certain processing conditions, such as the use of an overly low 

temperature, could possibly have resulted in incomplete copolymerization, leading to 

inaccurate assessments of copolymer properties. As such, these data points 

corresponded to missing values in the objective function. To address this, the present  
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work adopted the so-called floor padding trick, which assigns the worst (herein y = 

2500) experimental values to the missing values.25 

 

RESULTS AND DISCUSSION 

Bayesian optimization of monomer proportions in copolymers 

This work employed BO with the goal of obtaining a 50 mole% St proportion in the 

copolymer. During this optimization, the model was updated every four candidate points 

and Figure 3 plots the minimum absolute difference between the target and 

experimental St proportions as a function of the number of optimization cycles. As 

described in the Methods section, the experimental error associated with these data was 

determined to be 0.19%. Consequently, an absolute difference of less than or equal to  

Figure 3. Minimum absolute value difference between target 
and experimental values for St proportion in copolymer for 
each cycle. 
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Table 3. Process conditions associated with the optimum point, including explanatory 
variables and the St proportion in the copolymer during the optimization process. 
  

initial-15 candidate-1-1 candidate-5-3 

Initiator concentration (mol%) 8.195 8.950 10.00 

SM value 
 

1.186 6.420 8.120 

St proportion (mol%) 47.55 48.16 57.23 

Reaction temperature (°C) 73.40 69.20 67.54 

Reaction time (min) 13.99 18.98 27.06 

St proportion  
in the copolymer (mol%) 48.83 50.39 50.16 

 

0.19% was considered to indicate that the desired copolymer composition had been 

attained. The optimization loop concluded after the fifth cycle, at which point the 

difference was 0.16% and therefore sufficiently small. Table 3 summarizes the ranges of 

process variable values employed in these trials and the monomer proportions achieved 

through the BO process. Herein, samples are named using the formula “initial-

experiment condition no.” for the initial points and “candidate-cycle no.-experiment 

condition no.” for the BO results. As an example, “initial-15” describes the 15th 

experimental condition at the initial point while “candidate-5-3” describes the 3rd 

experimental condition in the 5th cycle of the BO process. The optimal initial point was 

initial-15, the optimal point from cycle 1 to cycle 4 was candidate-1-1, and the optimal 

point in cycle 5 was candidate-5-3, which was not updated in cycle 6. 
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 Throughout this optimization, numerous initial sampling points were employed 

that included a point close to the target (initial-15), although the St proportion in the 

copolymer remained below the desired value. Therefore, the St proportion is considered 

to have increased during the optimization process using the BO method. Furthermore, 

this process suggested a lower temperature, an extended reaction time and an increase in 

the SM value (that is, lowering the monomer concentration). These adjustments are 

discussed in detail in the following section. The results of this process also 

demonstrated that extending the reaction time was beneficial in the case that the St 

proportion was increased. The utility of lowering the reaction temperature was also 

apparent because the effects of decreasing the temperature and reducing the reaction 

time were typically opposite to one another. 

Figure 4. Predictive accuracies for (a) training data and (b) test data in each 
cycle. These plots show the shift in prediction accuracy as the BO progressed. 
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 The accuracy of the Gaussian regression performed for each optimization cycle 

was assessed by calculating the coefficient of determination using the existing training 

data and the flow synthesis results for the candidate points as test data (see Figures 4(a) 

and (b), respectively). While the predictive accuracy associated with the training data 

was found to be acceptable, the accuracy for the test data evidently improved with 

increases in the number of optimization cycles but remained low, with a coefficient of 

determination of -1.819 at the end of the optimization loop. This poor performance was 

attributed to a lack of sufficient experimental data extending over the entire search 

range, which affected the overall Gaussian regression. Even so, given that the primary 

aim of the present work was to achieve a specific copolymer composition, further 

improvements in the regression performance were not pursued. 

 Figure 5 plots the BO acquisition function values against the number of cycles. 

The acquisition function can be seen to have generally decreased as the optimization 

progressed, transitioning to a simple exploitation phase and increasingly proposing 

process conditions similar to those already tested. In this study, even though the 

acquisition function remained above zero, we were able to achieve the target copolymer 

composition. This outcome suggests that multiple sets of process conditions may have 

allowed this same goal to be accomplished. Additional optimization trials could  
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Figure 5. Acquisition function values versus the number of cycles.  
These data indicate changes in the acquisition function as the BO progressed. 

Figure 6. Importance value for each process variable using (target monomer 
proportion - experimental value)2 as the objective variable. 
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therefore potentially discover other feasible sets of process conditions, as addressed in 

more detail in the following section. 

