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The exploration of C(sp3)-rich three-dimensional (3D) scaffolds as bioisosteres for planar 

aromatics has garnered increasing attention. While the bioisosterism of benzenes has 

been extensively studied, the bioisosterism of pyridines, the second most prevalent 

aromatic compounds in pharmaceuticals, faces additional challenges and has 

encountered surprisingly limited success. In this study, we propose unprecedented 2-

azabicyclo[3.1.1]heptenes as effective bioisosteres of 1,3,5-trisubstituted pyridines in 

terms of not only 3D conformation but also basicity. We develop a pyridine-boryl radical-

catalyzed [3π + 2σ] cycloaddition reaction of vinyl azides with bicyclo[1.1.0]butanes 

(BCBs) as an efficient synthetic approach. Synthetic manipulation of the products reveals 

valuable synthetic handles, allowing for the modular synthesis of various pyridine 

bioisosteres. 

 

INTRODUCTION 

In recent years, chemists have been captivated by the concept of "escaping from 

flatland"1,2. The utilization of C(sp3)-rich three-dimensional (3D) scaffolds as bioisosteres 

for planar aromatic ring structures has provided practical solutions to various 

developability challenges encountered in drug discovery3,4. This bioisosteric substitution 

often leads to enhanced potency, solubility, and metabolic stability5-8. In this context, the 

invention and synthesis of benzene bioisosteres have been actively explored in organic 

synthesis4,9, primarily due to the widespread use of benzene in a vast array of bioactive 

compounds (Fig. 1a)10. Through these efforts, a diverse range of bicyclic or polycyclic 

hydrocarbon scaffolds has been synthesized5,7,11, enabling the precise mimic of ortho-12-18, 

meta-19-25, and para-disubstituted benzenes26-32. 

In sharp contrast, the bioisosteres of pyridine, the second most common aromatic ring 

appearing in drugs10,33, have received less attention and surprisingly encountered trivial 

success. A notable example was recently disclosed by Mykhailiuk, wherein a novel type of 

3-azabicyclo[3.1.1]heptanes was synthesized through the reduction of spirocyclic 

oxetanyl nitrile. The resulting fragment was proposed to mimic 3,5-disubstituted 

pyridines (Fig. 1a)34. 

As the most common six-membered aromatics, pyridine and benzene should, in principle, 

share a similar strategy for 3D bioisosterism. However, it is crucial to bear in mind that 

the basicity of the sp2-N in pyridine plays a vital role in ligand-protein recognition35. The 

complete saturation of pyridine would alter the hybridization of the nitrogen atom 
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Fig 1. Pyridine-boryl radical-catalyzed [3π + 2σ] cycloaddition for the synthesis of pyridine 

bioisosteres. a, Selected benzene and pyridine bioisosteres. The development of pyridine 

bioisosteres has received less attention and surprisingly encountered trivial success compared to 

benzene bioisosteres. b, The difference in basicity among different N-centered bases emphasizes 

the importance of maintaining the sp2-hybridized N in the bioisosteres. c, strain-release induced 

intermolecular [2σ + 2σ] cycloaddition of BCBs with activated cyclopropane leads to the 

construction of fully-saturated bicyclo[3.1.1]heptanes (BCHeps), a valuable bioisostere of benzene. 

d, This work: intermolecular [3π + 2σ] cycloaddition of BCBs with vinyl azides. The coordination 

of boryl radical with the carbonyl group of BCB lead to the ring-opening to form a cyclobutyl radical. 

This species adds to vinyl azide to deliver an iminyl radical. Subsequent 6-exo-trig radical 

cyclization furnishes 2-azabicyclo[3.1.1]heptene bearing a flat-imine moiety. The synthesized 

skeletal structure resembles pyridine in terms of 3D conformation, basicity and stability upon 

acidic hydrolysis, rendering it an ideal bioisostere for pyridine. 

