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ABSTRACT

Organometallic complexes are ubiquitous in homogeneous catalysis and other technological applica-
tions. Optimization of such complexes for specific applications is challenging due to the large variety
of possible metal-ligand combinations and ligand-ligand interactions. Here we present OM-DIFF,
an inverse design framework based on a diffusion generative model for in-silico design of such
complexes from scratch. Given the importance of the spatial structure of a catalyst, the model directly
operates on all-atom (including H) representations in 3D space. To handle the symmetries inherent
to that data representation, OM-DIFF combines an equivariant diffusion model and an equivariant
property predictor to drive sampling at inference time. The model can conditionally generate novel
ligands beyond those in the training dataset. We demonstrate the potential of the proposed approach
by designing catalysts for a family of cross-coupling reactions, and validating a selection of novel
proposed compounds with DFT calculations.

Keywords Generative Modelling · Denoising diffusion · Organometallic complexes · Inverse design · Cross coupling
reactions

1 Introduction

In-silico catalyst design is a grand chemical challenge [1, 2], and the combination of machine learning (ML) and
quantum chemistry (QC) methods is an appealing strategy to tackle it. Chemical space can be searched for useful
molecules in a number of ways [3]. In a library based screening approach, inexpensive surrogate ML models can be
trained with reference databases [4] and used to speed up property evaluation while preserving the accuracy of the
reference method [5]. In a more recent direction [6], generative ML models can be used to learn the molecular structure
distribution (often jointly with property labels) of the chemical space of interest, and in turn generate novel chemical
structures that share aggregate properties with the training data (distribution learning) [7]. The combination of surrogate
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and generative modelling opens the door to the inverse-design of materials and molecules with optimised properties, i.e.
goal-directed generation [8]. Beyond the design of catalysts discussed herein, this approach is promising for inverse
design of metal organic frameworks [9, 10], battery materials [11], photovoltaics [12], as well as drug molecules [13].

Inverse catalyst design with generative ML involves defining the relevant catalyst chemical space for the reaction of
interest, as well as collecting an adequate amount of QC data for model training. While directly learning a conditional
generative model is a possibility with a sufficient number of labeled samples with the desired properties, curating such
dataset is computationally expensive with high accuracy QC methods. Instead, guidance decouples the generative
process from the conditional information, by using property information only at inference time to steer the generative
model towards the target properties. Larger relevant molecular structure databases [14, 15, 16] can then be used to train
the generative model, and a limited amount of task-specific labeled data (e.g. energy barriers for a particular reaction)
can be enough for the surrogate model to reach satisfactory accuracy.

Homogeneous catalysts are molecular in nature. Inverse molecular design has been tackled before and various generative
models have been employed. They mainly differ by the data representation they operate on and the generative paradigm.
On string-based representations, seminal work includes MOLGAN [17], GRAPHRNN [18], or JT-VAE [19]. Generative
modeling is however not limited to approaches that involve machine learning. Other notable examples are methods
that combine atoms or fragments using tailored building rules [20], either through random search or by evolving a set
of candidates in a genetic algorithm (GA) [21]. Coupled with a fast and reliable fitness function, these methods have
proven very effective [22, 23].

The geometry of a catalyst is important for effective catalytic activity. Generative models that operate on molecular
graphs or string representations lack information about the 3D structure. A given molecular graph, or string, can
potentially correspond to multiple structurally different molecules with greatly varying properties. Additionally, bonding
information is not properly defined for complexes involving transition metals, requiring non-standardized descriptors
[24]. Furthermore, it is also important how a ligand binding point to the metal is represented.

Recently, generative models for 3D atomistic structures [25, 26, 27] have become competitive to geometry-free models,
and the diffusion paradigm [28, 29, 26] is particularly promising. An alternative approach, the variational autoencoder
(VAE), is not practical for generation of atomistic point clouds as the computation of the reconstruction term involves
an expensive graph matching procedure, when using a latent space invariant to permutation and orientation. Another
argument favoring diffusion is the expressivity that results from mapping the prior distribution to the data distribution
through a series of (simple) transitions with shared parameters, whereas standard VAEs generate samples in a single
shot. Working directly in 3D also allows for leveraging advances in neural network force fields. Since the first article
that demonstrated equivariant diffusion for molecules [26], multiple further developments have been done to tackle
various problems such as conformer generation [30], linker design [31], structure-based design [32], or target-aware
design [33]. Guidance towards target properties using an energy function [34] has also been employed, in an effective
inverse-design framework operating on fragments [35].

Organometallic complexes are a challenging but high value target for molecular inverse design due to their immense
popularity as molecular catalysts along with other technologically important applications such as drugs, sensor device,
photonic materials, specialty polymers etc. In this work, we introduce OM-DIFF an inverse-design framework based
on a guided equivariant denoising diffusion model specifically designed to generate 3D structures of organometallic
complexes with optimized properties. An overview of the proposed framework is presented in Fig. 1. We summarise
our main contributions as follows:

• We implement a 3D equivariant diffusion generative model, specifically designed for organometallic complexes;
• We train an equivariant property predictor and use it in combination with the diffusion model to perform

regressor-guidance, and sample organometallic catalysts with targeted properties;
• We analyze several key design choices needed to attain a practical performance level, such as treating the

metal center as contextual information, and varying the expressivity of the denoiser architecture;
• For the specific problem of optimizing a critical step in cross-coupling reactions, we close the loop by validating

a selection of generated complexes using DFT calculations, and identify several novel complexes of potential
interest.

2 Methods

2.1 Data representation

In a computer, molecular complexes are commonly represented as unordered point clouds of atoms embedded in
Euclidean space. Each atom is assigned a position vector, an atom type, and potentially other features such as charges.
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Figure 1: Inverse-design workflow. (Top) Overview of the conditional generation process of an organometallic complex
C: (1) A metal center, C(C)

T , is sampled; (2) based on the centre, the number of atoms contained in the
coordinated ligands is sampled, (3) random atomic types and positions are assigned to all ligand atoms, and
(4) the conditional denoising runs for T steps. Each denoising step involves an unconditional denoising update
(steering towards valid molecules, via εθ) followed by a property target correction (steering towards molecules
with the desired properties, via yϕ). The inset shows an example of a denoising trajectory for a complex with
a Pd center. The position and atomic type of the center are kept fixed during the whole trajectory, and only
the surrounding atoms are denoised. Their positions and types are allowed to change over the course of the
generation. (Bottom) After a validity check, the generated complexes are screened using a surrogate model
yϕ′ . The promising complexes are furher validated with DFT calculations. In the experiments of this paper,
the property of interest is an energy difference, vide infra in Section 3.1.

