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ABSTRACT: We disclose a benzylic C–H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotona-
tion, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables 
the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-
based pathways for C–H functionalization, this process is guided by C–H acidity trends. This gives rise to new synthetic capabilities, 
including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, preci-
sion regioselectivity for polyalkylarenes and use of a double C–H etherification process to controllably oxidize methylarenes to 
benzaldehydes. 

     The widely valued benzyl ether motif is commonly produced 
by alcohol substitution reactions of benzylic electrophiles, es-
pecially benzyl halides.1,2 As such, benzylic C–H radical halo-
genation methods are widely relied upon for the net coupling of 
alkylarenes with alcohols as a two-step route to benzyl ethers 
(Figure 1a).3 In addition to the use of hazardous initiators, these 
routes require independent preparation and handling of toxic 
benzyl halides.4 Furthermore, the C–H halogenation step is 
prone to undesired dihalogenation, is not site-selective for com-
pounds with multiple weak C–H bonds and can be incompatible 
with nucleophilic or oxidizable functional groups.5 While some 
of these concerns have been addressed through modern ap-
proaches to C–H radical halogenation6, direct oxidative cou-
pling of abundantly available alkylarenes with alcohols repre-
sents a more efficient and modular approach to benzyl ethers.7,8 
These advantages have motivated developments, led by the 
Doyle, Lei, Musacchio, Stahl and Yu groups, in benzylic C–H 
etherification reactions that proceed via initial alkylarene acti-
vation by single electron oxidation or hydrogen atom abstrac-
tion (Figure 1a).9-11 In these reactions, C–O bond formation is 
ultimately accomplished by alcohol addition to benzylic carbo-
cations or metal-mediated coupling of benzylic radicals. We 
herein describe a new approach to benzylic oxidative coupling 
reactions that proceeds via a base-promoted C–H halogena-
tion/substitution sequence with unique scope, selectivity and 
utility that are distinct from existing C–H functionalization 
routes (Figure 1b). 
     Although seemingly simple, deprotonative benzylic C–H 
halogenation is undeveloped due to the incompatibility of 
strong bases and halogen oxidants. For example, the deprotona-
tive halogenation of weakly acidic benzylic C–H bonds would 
require a two-step protocol consisting of metalation followed 
by electrophilic halogenation.12 In practice, however, the benzyl 
halide generated upon addition of the halogen electrophile re-
acts with the pregenerated metalated alkylarene, causing ben-
zylic dimerization (Figure 2a).13,14 We note these challenges can 
be overcome for the C–H fluorination and chlorination of rela-
tively acidic alkyl-N-heteroarenes (e.g., 4-alkylpyridines) using 
weak bases in conjunction with N-atom activation, as developed 

by the Britton and Stahl groups.15 We realized that the key to 
productively leverage deprotonative benzylic halogenation 
more generally is to devise a process wherein the base, halogen 
oxidant and desired benzyl halide functionalization event (e.g., 
substitution) are all compatible. 

 
Figure 1. Motivation and summary of benzylic C–H etherifica-
tion methods. 

     Our lab recently disclosed methods for direct (N-hetero)aryl 
C–H etherification and hydroxylation wherein KO-t-Bu cata-
lyzes  halogen transfer from 2-halothiophene oxidants to gener-
ate (N-hetero)aryl halide intermediates that undergo SNAr reac-
tions.16 This approach is distinct from traditional metalation as 
it enables deprotonation, halogenation and substitution steps to 
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operate as compatible processes, allowing for an alkoxide base 
(pKa’ ~32 in DMSO) to promote arene functionalization (pKa up 
to ~38) with distinct regioselectivity trends.17,18 These methods 
were inspired by “halogen dance” methodology developed dec-
ades ago where halogens migrate between aryl carbanion spe-
cies.19 We recently questioned if halogen transfer (X-transfer) 
could be applied to other types of weakly acidic C–H bonds, 
including C(sp3)–H variants. We reasoned that if X-transfer to 
benzylic C–H bonds is possible, the compatibility of deproto-
nation, oxidation and substitution processes could enable a new 
means for benzylic C–H coupling with heteroatom pronucleo-
philes (Figure 2c).20 Specifically, use of an alkoxide base would 
generate low concentrations of a benzylic carbanion such that, 
upon halogenation, rapid SN2 with an anionic heteronucleophile 
would provide the coupled product and avoid benzylic dimeri-
zation.21 Given that the pKa of primary and secondary alcohols 
is lower than t-BuOH, we anticipated large concentrations of 
the desired alkoxide nucleophile would be generated to selec-
tively capture the benzyl halide when tert-butoxide bases are 
used.22-24 

 
Figure 2. Considerations and outline of a deprotonative ap-
proach to the generation and use of benzyl halides. a pKa values 
in DMSO.18,21 

     We tested this proposal for the C–H etherification of 2,6-di-
chlorotoluene (Figure 3a), a precursor to benzyl ether pharma-
ceuticals that has been studied for radical benzylic halogenation 
improvement.25 We found the desired coupling occurs readily 
with KO-t-Bu and 2-iodothiophene (XTR 1, XTR = X-transfer 
reagent) under numerous conditions (e.g., 62% yield in DMPU 
and 97% in THF).26 We next investigated 1-methylnaphthalene, 

a less acidic and potentially more challenging substrate (Figure 
3b).21 Use of KO-t-Bu and 2-iodothiophene (XTR 1) for this 
substrate gives 39% yield and could not be increased using 
other bases or conditions, suggesting improvement would need 
to come through X-transfer reagent modification. 