 

(sp2→sp3), resulting in a significant difference in basicity (Fig. 1b)36. Therefore, achieving 

a balance between the fraction of sp2 and sp3 is essential for the precise mimic of 

pyridines. We regard the nitrogen-embedded BCHeps as promising bioisosteres for 
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pyridines (Fig. 1b). To better mirror the basicity of pyridine, preserving a planar sp2-

hybridized N was believed to be important, given the analogous basicity shared between 

pyridines and imines. This partial flatness confers an additional advantage by introducing 

a novel in-plane exit vector. To the best of our knowledge, however, methods for synthesis 

of azabicyclo[3.1.1]heptenes have not been reported before, largely due to the complexity.  

 

In recent years, bicyclo[1.1.0]-butanes (BCBs) have garnered attention as intriguing 

synthons capable of engaging in diverse ring-opening reactions, thanks to the significant 

strain present in BCBs (Fig. 1c)6,37-47. Of particular interest is their involvement in 

cycloaddition reactions, where the selective cleavage of the bridgehead C–C bond 

facilitates the assembly of ring-enlarged, yet conformationally restricted bridged bicycles. 

To achieve this, carbenes28,32,48-50, and unsaturated bonds such as alkenes14-18,51,52, 

alkynes53, ketenes54, carbonyls55,56, imines57, triazolinediones58, and even aromatic rings59-

63 have been successfully employed as coupling partners, yielding diverse and valuable 3D 

scaffolds. Of note, by using BCBs as radical acceptors, Molander21, Waser19 and us23 

independently realized the [2σ + 2σ] cycloaddition of activated cyclopropanes with BCBs. 

The reactions led to the formation of substituted bicyclo[3.1.1]heptanes (BCHeps), which 

can precisely reproduce the geometrics of meta-substituted benzenes and have been a 

central focus of recent synthetic endeavors (Fig. 1c)20,22,25. 

 

To develop an efficient method for azabicyclo[3.1.1]heptenes, we envisioned that vinyl 

azides could serve as intriguing 3π radical acceptors64,65, engaging in a [3π + 2σ] 

cycloaddition with BCBs (Fig. 1d). Recently, we uncovered a pyridine-boryl-radical 

catalyzed [2π + 2σ] cycloaddition of BCBs with alkenes. Consequently, we reasoned that 

the addition of the cyclobutyl radical II, formed via a boryl-mediated ring-opening of BCB, 

to vinyl azide would lead to the formation of an iminyl radical III. Subsequent 6-exo-trig 

radical cyclization would then furnish a bicyclic system bearing a flat-imine moiety (Fig. 

1d). Notably, although removal of a heteroatom to carbonyl groups is usually facile via 

radical processes, installation of a heteroatom to carbonyl groups has been rare. In this 

report, we present that in the presence of a pyridine-boryl radical catalyst, the reaction of 

BCBs with vinyl azides allows for the facial synthesis of 2-azabicyclo[3.1.1]heptene, a 

skeletal structure previously unknown. Conformation analysis demonstrates that this 

scaffold perfectly mimics 1,3,5-substituted pyridine, and the imine moiety exhibits similar 

basicity to pyridine rings. Furthermore, surprisingly, this skeleton remains stable upon 

acidic hydrolysis, rendering it an ideal bioisostere for pyridine. 

 

RESULTS AND DISCUSSION 

Initially, BCB S-1 and vinyl azide 2a (2.0 equiv.) were chosen as model substrates for 

reaction optimization (Table 1). In the presence of 4-Ph-pyridine (30 mol%)/B2cat2 (20 

mol%) in toluene at room temperature, a catalytic system previously employed in our 

cycloaddition reaction of BCBs with alkene17, a [3π + 2σ] adduct 2-

azabicyclo[3.1.1]heptene 1 was formed, showing an encouraging yield of 50% (entry 1). 