Organometallic complexes are typically composed of a center, made of one or more transition metals, surrounded by
organic ligands coordinated in specific ways. Based on that observation, we represent an organometallic compound,
C, by two distinct subsets: one with the atoms belonging to the center, denoted C(C), and the other with the atoms
belonging to the ligands, denoted C(L). Formally, we write

C = {C(C), C(L)} = {[x(C), h(C)], [x(L), h(L)]}, (1)

where x{(C),(L)} ∈ R{NC ,NL}×3 represents the atomic coordinates, and h{(C),(L)} ∈ R{NC ,NL}×M the atom types.

Modelling metal center and ligands separately is motivated by two factors. On one hand, the geometry of the region
around the center often has to follow strict (known) rules. For instance, the square planar geometry is prevalent for
transition metal complexes with d8 configuration. On the other hand, when generating novel catalysts one wants to have
full control over the center in order, for example, to enforce the central atom to be an earth-abundant transition metal.
Depending on the problem under study, the positions (x(C)), and/or the compositions (h(C)), or possibly parts thereof,
can therefore be fixed and viewed as a form of context. Scaffold-based design can also be performed by including some
of the ligands in the center subset.

Next to the structural information, we often have a database of properties of interest associated with each complex.
These can for instance be energies, polarizability, or dipole moment magnitude. We denote by y ∈ R the property of
interest associated with a complex.
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2.2 Diffusion model for organometallic catalysts

Our generative model is a tailored extension of the equivariant diffusion model for atomistic point cloud [26]. The
objective of the diffusion model is to learn an unconditional distribution over organometallic complexes, p(C), from
which we can readily sample novel complexes.

Diffusion models [28, 29] are generative models that include two distinct processes: (1) a fixed diffusion process that
iteratively corrupts data points (atomistic structures) towards a known prior distribution through additive noise, and (2)
a generative denoising process optimised to reverse the diffusion process. The denoising process is usually learned
through a neural network, that in turn can be used to sample novel atomistic structures starting from complete noise.

Diffusion process The forward diffusion gradually destroys data points, through T steps of a noisy Markov process,
ending up in complete noise. Formally, this procedure defines a distribution over T latent variables {Ct}Tt=1, that can be
seen as increasingly noisy versions of an initial atomistic structure C,

q(C1, ..., CT |C) = q(C)q(C1|C)...q(CT |CT−1). (2)

Each transition is Gaussian, and is defined as

q(Ct|Ct−1) = δ
(
[C(C)

t−1, C
(C)
t ]

)
· N

(
C(L)
t

∣∣∣√1− βtC(L)
t−1, βtI

)
(3)

where 0 < βt < 1 is some noise schedule that specifies how much information is destroyed, and δ(·) is the Dirac
delta measure. Intuitively, Eq. (3) means that, at each transition, the ligand features are destroyed by (1) being scaled
down by

√
1− βt, and (2) being summed with Gaussian noise of variance βt. The center is left unchanged. For large

enough T , the terminal distribution of the ligand features (i.e. positions and atom types) becomes data-independent,
q(C(L)

T ) ≈ N (0, I). Due to the formulation of the diffusion process in Eqs. (2) and (3), i.e. Markovianity and Gaussian
transitions, any time marginal, or said otherwise the distribution of any Ct given C, can be derived analytically as

q(Ct|C) = δ
(
[C(C), C(L)

t ]
)
· N

(
C(L)
t

∣∣∣αtC(L), σ2
t I
)
, (4)

where αt =
√
1− σ2

t , and σt is a function of the noise schedule {βt′}tt′=1 up to time t. Through reparametrisation,
any noisy version of C, Ct, can then be obtained without the need of going through the whole chain defined in Eq. (2),

Ct =
{
C(C), αtC(L) + σtϵ

}
, (5)

where ϵ ∼ N (0, I). This formulation revels particularly useful for learning the generative denoising process.

Denoising process We seek to learn a denoising process that reverses Eq. (3), i.e. that can denoise Ct to Ct−1. In what
follows, we simplify notations by omitting the Dirac distribution for the center. When we have access to C, the true
denoising process is another normal distribution that writes

p(C(L)
t−1|C, Ct) = N

(
C(L)
t−1

∣∣∣µC(L)

t−1|t
, σ2

C(L)

t−1|t
I
)
, (6)

where the mean and variance are given by

µC(L)

t−1|t
=

αt−1

αt

σ2
t−1

σ2
t

C(L)
t +

(
αt−1 −

σ2
t−1

σ2
t

α2
t

αt−1

)
C(L), (7)

σ2

C(L)

t−1|t
= σ2

t−1 −
σ4
t−1

σ2
t

α2
t

α2
t−1

. (8)

While Eq. (8) only depends on the (known) time schedule, Eq. (7) involves C(L) that is unknown at sampling time, as it
is the structure we seek to generate. Using Eq. (5), we can nevertheless rewrite C(L) = 1

αt
(C(L)

t − σtϵ), such that C(L)

can now be determined given its current noisy version C(L)
t , and the noise ϵ. The latter is not known exactly but can be

approximated using a neural network εθ trained to map Ct to ϵ. We can then parametrise our generative model using εθ,
as

pθ(C(L)
t−1|Ct) = N

(
C(L)
t−1

∣∣∣µθ(Ct, t), σ2

C(L)

t−1|t
I
)
, (9)
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where the variances comes from Eq. (8), and the mean is expressed as

µθ(Ct, t) =
αt−1

αt

(
C(L)
t − (σt −

σ2
t−1

σt

α2
t

α2
t−1

)εθ(Ct, t)
)
. (10)

Unconditional sampling procedure Once trained, εθ can be used to generate novel samples. The unconditional
sampling procedure is outlined as follows: (1) we sample the center C(C) ∼ p(C(C)) – possibly composed of multiple
atoms, by drawing it from an empirical distribution over centers1; (2) we then sample the number of remaining atoms
that will compose the ligands given the center, NL ∼ p(NL|C(C)); (3) we sample the initial positions and atom types of
the ligand atoms, C(L)

T ∼ N (0, INL
); (4) we finally employ the trained denoising neural network εθ, and execute the

standard ancestral sampling procedure by iteratively applying Eq. (9).