 Finally, automatic relevance determination (ARD) was used to ascertain the 

importance of each process variable, as represented by the common logarithm of the 

length scale (Figure 6). The SM value was found to be the most important variable, 

whereas the St proportion was the least important. Typically, the desired composition of 

a copolymer is achieved by adjusting the monomer proportions in the raw material 

mixture, which are considered important factors in experimental work. The low 

importance of the St proportion in the present work can be attributed to the fact that all 

five process variables affected the copolymer composition and that the search range 

included experimental conditions that did not promote radical polymerization. Because 

the St proportion had a minimal effect with regard to whether the polymerization 

Figure 7. Diagram summarizing the method used to generate candidate points 
during extended BO. In this process, candidate points were extended using LHS 
while considering the points proposed by BO. 
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reaction proceeded, the relative importance of this variable was found to be low. This 

result demonstrates that machine learning can explicitly reveal what humans may 

implicitly taken for granted. Additional trials are currently underway in our laboratory 

to assess the apparent high importance of the SM value, which may be related to solvent 

effects, using molecular dynamics simulations. The results will be reported in a separate 

paper. 

 

Extended Bayesian optimization of monomer proportions in the copolymer 

The results described in the previous section based on BO during which the function 

was updated every four candidate points suggested that multiple sets of conditions could 

potentially give the target copolymer composition. To assess this possibility, an 

extended BO (EBO) was performed using the same flow apparatus but updating the 

function every 40 candidate points. These 40 points included four points output by the 

original BO and an additional 36 points generated using LHS for the continuously 

varied soft process variables (monomer proportions and reaction time) (Figure 7). 

 Firstly, a comparison between the EBO and BO results was conducted. Figure 8 

plots changes in the minimum absolute difference between the target and experimental 

St proportions versus the number of optimization loop cycles. Contrary to expectations,  
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Figure 8. Smallest absolute differences between target and experimental values as 
functions of the number of cycles for four and 40 candidates points. 

Figure 9. Number of conditions for which the monomer proportion in the 
copolymer was 50 ± 2.5 mol% among candidate points generated by BO for 
various numbers of cycles. 

Figure 10. Comparison of the number of experimental conditions achieving the 
target value (St proportion of 50 ± 2.5 mol%) using the Bayesian approach and LHS. 
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no significant change was observed in either the number of cycles required for 

optimization or the minimum absolute difference between the target and experimental 

values at each cycle. Figure 9 summarizes the number of data points that achieved an St 

proportion within the copolymer of 50±2.5% from the four candidate points generated 

in each cycle for both the BO and EBO. A span of ±2.5% was employed here based on 

the range that would be considered acceptable for commercial products. After six cycles 

of BO, eight and seven samples, respectively, achieved the desired composition in 

association with BO and EBO. Hence, no significant advantage was obtained from the 

expanded set of candidate points. Possible reasons for these results include the use of a 

sufficient number of initial data points and the low importance of the extended 

conditions (that is, the St proportion in the raw materials and the reaction time), as 

shown in Figure 6. While it would have been beneficial to increase the number of 

samples meeting the required criteria in the four candidate points predicted by the 

Bayesian optimization of the EBO method, this was not achieved in the present study. 

Because the EBO method allowed ten different conditions of experimental conditions to 

be examined per day (compared with only one or two combinations per day when using 

the BO technique), more experiments could be performed in a given time frame and at a 

lower cost, resulting in a larger quantity of samples meeting the required criteria. For 
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this reason, the EBO method was employed in the present research. 

 Figure 10 presents the number of data points required to obtain an St 

proportion in the copolymer of 50 ± 2.5% at each cycle for all 240 candidate points, 

including the extended points obtained through EBO. Following six EBO cycles, 33 

conditions that provided the desired composition were discovered. Although many 

suitable sets of conditions were identified in the extended region, the probability of 

discovery was higher in the case of the candidate points resulting from the BO process. 

This likely occurred because the extended process variables were determined by LHS 

and thus were not intended to achieve the target composition. Despite this, suitable 

conditions were found, possibly as a consequence of the relatively high importance of 

the three hard process variables proposed by the BO. 

 The predictive distribution generated by the Gaussian regression up to the sixth 

optimization cycle was visualized using partial dependent plots (PDPs)64 to display the 

relationships between groups of two process variables and the target variable (Figure 

11). In these plots, the color represents the predictive mean value obtained from 

Gaussian regression, with shades closer to blue indicating proximity to the target 

composition. As such, plots exhibiting a large blue area suggest that multiple conditions 

could achieve the desired composition. As an example, Figure 11(e) shows the  
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Figure 11. PDP diagrams showing the predicted mean of the sixth optimized 
Gaussian process regression obtained using EBO for each pair of explanatory 
variables. The color-coded numerical values are the predicted means of the 
Gaussian regression, with colors closer to blue corresponding to values closer to 
the target proportion. 
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relationship between the SM value and the St proportion. Here, two blue regions are 

evident, within which the St proportion occupies a large region around 40% and a 

smaller region around 65%. This observation implies the existence of multiple trends in 

the variable combinations conducive to reaching the ideal 50% monomer proportion. 