The structure of 1 was unambiguously confirmed by X-ray analysis. Further exploration 

involving different diborons (B1-B5) and substituted pyridines (P1-P6) revealed that 
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Table 1 Reaction optimization 

 

entry solvent boron T (OC) pyridine Yield 

1 toluene B1 25 oC P1 50% 

2 toluene B1 25 oC P2-P6 0 

3 toluene B3 25 oC P1 70% 

4 toluene B4, B5 25 oC P1 0 

5 toluene B2 25 oC P4 75% 

6 toluene B2 25 oC P2 83% 

7 anisole B2 25 oC P2 91%/96%b 

8c anisole B2 45 oC P2 84% 

9 anisole - 25 oC P2 0 

10 anisole B2 25 oC - 0 

11d anisole B2 25 oC P2 0 

aReaction conditions: S-1 (0.1 mmol), 2a (0.2 mmol), B2pin2 (20 mol %), 4-CO2tBu-pyridine (30 

mol %), solvent (1.0 mL), Ar atmosphere, and 30 h. bYield of isolated product. cB2pin2 (10 mol %), 

4-CO2tBu-pyridine (15 mol %) and 48 h. dReaction as in entry 7 but in the presence of 3.0 equiv of 

TEMPO. 

 

several catalyst combinations, such as B3/P1, B2/P4, and B2/P2, were also effective in 

this transformation, with B2/P2 providing the highest yield of 83% (entries 2-7). 

Substituting toluene with anisole, a solvent of choice in our recent [2σ + 2σ] cycloaddition 

reaction, resulted in an excellent isolated yield of 96% (entry 7)23. By slightly raising the 

reaction temperature and extending the reaction time, it was possible to reduce the 

amount of catalyst used with minimal loss in yield (entry 8). Control experiments 

demonstrated that neither B2 nor P2 alone could catalyze the reaction (entries 9, 10). 

Additionally, the use of the radical scavenger TEMPO in the reaction completely inhibited 

reactivity, suggesting a radical reaction pathway (entry 11). Intriguingly, a wide variety of 

catalytic systems employed in the cycloaddition reaction of BCBs were also attempted, but 

none proved effective in this specific reaction (see SI for details). 
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Table 2. Substrate scope. 

 
aAll values indicate the yield of the isolated product. Unless otherwise noted: BCB (0.1 mmol), 

B2pin2 (20 mol%), 4-CO2t-Bu-pyridine (30 mol%), vinyl azides (2.0 equiv.), PhOMe (1.0 mL), 25 oC, 

Ar atmosphere, 30 h. bconditions: B2pin2 (30 mol%), 4-CO2t-Bu-pyridine (40 mol%), vinyl azides 

(2.0 equiv.), PhOMe (1.0 mL), 40 oC, Ar atmosphere, 48 h. 
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With the optimized conditions in hand (entry 7, Table 1), we initially assessed the 

compatibility of various vinyl azides in this reaction (Table 2). For 1-aryl vinyl azides, it 

was observed that the reaction is not sensitive to the electronic properties of the phenyl 

ring. Numerous valuable functional groups, irrespective of whether they are electron-

donating or electron-withdrawing, such as halogens (2-4), trifluoromethyl (5), ester (7), 

nitrile (8), sulfonyl (10), ketone (14), ether (15), and even unprotected hydroxyl (12) 

were all well tolerated. Vinyl azide derived from estrone, also proved to be a competent 

coupling partner (32). While styrenes are known to react with BCBs under boryl radical 

catalysis, we observed that the vinyl group remained intact after the reaction (33), 

indicating that the vinyl azide moiety is more reactive towards cyclization. Increasing 

steric hindrance at the ortho position had a negative impact on the yield (19-21). 

Importantly, besides phenyl rings, heteroaromatics such as thiophenes (23, 24), pyridine 

(25), quinoline (26), and benzofuran (28) were also compatible. Substituting aryl rings 

with a cyclohexenyl or styryl group also yielded successful results (30, 31), providing 

valuable handles for subsequent skeleton modifications. Exploring variations in the aryl 

group (34, 35, 37-42) and replacing the benzene ring with a vinyl group (36) on the BCBs 

proved to be fruitful as well. 