 
Figure 3. Benzylic C–H etherification optimization and the 
scalable synthesis of XTR 3. a 1H NMR yields reported. 

     In our aryl C(sp2)–H functionalization work, we found 2-io-
dothiophene undergoes base-promoted disproportionation to 
form 2,3-diiodothiophene that can act as an oxidant or rearrange 
further to inactive 3-iodothiophenes.16,27 This previously led us 
to create 2,3-dihalobenzothiophenes as more effective X-trans-
fer reagents that cannot rearrange. However, use of 2,3-diiodo-
benzothiophene (XTR 2) gives only 34% C–H etherification of 
1-methylnaphthalene (4), indicating the 2,3-diiodothiophene 
motif is not an improved oxidant for this reaction. We therefore 
investigated 2-halobenzothiophenes with non-halogen 3-sub-
stituents, including 2-iodo-3-phenylbenzothiophene (XTR 3) 
which gives an improved 59% yield. Structural variations did 
not increase the yield further, including 3-aryl substituent de-
rivatives or replacement of iodine with bromine (XTR 4). A 
summary of XTRs examined and additional condition varia-
tions for substrates 1 and 4 are provided in the Supporting In-
formation. 2-Iodo-3-phenylbenzothiophene (XTR 3) is accessi-
ble in large quantity from thiophenol substitution of bromoace-
tophenone to produce 6 followed by a cyclization/halogenation 
sequence (Figure 3c).28 
          A representative scope of benzyl ethers accessible via this 
method is shown in Table 1a. Our optimization studies indi-
cated multiple metal tert-butoxide bases and solvents promote 
C–H etherification; during our substrate scope studies, we iden-
tified three combinations (Conditions A-C) to be the most gen-
eral using XTR 1 or XTR 3.29 Methylarenes with diverse func-
tional groups, including all halogens, ethers, amines, alkenes 
and nitriles provide 45-90% yield (7-12); here, ortho-substitu-
tion is well-tolerated but not necessary. A wide range of 
methylheteroarenes also engage in this process (13-20), includ-
ing pyridines with methyl groups in all positions and methylpy-
rimidines, -pyrroles, -quinolines, -indoles and -thiophenes. Less 
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acidic methylarenes (e.g., toluene) and ethylarenes do not un-
dergo C–H etherification under the current conditions, presum-
ably due to a more challenging deprotonation step.21 We note in 
Table 1a that primary and secondary alcohols perform well, in-
cluding unprotected aminoalcohols (7), the pharmaceutical per-
phenazine (10), an alkenol (11) and other bulky alcohols (17 
and 18). While use of benzothiophene XTR 3 is not ideal from 
an atom economy perspective, we note that the 3-phenylben-
zothiophene byproduct can be recovered and recycled as shown 
in its gram-scale use for 13. 