Task and training procedure The denoising neural network εθ is presented with noisy atomistic structures, Ct,
obtained using Eq. (5), and is tasked with predicting the noise ϵ that was sampled to obtain the corrupted structures.
The training objective follows naturally, and the parameters of the denoising neural networks are optimised to minimise
the so-called simplified loss objective [36],

L(θ) = E
C∼q(C)

t∼U([1,...,T ])
Ct∼q(Ct|C)

[
||ϵx(L) − ϵ̂x(L) ||2 + ||ϵh(L) − ϵ̂h(L) ||2

]
, (11)

where [ϵ̂x(L) , ϵ̂h(L) ] = εθ(Ct, t) denotes the output of the denoising network, and [ϵx(L) , ϵh(L) ] ∼ N (0, I) is the noise
sampled to form Ct according to Eq. (5). We also note that, in addition to Ct, the denoising neural network εθ is also
provided with the time step t. While not strictly needed, providing the time step helps learn a time-dependent function
more easily.

Symmetries of the learning problem Due to the geometric nature of atomistic structures, an appropriate neural
network architecture should be used. The learning problem defined in Eq. (11) features different symmetries that should
be accounted for. First, as atomistic structures have a set structure, i.e. their atoms feature no intrinsic order, they require
εθ to be permutation-equivariant. This requirement intuitively means that permuting the order of the input atoms should
result in a similar permutation of the output of the neural network. Second, εθ has to be invariant to translations of
the input. In other words, the output of the network should not depend on the geometric center of the input atomistic
structure. Finally, the neural network should be equivariant to rotations and reflections of the input atomistic structure.
In other words, rotating / reflecting the input structure should lead to an identical rotation / reflection of the output.
Formally, the two last desirata (translation invariance and rotation equivariance) write

εθ
(
[Rxx+ tx, h], t

)
= [Rxϵ̂x(L) , ϵ̂h(L) ] (12)

where tx ∈ R1×3 denotes any vector, and Rx ∈ R3×3 denotes any orthogonal (rotation/reflection) matrix.

Invariance of the learned distribution The likelihood of a given complex under the learned distribution pθ(C)
should be invariant under rigid transformations. In other words, all possible orientations of a given complex should have
the same probability of being sampled. Rotation invariance is ensured by the combination of the rotation-equivariant
architecture of εθ, and the isotropic Gaussian prior and transition distributions [30]. Translation invariance can be
ensured by the translation-invariant architecture of εθ, and by having a prior and transition distributions over atomistic
positions with fixed center of mass,

∑NC+NL

i=1 xi = 0. Alternatively, translation invariance can be ensured by keeping
the position of the metal center fixed, which is what we do.

Architecture of εθ We parametrise our denoising neural network, εθ, with a graph neural network that uses E(3)-
equivariant message passing. Similar in nature to the PAINN architecture [37], a set of (equivariant) vectorial features
is maintained and updated for each atom, along with the usual scalar features. Such architecture is provably more
expressive than the original EGNN [38], as it can resolve local angular information [39] while remaining cheap to
evaluate compared to higher-order architectures. During the message-passing phase, the scalar and vectorial atom
features are updated, but we do not directly update positions within the message-passing phase, as it is done in the
original equivariant diffusion [26]. The final scalar features are pooled to predict ϵ̂h(L) , while the final vectorial features
are aggregated in a single vector ϵ̂x(L) . More details about the neural network architecture are given in Section S1.1.

1In the simplest case, this is simply a distribution over a single metal center – as further in this paper. The proposed framework is
however not limited to such simple case. Depending on the problem under study, one could for instance sample the metal first,
and then sample the coordination pattern conditioned on the metal, leading to a set C(C) made of multiple atoms.
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2.3 Regressor guidance

So far, we have introduced the necessary tools for learning a generative model from which novel atomistic structures
can be sampled unconditionally. When performing inverse-design, we are interested in being able to sample novel
atomistic structures with optimised properties, i.e. sample from q(C|y). In this section, we present a procedure, named
regressor-guidance, for performing conditional sampling using the pretrained unconditional generative model presented
in Section 2.2 combined with an auxiliary property predictor.

Conditional model Inspired by classifier-guidance [40], regressor-guidance builds on the observation that condition-
ing on a property of interest y can be done by sampling from a conditional denoising process

pθ,ϕ(Ct−1|Ct, y) ∝ pθ(Ct−1|Ct)pϕ(y|Ct−1), (13)

where pθ(Ct−1|Ct) is the unconditional denoising process from Eq. (9), and pϕ(y|Ct−1) is a conditional distribution
over properties induced by a property predictor yϕ. Here, we define pϕ(y|Ct−1) in terms of an energy function,

fϕ(y, Ct) = ||y − yϕ(Ct, t)||2, (14)

such that pϕ(y|Ct−1) ∝ exp
(
− fϕ(y, Ct)

)
. This formula is also similar to that of loss-guided diffusion (LGD) [41],

with a loss function that includes a learnt component, i.e. yϕ. The conditional denoising process from Eq. (13) writes as
a corrected version of the unconditional process defined in Eq. (9),

pθ,ϕ(C(L)
t−1|Ct, y) = N

(
C(L)
t−1

∣∣∣µθ,ϕ(Ct, y, t), σ2

C(L)

t−1|t
I
)

(15)

where the corrected mean is obtained as

µθ,ϕ(Ct, y, t) = µθ(Ct, t)− σ2

C(L)

t−1|t
∇µθ(Ct,t)fϕ

(
y, µθ(Ct, t)

)
. (16)

The correction is obtained by evaluating the gradient of fϕ with respect to the mean predicted by the unconditional
model. In practice, sampling from the conditional distribution amounts to first evaluating the mean of the unconditional
distribution, then evaluating the energy function in Eq. (14) using the estimated mean, and finally computing the
correction expressed as the gradient of Eq. (14) with respect to Ct.