Moreover, in Figure 11(h) the blue regions are predominantly situated in the upper left 

quadrant, indicating the advantage of extending the reaction time when increasing the St 

proportion, as previously discussed in relation to the BO. Similarly, Figure 11 (i) 

demonstrates that as the reaction temperature increases, the range of reaction times over 

which the target value is achieved expands. This finding provides further evidence that a 

simplistic optimization approach targeting a 50% monomer composition is insufficient. 

 To further validate these findings, clustering was performed in the space of the 

five process variables for the 35 data points that achieved an St proportion in the 

copolymer of 50 ± 2.5%. These analyses used k-means and were visualized based on 

principal coordinate analysis (PCA) and parallel plots (Figures 12 and 13). Four clusters 

were classified and color-coded, and the color-coding in the PCA and parallel plots 

correspond to one another. The parallel plots establish that Cluster 1 was associated with 

conditions for which the St proportion was above 50% whereas Clusters 2 and 3 had 

proportions below 50%. Cluster 4, considered an outlier, had only two conditions (for  
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Figure 12. PCA results obtained from data related 
to achieving 50 ± 2.5 mol% St proportion in 
copolymer. 

Figure 13. Processing conditions related to achieving 50 ± 2.5 mol% St 
proportion in the copolymer. Each cluster is illustrated in a different color. 
Explanatory variables, objective variables and other important physical properties 
(sum of St and MMA conversion percentages, Mw and Mw/Mn) are indicated in 
each case that the desired St proportion is achieved. 
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which the St proportions were above 70%). When comparing parameters other than the 

St proportion, it can be seen that Cluster 1 involved high initiator amounts, low SM 

values, low reaction temperatures and long reaction times, while Cluster 2 had moderate 

initiator amounts, high SM values, high reaction temperatures and short reaction times. 

Cluster 3 involved conditions that were intermediate between those of Clusters 1 and 2. 

In addition, Cluster 1 was associated with high Mw and Mw/Mn values while Cluster 2 

showed low Mw and Mw/Mn values. These results can be ascribed to the temperature-

dependent initiation mechanism that, in turn, affected the copolymer chain lengths. 

Specifically, at lower temperatures (as is evident from the Cluster 1 data), initiator 

cleavage would occur sporadically, leading to a gradual increase in polymerization 

initiation points and the formation of heterogeneous, high-molecular-weight molecules. 

In contrast, at the elevated temperatures typified by Cluster 2, the initiator molecules 

would be expected to undergo simultaneous cleavage to give shorter chains. 

 In summary, the single-task BO revealed multiple process conditions and 

trends that were capable of providing the target copolymer composition. Furthermore, 

as shown in Figure 13, parameters other than the copolymer composition, such as the 

extent of monomer conversion, Mw and Mw/Mn, varied significantly depending on the 

process conditions. These parameters would likely affect the copolymer characteristics 
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and so should also be optimized in a real-world scenario. This process would 

correspond to a so-called multi-objective BO and has been previously applied to the 

design of various materials and been shown to be effective.65–69 We propose that the 

aforementioned challenges could be addressed through empirical validation using multi-

objective BO. 

 

CONCLUSIONS 

This study elucidated the process conditions required to optimize the monomer 

proportions in a copolymer through the use of BO in conjunction with a flow synthesis 

apparatus. Notably, the solvent concentration was found to be more critical than the 

monomer proportions in the raw materials. This finding is corroborated by our previous 

research, which demonstrated that relative reactivities of monomers can change 

depending on the process conditions. Hence, this work is expected to lead to further 

mechanistic elucidation from a molecular perspective. The use of EBO also revealed 

that numerous sets of conditions could give the desired copolymer composition. A 

comparison of these conditions established multiple trends and provided insights into 

the radical polymerization mechanism. Even in the case that the target composition was 

achieved, other polymer properties (specifically the extent of monomer conversion, Mw 
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and Mw/Mn) varied significantly. These properties have a direct impact on the physical 

properties of a polymer and thus should be optimized concurrently. Future work by our 

group will involve verification using multi-objective BO to address these challenges, 

which is expected to eventually lead to practical applications. Ultimately, our goal is to 

control polymer properties using these optimization techniques so as to create new 

value through scalable development and manufacturing. 
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