      We reasoned this approach to oxidative coupling would be 
readily transferrable to a broader scope of O- and S-pronucleo-
philes. Using 7-chloro-8-methylquinoline (21) as a model sub-
strate, we found that effective coupling occurs with a wide 
range of alcohols, phenols, thiols and thiophenols using XTR 1 
(Table 1b).30 We also studied polyfunctionalized pronucleo-
philes to assess the coupling selectivity and found that desired 
etherification occurs for a variety of more complex substrates. 
This includes an unprotected diol where benzylation occurs at 
the primary alcohol (22), a tertiary alkenol (25), and pyridine-
containing alcohols that have acidic C–H bonds (26 and 27).31 
Additionally, methyl-substituted phenols (28) and thiophenols 
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(31), including vitamin E (29), do not undergo competing func-
tionalization at their benzylic positions. Amines are generally 
not effective pronucleophiles under the current reaction condi-
tions, a limitation that is being addressed in ongoing work. 
      The scalability and utility of this protocol is further demon-
strated in Table 1c where the antifungal isoconazole (33) was 
prepared on a 10-gram scale (80% yield) in 20 minutes using 
XTR 1.32 This reaction was conducted open to air, an unusual 
capability for a process that proceeds via a benzyl carbanion in-
termediate.33 Thus, the inclusion of inexpensive 2-iodothio-
phene (XTR 1) enables rapid C–H substitution under conditions 
that parallel traditional base-promoted alcohol alkylation reac-
tions with benzyl halides. This obviates the need to prepare, 
purchase or handle benzyl halides and streamlines access to an-
alogues where the benzyl halide is not commercial. These ad-
vantages are shown for the gram-scale production of isocona-
zole halogen analogues 34 and 35.34  
      This oxidative coupling reaction is initiated by deprotona-
tion and is thus guided by acidity trends.35 This contrasts exist-
ing benzylic C–H etherification methods that are dependent on 
C–H bond strengths or substrate oxidation potentials as they 
proceed via hydrogen atom abstraction or arene oxidation, re-
spectively. This distinction makes the X-transfer mechanistic 
approach complementary as it is well suited for methylarenes, 
a class of substrates that are not within the scope of alternative 
methods.9,10,36 This includes electron-deficient methylarenes 
and N-heteroarenes (e.g., 8-10 and 13-18) that possess high ox-
idation potentials or substrates with oxidatively-sensitive C–H 
bonds or functional groups (e.g., 8-11, 26, 30, 31).37  
      The regioselective functionalization of polyalkylarenes that 
contain multiple benzylic positions represents an important goal 
for selective synthesis.38 This mechanistic and synthetic chal-
lenge is exemplified by radical C–H halogenation of 
polymethylarenes that routinely gives regioisomeric benzyl hal-
ide mixtures that are difficult to separate.4,5,39 Although radical-
based C–H etherification reactions provide selectivity in certain 
contexts (e.g., for a weaker ethyl over methyl C–H bond or 
functionalization para to an alkoxy group), no general solution 
to distinguish between C–H bonds of similar strength or sub-
strates devoid of strong directing groups has been dis-
closed.9,10,36 In this regard, we proposed that the unique reagent 
combination of an X-transfer approach could drive selectivity 
for the most acidic position of polyalkylarenes in a broadly 
transferrable manner.  
     The X-transfer protocol uses alkoxide bases that facilitate 
energetically uphill benzylic deprotonation and, consequently, 
is sensitive to subtle differences in substituent acidity.18,21,40 We 
therefore reasoned if X-transfer is fast enough, oxidative cou-
pling would occur at the most acidic position of poly-
alkylarenes. Figure 4 demonstrates the efficacy and generality 
of this principle where the standard coupling conditions pro-
mote >10:1 regioselective C–H etherification across a broad 
range of polyalkylarenes. For polymethyl systems, the position 
that can form an anion in conjugation with a stabilizing group 
is preferentially functionalized (36-38), although minor elec-
tronic disparities can also guide high selectivity (39-41).41 Sub-
tle structural differences are also sufficient for positional preci-
sion, as seen for 3,4’-dimethylbiphenyl (42) and etherification 
of a methyl over an ethyl group in 43. 

    
Figure 4. Regioselective polyalkylarene C–H etherification. 1H 
NMR yields reported to assess selectivity on crude reaction ma-
terial; isolated yields are lower due to coelution. a XTR 1 used. 

      During our substrate studies, we found that several rela-
tively acidic methylarenes could not be optimized above 50-
65% etherification yield due to an X-transfer-promoted over-
oxidation process. This is represented by 2-methylbenzotriflu-
oride (45) that readily undergoes C–H etherification (46) but 
with competing formation of an acetal (47). A reaction time pro-
file revealed that the second oxidation does not occur to a sub-
stantial degree until about 60% ether forms (Figure 5a).42 Thus, 
for substrates that engage in acetal formation, optimal yields 
may be obtained at shortened reaction times or through the use 
of LiO-t-Bu that is slower at promoting the second oxidation 
event (Condition C).29  
       The discovery of a double C–H etherification side process 
inspired us to apply this reactivity towards a controlled 
methylarene oxidation protocol.43 Thus, under optimized con-
ditions (excess base, XTR 1 and n-propanol), high-yielding ac-
etal formation provides aldehydes upon treatment with acid in 
a one-pot process (Figure 5b). This procedure can be applied to 
substrates previously shown in Table 1 and Figure 4 (e.g., 50), 
as well as 2-methylpyridines (51) as a streamlined alternative to 
frequently used but tedious multistep oxidation routes.44 Site- 
and oxidation-state selectivity is also observed for poly-
alkylarenes (52). This includes the 5-gram scale synthesis of 
benzaldehyde 53, where aldehyde derivatization achieves site-
selective methyl oxidations to all oxidation states (57 and 58), 
formal conversions of the methyl substituent to difluoromethyl 
(54) and vinyl (55) groups, or methyl removal to a hydrogen 
atom (56). 
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Figure 5. Acetal formation and its use for controllable 
methylarene oxidation. a Isolated yield from 0.25-1 mmol scale 
reactions. b 1H NMR yield reported due to product volatility.   

     In summary, base-promoted X-transfer enables direct oxida-
tive coupling reactions of benzylic C–H bonds with heteroatom 
pronucleophiles. The merger of deprotonation, halogenation 
and substitution steps is a critical design feature that enables in 
situ generation and use of benzyl halides under basic conditions. 
In turn, deprotonative activation provides new capabilities for 
benzylic C–H etherification, such as the ability to functionalize 
high-oxidation potential and oxidatively-sensitive substrates, to 
guide selectivity to the most acidic position and to regulate the 
number of oxidation events. We anticipate this mechanistic 
platform can bring similar advantages to other realms of C–H 
functionalization given that X-transfer is now shown to be gen-
eral to both C(sp3)–H and C(sp2)–H bonds.45 
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