Task and training procedure As per Eq. (14), the property predictor yϕ is tasked with predicting the property of
interest y of structure C, given a noisy version of it Ct. This implies that yϕ should be trained on noisy structures
obtained with the same diffusion process as the generative model. A natural training objective could be the mean
squared error (MSE),

L(ϕ) = E(C,y)∼q(C)
Ct∼q(Ct|C)

[
||y − yϕ(Ct)||2

]
; (17)

however, in practice the prediction task becomes very difficult for high noise levels, i.e. when t → T , when structures
are close to pure noise. In the following, we thus resort to the Huber loss rather than the MSE to limit the influence of
the most noisy structures, while we hypothesize that a more sophisticated weighting technique for the loss could result
in even better performance.

Property predictor parametrisation As y is a scalar, the learning task is inherently invariant to rigid transformations
of the input atomistic structure. The property predicted by yϕ should not depend on the orientation nor the absolute
position of Ct. With that in mind, we parametrise our property predictor yϕ in Eq. (14) with a neural network, that
features an encoder similar to that of the denoising neural network εθ, i.e. that maintains and updates a set of scalar and
vectorial states for each atom. The encoder is followed by a readout layer that aggregates the final scalar atom states into
a sole complex-level state using an attention mechanism. That aggregated state is in turn passed to a fully-connected
neural network outputting the predicted value of y.

2.4 Screening surrogate

Once samples have been generated, it is not feasible to evaluate all of them using DFT calculations. We therefore
employ a surrogate model for screening the generated samples, before running further calculations with DFT on the
most promising candidates. Such surrogate could technically be obtained by leveraging the property predictor yϕ
presented in Section 2.3: yϕ(Ct, t = 0). We however found that training a separate surrogate that has only seen clean
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samples was slightly more accurate. The screening surrogate shares the same architecture as the time-conditioned
regressor, but without time input.

We are interested in having a surrogate that behaves well over the whole property space, and avoids very large errors, as
they could lead to missed candidates, or unfruitful expensive DFT calculations. We therefore compare the training
of the same surrogate with two different loss functions, the usual MSE loss and the reverse Huber loss (revHuber).
The latter switches between L1 and L2 losses: For samples where the error is below a given threshold, the L1 loss is
applied, while the L2 loss is applied to penalise larger errors.

3 Experiments and Results

Organometallic complexes are a very versatile group of materials with application areas in energy, medicine, functional
materials, sensors, optical devices etc. They are designed for therapeutics as metallodrugs [42] and can be used to
form specialty polymers [43], to make organic light emitting materials [44], as photovoltaic materials [45], are used
in batteries [46] or as sensors [47]. Organometallic catalysts are widely used in both homogeneous (solution phase)
and heterogeneous (solid phase) catalytic processes. They are crucial for many industrial chemical reactions, such
as hydrogenation [48], hydroformylation [49], olefin metathesis [50], or cross-coupling reactions (e.g., Suzuki [51],
Heck [52], and Stille [53] reactions).

Cross-couplings reactions are fundamental in synthesizing pharmaceuticals, agro-chemicals, and organic materials.
In organic chemistry, they are crucial in the synthesis of complex molecules as they enable the formation of carbon-
carbon (C-C) and carbon-heteroatom (C-N, C-O, C-S, etc.) bonds efficiently. They are used for synthesizing active
pharmaceutical ingredients (APIs) with diverse biological activities, organic semiconductors and conductive polymers,
for creating molecular diversity by combining a broad range of substrates which is beneficial for discovering new
materials and drugs. Typically cross-coupling reactions are environmentally friendly, utilize catalytic systems that
minimize waste and avoid the use of toxic reagents. Specifically, the Suzuki cross-coupling reaction enables the
formation of carbon-carbon bonds by coupling olefins with organoboron compounds under mild conditions. This
method is specially popular due environmental friendliness, using less toxic and more stable reagents, and producing
water as a byproduct, thereby aligning with principles of green chemistry. The Suzuki cross-coupling reaction is crucial
for creating medicines, agricultural chemicals, electronic materials and its key importance led to the 2010 Nobel prize
in chemistry [54, 55].

The Suzuki reaction is part of a larger family of cross-coupling reactions (Suzuki, Kumada, Negishi, Stille and Hiyama)
[56, 57] – whose cycle is generically represented in Fig. 2a, where the leaving group is usually a halide (represented
by an X in Fig. 2a). The five reactions differ by the nature of the cross-coupling partner (represented by Y in Fig. 2a).
The rate limiting step of these reactions can be described with volcano plots. Although not common in homogenous
catalysis, volcano plots have proved to be very useful in heterogenous catalysis. Volcano plots for the cross-coupling
reactions under study have been shown to be similar [57], differing only by the width of the plateau region. The Hiyama
reaction has widest plateau region spanning [−82.2, 2.0] kcal/mol, while the region of interest for the Suzuki reaction is
only between −32.1 and −23.0 kcal/mol. The other reactions have a plateau region lying in between that of the two
aforementioned reactions. As a consequence, catalysts that bind too strongly or too weakly for the Suzuki reaction
might still be efficient for other cross-coupling variants. Using volcano plots, the reaction energy of the oxidative
addition process, highlighted in blue in Fig. 2a, can be used as a descriptor to estimate catalytic activity [57, 58]. This
approximation allows for quicker screening of candidates than if the whole cycle needed to be computed. Relevant
complexes should sit on the volcano plateau, or near the top.

As a test bench for OM-DIFF, we choose the inverse-design of organometallic catalysts for cross-coupling reactions.
We choose that family of reactions for two reasons: (1) its practical relevance as argued above, (2) compelling literature
showing that relevant catalysts can be searched through optimization of a binding energy that acts as a proxy for the
actual catalytic activity.

3.1 Dataset

We perform our experiments using the DFT-level subset of the C–C cross-coupling database [58]. In the database,
each catalyst is an inorganic complex made of a metal center that binds to two ligands, as L1 − M − L2 with
M ∈ {Ni,Pd,Pt,Cu,Ag,Au}. The ligands L1 and L2 can either be identical or different. The initial database at
MMFF-level [59] was constructed by combining the 6 metal centers with 91 distinct ligands. This makes for a total
of 25116 possible combinations. However, optimized geometries and the corresponding oxidative addition binding
energy were computed with DFT for around 7000 complexes. Those complexes cover the 6 different metal centers,
and 72 unique ligands (all depicted in Figs. S16 and S17). Pd is the only metal present with all possible ligands, while
the other metals are only combined with a limited number thereof. An overview of the metal-ligand combinations
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Figure 2: (a) Reaction under study in this work—the model generates L1 − M − L2 and optimises the reaction energy
of the oxidative addition. (b) Distribution of binding energy in the considered dataset [58]. (c) Distribution of
number of atoms in the considered dataset [58]. On average complexes are composed of 53 atoms.

present in the data is provided in Fig. S15. Although DFT relaxed geometries and binding energies are available for
around 7000 complexes, the diversity of the data is limited because only 72 ligands, or building blocks, were used. The
binding energies are for the oxidative addition of the substrate with the transition metal, depicted in blue in Fig. 2a. The
corresponding distribution across the dataset is illustrated in Fig. 2b.