 

 

Fig. 2 Gram-scale synthesis and synthetic applications. Reaction conditions: [a] m-CPBA (2.0 

equiv), DCM, 0 °C; [b] LiOH (10.0 equiv.), THF-MeOH-H2O, rt; [c] TMSOTf (2.0 equiv.), Et3N (4.0 

equiv), DCM, 0°C to rt; [d] (i) n-BuLi (1.6 equiv), Methyltriphenylphosphonium bromide (1.6 equiv), 

THF, 0 °C to rt; [e] CH2CHMgBr (2.0 equiv) and THF, rt; [f] PhMgBr (2.0 equiv) and THF, rt; [g] N-

hydroxybenzimidoyl chloride (2.2 equiv), Et3N (2.5 equiv) and DCM, rt; [h] NCS (4.0 equiv) and CCl4, 

80°C; [i] (1) NaBH4 (1.2 equiv) and THF, rt; (2) DIBAL-H (4.0 equiv) and THF, reflux; (3) Boc2O (2.0 

equiv), Et3N (3.0 equiv) and THF, rt; [j] (1) NaOAc (4.0 equiv), NH2OH·HCl(2.0 equiv), and MeOH, 

80°C; (2) DAST (1.5 equiv), THF, rt; [k] O3, Me2S, THF, -78 °C to rt, For more details, see the 

Supporting Information. 
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The protocol proved suitable for gram-scale synthesis. We observed that compound 1 

could be obtained in a yield of 89% (1.43 g) with reduced catalyst loading (Fig. 2). To 

enhance the functional group diversity on the molecular framework, we carried out 

various derivatization experiments as illustrated in Scheme 3. The Baeyer−Villiger 

rearrangement of 1 with m-CPBA yielded carboxylate-substituted 2-

azabicyclo[3.1.1]heptene 43 in a satisfactory yield. Hydrolysis of the newly formed ester 

group was achievable under both basic and acidic conditions. Surprisingly, the hydroxyl-

decorated 2-azabicyclo[3.1.1]heptene 44 remained stable during silica gel 

chromatography, exhibiting no signs of ring-opening. 

Similarly, the condensation of the carbonyl group with NH2OH in heated MeOH followed 

by treatment of diethylaminosulfur trifluoride (DAST) led to the Beckmann 

rearrangement, yielding a product with an amide functionality (52). The Witting 

olefination reaction facilitated the synthesis of vinyl-substituted 2-

azabicyclo[3.1.1]heptene 46. Nucleophilic addition to the carbonyl group with Grignard 

reagents provided tertiary alcohols 47 and 48 in high yields without backbone 

deconstruction. The [3+2] cycloaddition reaction with N-hydroxybenzimidoyl chloride 

offered a convenient route to fused 1,2,4-oxadiazol 49. Treating 1 with N-

chlorosuccinimide (NCS) resulted in the formation of dichloro-substituted imine 50 in 

excellent yield. Subsequent reduction of the carbonyl and imine groups with NaBH4 and 

DIBAL-H, respectively, afforded compound 51. Finally, ozonolysis of 31 produced 

aldehyde 53. 

 
Fig. 3. Mechanistic studies. a, competition experiments show that vinyl azide is more reactive 

than styrene as coupling partner. b, 2H-azirine is not an intermediate in the reaction.  

 

Competition experiments between vinyl azide and styrene revealed the preferential 

formation of 2-azabicyclo[3.1.1]heptene 1 (Fig. 3a). This observation suggests the 

activating role of N3 on the double bond, aligning with the reaction outcome of product 33 

as depicted in Table 2. Typically, vinyl azides undergo thermolysis or photolysis to 

generate 2H-azirines, which serve as intermediates in various transformations. However, 

in our specific case, 3-phenyl-2H-azirine 55, synthesized following a literature procedure, 

exhibited no reactivity (Fig. 3b). 