DFT computational details We confirmed with DFT calculations a few promising catalyst candidates generated
by OM-DIFF. We performed the calculations with the quantum chemistry software ORCA version 5.0.4 [60, 61]
using a protocol similar to that of the initial study [58] that generated the training data. Specifically, we used the
B3LYP functional [62, 63, 64] with the Pople 3-21G basis set [65, 66, 67, 68] for the geometry relaxation of Cu and
Pd complexes and the Ahlrichs def2-SVP double-ζ basis set [69] (ORCA keyword def2-SVP) for Pt complexes. The
parameters for the 3-21G basis set was downloaded from the basis set exchange [70]. We used the original D3 dispersion
correction [71] (ORCA keyword D3ZERO), as per the original protocol [58]. The RIJCOSX approximation [72, 73]
was used to speed up Coulomb and Exchange integrals, with the automatic generation of an auxiliary basis set [74]
(ORCA keyword autoaux) for calculations that used the 3-21G basis set, and the def2/J auxiliary basis set [75] (ORCA
keyword def2/J) for the def2 family of basis sets. For energy evaluations, we performed single point calculations
using the Ahlrichs def2 triple-ζ basis set [69] (ORCA keyword def2-TZVP).

Previous work that used the data In the initial study [58], the remaining MMFF-level [59] configurations were
screened using a surrogate model trained to map MMFF-level geometries to DFT-level binding energies. While
promising candidates were identified, none of them was investigated further with DFT. In a generative context, a VAE
operating on string representations [24] has also been applied to the dataset. The model displayed controllability, and
could generate novel and promising candidates. Very recently, a GA [76] was successfully used to generate promising
catalysts for the Suzuki reaction.

3.2 Unconditional generation

We first test our model for effective unconditional generation of organometallic complexes. Effective unconditional
generation constitutes a prerequisite for effective conditional generation, and is also a valid inverse-design procedure
when combined with screening. We evaluate and compare the ability of different ablated versions of OM-DIFF to
learn the unconditional data distribution. We specifically study two aspects of the generative diffusion model: (1)
the modelling of the central region as context around which the model is tasked to build the ligands, and (2) the
expressiveness of the neural network architecture.

Setting After training each model variant, we generate 10000 samples, where the number of atoms is drawn from
the empirical distribution displayed in Fig. 2c. Firstly, we evaluate the properties of the generated samples in terms
of structural metrics: validity, uniqueness and novelty. Secondly, we compare the samples with the empirical data
distribution in terms of the geometry around the metal center M, the binding energy as estimated by a surrogate model,
and the composition. For the geometric metrics, we also include results from the force-field-level subset [58] to get
an idea of the advantage yielded by a generation in 3D. In Fig. 6b, we additionally compare the distribution of the
strain energy at XTB-level [77] of the generated compounds, i.e. energy difference between generated structure and
XTB-optimised structure. Additional details about the evaluation procedure and the different baselines are provided in
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Section S2, where we additionally report the error of the diffusion variants on a held-out set as a function of the noise
level Fig. S1.

Table 1: Results of the unconditional sampling experiment. Structural metrics are reported in % of the number of
generated samples. Distances to the empirical data distribution are Wasserstein (W ) distances for continuous
features and total variation (TV) for discrete features. Details are given in S2.

Fi
xe

d
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(
C

)

Im
pr

ov
ed

ε
θ

Structural metrics [%] (↑) Distance to empirical distribution (↓)

Center-proximal geom. Binding energy [kcal/mol] Generated atom types [TV]

Valid Valid and Valid, unique Length [Å] Angle [rad] Center Non- Center-
unique and novel center proximal

W
L1,2−M

W L1−M−L2 W∆E TVM TVnon-M TVprox

OM-Diff

x x 8.9 7.9 4.8 0.256 0.0113 0.0044 0.347 1.036 0.079
✓ x 19.6 16.4 7.5 0.165 0.0084 0.0044 0.015∗ 0.482 0.029
x ✓ 18.9 17.6 11.1 0.203 0.0089 0.0040 0.388 1.005 0.041
✓ ✓ 28.2 23.9 11.8 0.147 0.0079 0.0036 0.015∗ 0.593 0.019

Merck Molecular Force Field − − − 0.814 0.0257 − − − −

Effect of center Modelling the center as context is beneficial for two things: (1) the geometry around the metal center,
and (2) the composition. Regarding geometry, the model reproduces the training distribution of the geometry around M
better, as seen from W L1,2−M and W L1−M−L2 in Table 1. Graphical depictions of the corresponding distributions can be
found in Figs. S4 and S5. Regarding composition, the generated distributions over atom types are closer to the training
distributions when the center is modelled as context, as hinted by TVM, TVnon-M, and TVprox (all defined in Eq. (S10))
in Table 1. TVM is virtually zero, since the metal-center is directly sampled from the empirical distribution obtained
from the training data. The detailed metal center distribution for each variant of the model can be found in Table S5.
The distribution of center and non-center atomic elements are shown in Figs. 3a and 3b, whereas the distribution of
center-proximal atomic elements can be found in Fig. S8 as well as the associated total variations in Table S6. Figs. 3c
and S9 also indicate that models where the center is part of the context tend to generate complexes whose molecular
weight (proxy for joint distribution of atom types) tend to be closer to the training data distribution.

We hypothesize that the observed improvement is due to a simplified classification task. When inspecting Fig. S1, we
see lower losses on εh and h, especially for larger noise levels. In Table S2, we can also see that chemical validity is
improved, i.e. fixing the center can make up for a less expressive backbone in terms of validity.
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Figure 3: Distribution of (a) metal-centers, (b) non-metal elements, and (c) molecular weight in unconditional sampling.