 

The geometric characteristics of the core structure in our synthesized 2-

azabicyclo[3.1.1]heptene were meticulously compared with those of the 1,3,5-
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trisubstituted pyridine drug, Zatolmilast. Our focus centered on evaluating the two-

carbon distances, denoted as r and d, as well as the angles (ϕ) formed by the three exit 

vectors. These values were derived from X-ray data obtained for compounds 1 and 

Zatolmilast. Intriguingly, it was observed that both the r and d values on the bridgehead 

side of 1 were approximately 0.3 A  shorter than those in pyridine. Apart from this 

distinction, all other parameters exhibited a precise match with those found in pyridine. 

The visual representation of their superposition further underscores the accurate 

bioisosterism between pyridine and 2-azabicyclo[3.1.1]heptene. 

 
Fig. 4. Bioisostere analysis. a, Visualized comparison of 1 and Zatolmilast; b, predicted pKa and 

LogP values. c, stability testing of 1, A: 1 (0.1 mmol), 0.1M HCl (2.0 mL), THF (0.5 mL), r.t. 24h; B: 1 

(0.1 mmol), 2.0M HCl (2.0 mL), THF (0.5 mL), r.t. 24h; C: 1 (0.1 mmol), conc. HCl (2.0 mL), THF (0.5 

mL), r.t. 24h; D: 1 (0.1 mmol), conc. HCl (2.0 mL), THF (0.5 mL), 60 oC, 24h. 

 

The perturbation of pKa and LogP can significantly influence the binding affinity, 

pharmacokinetic properties, and/or bioavailability of a pharmaceutical agent. Therefore, 

we calculated the basicity of the nitrogen atom in 2-azabicyclo[3.1.1]heptene, its 

hydrogenated form piperidine 56, and pyridine. As depicted in Fig. 4b, piperidine 56 

exhibits a notable difference in basicity compared to pyridine 57, while 2-

azabicyclo[3.1.1]heptene 1 demonstrates a much closer resemblance. Additionally, acidic 

stability is a crucial parameter in the development of orally administered drugs. The imine 

moiety is typically susceptible to hydrolysis under aqueous acidic conditions. Remarkably, 
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we observed exceptional stability in 2-azabicyclo[3.1.1]heptene, even under concentrated 

HCl at 60 °C for 24 hours (Fig. 4c). One possible explanation for this stability is that, upon 

hydrolysis, the amino and carbonyl groups, located on the same side of the cyclobutane 

ring, are in close proximity, thereby facilitating rapid intramolecular cyclization to reform 

2-azabicyclo[3.1.1]heptene.  

 

In summary, taking advantage of the great stain of BCBs, we report herein a stain-release 

[3π + 2σ] cycloaddition of BCBs with vinyl azides as catalyzed by a pyridine-boryl radical. 

The reaction lead to the synthesis of 2-azabicyclo[3.1.1]heptenes in high efficiency in an 

atom-economic manner. The mildness of this protocol also ensures excellent functional 

group tolerance and the reaction can be performed on a preparative scale. The partial 

flatness of the 2-azabicyclo[3.1.1]heptane core render it a perfect pyridine bioisostere in 

terms of 3D conformation and basicity. Considering the popularity of pyridine rings in 

bioactive compounds, we anticipate our protocol will find application in drug 

development.  

 

Data availability Materials and methods, experimental procedures, mechanistic studies, 
1H NMR spectra, 13C NMR spectra and mass spectrometry data are available in the 

Supplementary Information. Crystallographic data for compound 1 have been deposited 

with the Cambridge Crystallographic Data Centre under accession code CCDC 2312366. 

 

Supplementary Information is linked to the online version of the paper at 

www.nature.com/nchem. 
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