Effect of representation We find that more expressive geometric neural networks, generally bring an increased
validity, noticeably so as generated complexes get larger as highlighted in Fig. 4a. We also provide Table S2, where we
can clearly see that the added expressivity yields more configurations that pass the pairwise distances check, i.e. more
expressive architecture leads to less atom clashes and disconnected fragments. In Fig. S1, we can also observe that the
more geometrically expressive variants yield lower losses on the εx and ultimately on x, i.e. the atomic coordinates.
The difference is especially stronger for lower noise levels, when getting closer to the data manifold. Our findings are in
line with previous work, e.g. [78], that also showed improved generative capabilities resulting from geometrically more
expressive architectures.

Validity As described in details in Section S2.1, we deem a complex valid, if it features exactly one metal center, has
no isolated nor clashing atoms, and passes a validity check based on the RDKIT software [79]. OM-DIFF(x, x), the
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Figure 4: (a) Validity as a function of the complex size. (b) Sources of novelty for the different variants of the model,
where ’NC’ stands for ’Novel Combination’, ’1L’ refers to samples where 1 ligand is new, and ’2L’ refers to
samples where both ligands are novel. For each variant, 10000 complexes were sampled.

ablated version of OM-DIFF similar to the original EDM model [26], yields only around 900 valid complexes among
the 10000 generated. The two proposed modifications yield a substantial improvement, allowing a better modelling
of the chemical space under study. With nearly 3000 valid structures out of 10000, this corresponds to over threefold
improved efficiency of valid sample generation. In Fig. 4a, we display validity as a function of the size of the generated
complexes. As expected, larger complexes tend to be more difficult to generate than smaller ones. As a molecule is
deemed invalid if e.g. the valence of any of its atoms is not respected, validity at complex-level decreases quickly with
complex size, even if the atomwise validity is kept constant. In Fig. 4a, we can clearly see that the full OM-DIFF is the
only variant of the model able to generate larger valid complexes.

Uniqueness and Novelty While generating complexes that are chemically valid is an important first step, these
complexes also need to be different from each other and novel. A generative model that only regenerates data it
has been trained on is not extremely useful for inverse design. As seen in Table 1, all variants are able to produce
varied and novel complexes. In Fig. S2, we show how Validity, Uniqueness and Novelty evolve with the number
of sampled complexes. While Validity remains rather constant as the number of generated compounds is increased,
Uniqueness tends to decrease, indicating that the model tends to generate given compounds multiple times. It needs to
be emphasized that these metrics are obtained by converting the actual geometry into SMILES strings and limiting the
comparison based on SMILES description. Two identical SMILES strings can actually have been obtained from (slightly)
different geometries. Novelty is also observed to remain constant as the number of generated complexes is increased.
Interestingly, while OM-DIFF clearly yields more valid (and unique) complexes, it is on par in terms of novelty with
the variant where the metal-center is not modelled as context. Finally, when looking closer at non-unique complexes,
we observe that it is mostly non-novel complexes (i.e. present in the training data) that are generated multiple times.
However, the model is also able to generate novel compounds multiple times. In Fig. S3, we show the number of novel
ligands generated as a function of the number of generated complexes. We can see that it steadily increases with the
number of complexes generated.

Sources of novelty Due to the way the dataset was constructed, i.e. as combination of 72 ligands as detailed in
Section 3.1, novelty can take different forms. Novel compounds fall into 3 different categories: (1) novel combinations
of 2 existing ligands, (2) combinations of an existing ligand with a novel ligand, and (3) combination of 2 novel ligands.
In Fig. 4b, we display the distribution of novelty for the different variants of the model, in percentage of the novel
samples generated. We observe that variants where the center is part of the context tend to get a larger percentage of
novelty coming from novel combinations, highlighting that they have learnt the data distribution (slightly) better than
their counterparts that do not fix the center.

Generated complexes Given the rather limited structural diversity of the training data: 6 metal centers and 72 ligands,
the model only gets to see a very restricted part of the chemical space. We have shown in the previous section that
while the model can be prone to regenerate the building blocks seen during training, all model variants were able to
generate novel ligands, as highlighted in Fig. 4b. We provide an excerpt of 18 novel ligands in Fig. 5 generated with the
full OM-DIFF. Compared to the ones used to build the dataset, displayed in Figs. S16 and S17, we observe that the
generative model tends to produce ligands in the neighbourhood of the training data, hinting that the model has learnt
the underlying distribution. As a concrete example, U9 is similar to 54 with an extra F atom.
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Figure 5: Novel ligands generated by OM-DIFF through unconditionalsampling. The ligands have been randomly
picked, and ordered by visual similarity.

Quality of generated complexes In Table 1, we reported W∆E that quantified the discrepancy between the binding
energy distribution of the generated complexes and the ground-truth one. We can additionally leverage an ensemble of
screening surrogates to estimate uncertainty of the generated complexes. This is what we display in Figs. 6a and S7.
The predictive uncertainty is taken as the standard deviation across 10 surrogates. While uncertainty has not been
calibrated to match the actual errors, relative comparisons can still performed under the reasonable assumption that the
uncertainty estimate is capable of ranking. As the different surrogate models have been trained on clean data only, we
can expect them to disagree as data starts looking less and less realistic. Similar to the validity results, the full OM-DIFF
model variant generates samples about which the screening surrogates disagree the least. We additionally computed
the strain energy for the samples generated by the different variants of OM-DIFF. Their cumulative distributions are
displayed in Fig. 6b. The strain energy per atom is defined as the energy difference between the structure generated
by the generative model, and its energy after relaxation using XTB normalised by the number of atoms. For a fair
comparison, we only included complexes with up to 75 atoms, as the simplest version of OM-DIFF could not generate
any larger sample that was valid. Interestingly, we find variants of OM-DIFF where the center is modelled as context to
generally lead lower strain energy. This can probably be explained by a better modelling of the region around the metal
center, as also displayed in Table 1, via lower W L1,2−M and W L1−M−L2 values.
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Figure 6: Cumulative distribution of (a) predictive uncertainty, as estimated by an ensemble of 10 surrogates, evaluated
on the samples generated by the different variants of the generative diffusion model; (b) strain energy per
atom as estimated by XTB [77].
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3.3 Performance of the surrogate models

As illustrated in Fig. 1, our framework heavily relies on surrogates trained to approximate DFT-level binding energies.
Such models are involved at two different steps: (1) to steer the conditional generation, and (2) to screen and filter final
samples prior to DFT computations. It is therefore crucial to evaluate the accuracy of the different surrogates across
the chemical space of interest. The range of the binding energy across the dataset, is around 120 kcal/mol. Following
previous work, we consider a model useful if its error is within 5% of that range, i.e. around 5 kcal/mol. A dummy
model that outputs the conditional mean of the dataset gets an average root-mean-squared error of around 8.3 kcal/mol.
To evaluate errors, we perform a stratified 10-fold cross-validation, where folds were designed to keep the proportion
of metal centers approximately equal across folds, and to cover the property range uniformly. We compare against
two baselines: one based on SLATM [58], and another that trains a neural network surrogate in the latent space of a
VAE [24].

Loss function To reduce large errors on outlying data points, we experimented with the reverse Huber loss (coined
’revHuber’) for the screening surrogate. We observed a slight improvement in performance for model trained with the
’revHuber’ loss, as illustrated in Figs. 7a and S10. We also summarize the error diagnostic of our screening surrogate in
Tables 2 and S7 to S10. While our model is accurate on average, slighty more than the compared baselines, and within
the 5 kcal/mol, we still observe large errors on some specific outliers. In Fig. S11, we additionally show the surrogate
error across the property space for both loss functions. The different curves display a U-shape, highlighting that the
surrogate predictive accuracy decreases as we get closer to the tails of the training distribution. For instance, in the case
of Cu the MAE of the surrogate is above 5 kcal/mol in the plateau region of the Suzuki reaction. This has implications
when looking for compounds at the boundaries of the training distribution – predictions in that area should be used
cautiously.

Table 2: Validation of the surrogate used for final screening. We report mean and standard deviation across 10-fold
cross-validation of the mean absolute error (MAE), root mean squared error (RMSE), 95th quantile absolute
error (Q95 AR), maximum absolute error (Max AE), and coefficient of determination (R2). Results for
SLATM [58] and string+MLP [24] are obtained from the respective papers.

MAE [kcal/mol] (↓) RMSE [kcal/mol] (↓) Q95 AE [kcal/mol] (↓) Max AE [kcal/mol] (↓) R2 [-] (↑)

µM 6.49 8.50 – 41.71 ± 12.38 –
SLATM [58] 2.61 – – – –
string+MLP [24] 2.42 3.85 – 26.02 0.974

Ours (MSE) 2.14 ± 0.08 3.50 ± 0.33 6.98 ± 0.31 32.09 ± 16.95 0.978 ± 0.004
Ours (revHuber) 2.04 ± 0.08 3.42 ± 0.29 6.92 ± 0.45 32.36 ± 16.37 0.979 ± 0.004

Time-conditioned surrogate In Figs. 7b and S12, we display the error of the time-conditioned regressor for the two
different variants of corruption, i.e. whether the center is part of the context (variant L) or not (variant C+L). In terms
of error, models tend to behave similarly to dummy regressors – respectively mean predictor and conditional mean
predictors (represented by the dotted horizontal lines), as structures are getting noisier. The intuition is that making
meaningful predictions from (or close to) pure noise is difficult. Both types of models reach a similar accuracy for lower
levels of noise. Initially, the error of model C+L is significantly larger than that of L as the model cannot guess what
metal center the complex is going to feature. From Fig. 2b, we know that the metal center has a determinant influence
on the binding energy.

3.4 Conditional generation and inverse-design

In this section, we analyze if OM-DIFF is able to generate novel optimized organometallic complexes that can effectively
catalyze cross-coupling reactions.

Conditional generation We first investigate whether the conditioning mechanism works overall. To do so, we
conditionally sample complexes whose target binding energies are spread across the property space. We study the
generated compounds in terms of novelty, and examine their spread around the target value. We show that the
conditioning mechanism is effective in parts of the space with sufficient data coverage, but that the effectiveness
gradually decreases as we approach the tails of the distribution.

For each metal center, we choose the target values to be the following percentiles of the training data distribution:
[0.05, 0.25, 0.50, 0.75, 0.95]. This is to make sure that the surrogate predictions remain somewhat reliable, as we cannot
afford DFT calculations for all generated compounds. For each pair metal center - target value, we sample 10000
compounds, evaluate their binding energy using the surrogate model, and finally display the corresponding distribution.
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Figure 7: (a) Residuals of the two variants of loss functions employed to train the screening regressor. ’MSE’ refers to
mean-square error, while ’revHuber’ stands for reverse Huber. (b) Performance of the two variants of the
time-conditioned regressor as a function of the diffusion time step. C+L refers to the noise model that jointly
corrupt center and ligands, whereas L stands for the noise where the corruption is limited to the ligands. The
horizontal dotted lines represent the errors of the mean and conditional mean predictors.

As an example in Fig. 8a, we show the conditional distributions obtained for Pd, while the same plots for the other metal
centers are provided in Fig. S13. We can observe that for target values above the median, the conditional distributions
tend to become more spread out. We hypothesize that this is due to the fact that the unconditional distribution, shown in
grey in the back of Fig. 8a, is not symmetric around its median, and usually that target values above the median are
more sparsely distributed. Nonetheless, we can effectively steer the conditional distribution. We also expect that the
conditional distributions can be made sharper by upscaling the contribution of the guidance term in Eq. (16), at the cost
of a lower validity and uniqueness.

As for property controllability, metrics such as validity, uniqueness and novelty are impacted by the target value as seen
in Fig. 8b for Pd complexes, and in Fig. S14 for the other metal centers. For parts of the property space that are less
well covered by training data, the different metrics tend to drop. Specifically, when targeting the 0.95 percentile, the
conditional distribution tends to spread out, and (abnormally) high binding energies are predicted by the model. While
the binding energy of these samples is probably mistakenly estimated by the surrogate, we observe that the conditional
generative model is still able to produce novel complexes, namely around 250.
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Figure 8: (a) Binding energy distributions obtained through the conditional sampling of Pd, as evaluated by the surrogate.
The distribution in grey in the background represents the training data distribution, i.e. DFT labels. Black
vertical lines represent target values, and correspond to the [0.05, 0.25, 0.50, 0.75, 0.95] percentiles of the
training data distribution. Only valid samples were taken into account. (b) #Valid, #(Valid & Unique) and
#(Valid & Unique & Novel) complexes for conditionally sampled Pd complexes. The novelty is further
divided in 3 categories: ’NC’ standing for ’Novel Combination’, ’1L’ referring to samples where 1 ligand is
novel, and ’2L’ referring to samples where both ligands are novel.
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Inverse-designing optimized catalysts for the Suzuki reaction In the previous section, we showed that OM-DIFF
could be effectively steered towards target binding energies of interest. Here, we attempt to design optimized catalyst
that are relevant for the Suzuki cross-coupling reaction. Among the family of reactions under study, the Suzuki reaction
has the narrowest plateau region of the volcano plot, spanning [−32.1;−23.0] kcal/mol [58]. We therefore set the
middle point of that interval, i.e. −27.55 kcal/mol, as a target value when performing conditional generation.

As previously, we generate 10000 complexes for Pd and Pt. After checking for validity and uniqueness, we only keep
novel complexes. We additionally discard the ones with an estimated binding energy that does not fall within the range
of interest. Of the remaining samples, we randomly keep 5 compounds for each metal center. For these compounds, we
recompute the binding energies using DFT, employing the protocol described in Section 3.1. The novel catalysts are
displayed in the two upper rows of Fig. 9, along with their binding energy estimated by the surrogate and calculated
using DFT. For the Pd complexes, displayed in the top row, 4 out of 5 fall in the range of interest, and within 2 kcal/mol
of the energy calculated with DFT. For the Pt complexes, all 5 complexes fall in the range of interest and within 2.5
kcal/mol of DFT. These slight discrepancies between DFT and surrogate predictions are in accordance with the errors
reported Fig. S11, where the estimated MAE in that region of the property space is shown to be around 2− 3 kcal/mol.

Surrogate: -27.18
DFT:  -25.96

Surrogate: -27.94
DFT: -26.92

Surrogate: -28.32
DFT: -30.04Surrogate: -28.01

DFT: -19.39
Surrogate: -27.59

DFT: -26.69

Surrogate: -20.21
DFT: -15.89

Surrogate: -20.27
DFT: -17.80

Surrogate: -19.62
DFT: -17.54

Surrogate: -27.99
DFT: -25.34

Surrogate: -28.16
DFT: -26.83

Surrogate: -26.05
DFT: -27.67

Surrogate: -27.81
DFT: -27.34

Surrogate: -26.97
DFT: -24.41

Surrogate: -18.90
DFT: -12.73

Surrogate: -18.76
DFT: -15.71

Figure 9: Overview of the novel complexes validated with DFT. (Top row) Pd complexes (Middle row) Pt complexes
(Bottom row) Cu complexes. All binding energies are expressed in kcal/mol.

Inverse-designing optimized Cu catalysts We also tried to inverse-design Cu complexes relevant for the Suzuki
reaction. This constitutes an interesting use-case as catalysts made of earth-abundant transition metals are highly
desirable. As the screening surrogate could not identify valid samples in the said range of interest, we repeated the
experiment with the 5% percentile, i.e. −20 kcal/mol, as a target value instead. Among the novel complexes generated,
we kept 5 that were deemed close to the target value by the surrogate model. The considered complexes are illustrated in
the bottom row of Fig. 9. With respect to the previous experiment, the spread between estimated and calculated binding
energies appears to be larger. This can be explained by a less accurate surrogate model in that part of the property space,
as illustrated in Fig. S11 where a sharp increase in MAE can be observed around −20 kcal/mol.

The inaccuracy of the screening surrogate is not the only explanation to the unsuccessful conditional generation for the
initial target of −27.55 kcal/mol. The time-conditioned surrogate is also inaccurate in that region of the property space,
and thereby likely to drive the generation process towards complexes with erroneous binding energies. Finally, as the
generative model has only seen a handful of complexes in that part of the property space, we can imagine that it is not
extremely good at modelling the distribution in that particular area.
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4 Discussion and Conclusion

We have introduced OM-DIFF a framework for inverse-designing organometallic complexes for target applications.
The framework is based on a guided equivariant denoising diffusion model specifically tailored for the generation
of organometallic complexes with targeted properties. Instead of directly learning a conditional generative model,
which will require large volume of computationally expensive data, this approach decouples the structure generative
section from the conditional guidance towards coveted property, allowing the use of larger molecular databases for
training and requiring only a limited set of task-specific labeled data for accurate model performance. To inverse design
other organometallic catalysts for target reactions with OM-DIFF, one needs to establish (1) the chemical space of the
complexes that catalyze the reaction and (2) the mechanism of the catalyzed reaction along with the rate-determining
step.

We demonstrated the potential of the proposed framework on a dataset of catalyst candidates for a family of cross-
coupling reactions. First, we showed that the increased expressivity of the denoising neural network combined with
a proper modelling of the metal center enables effective unconditional generation of novel complexes. Second, we
showed that the model offered controllability, and that sampling could effectively be steered across the property space
while maintaining novelty in the sampled complexes. For the specific case of the Suzuki reaction, we further validated a
handful of optimized complexes with DFT calculations. We could successfully generate promising Pd- and Pt-based
complexes. The compounds were shown to have binding energy (for the activity determining step) within the range of
interest. For Cu complexes, we could not generate complexes in the range of interest, highlighting the limitations of the
proposed approach in parts of the property space sparsely represented in the training data. However, it is promising
that when the target value was around a less extreme percentile of the property distribution, we could generate novel
complexes featuring the prompted binding energy (or close to). This indicates that our framework could effectively be
integrated in an active learning setup towards real discovery, where the training data is progressively extended towards
properties of interest.

While we have demonstrated the applicability of OM-DIFF on the basis of generation of complexes from scratch, where
the center is composed of one atom, the formulation introduced in Section 2.2 is more general, and naturally extends to
problems where the context is composed of multiple atoms, for instance in cases where the catalyst is designed based
on a handful of scaffolds [80], or in a functionalization setting [81].

We showed that goal-directed generation is attainable but that it remains a difficult endeavor with models trained offline
with a static dataset. Other methods, based on GA or RL, are known to perform well in settings where they can query
the function to be optimized. A hybrid method that uses an offline pretrained diffusion model, and that then further gets
optimised online through RL or in an active learning setup is an interesting avenue for future. As samples with attractive
properties often lie at the boundaries of the training data, such candidates can be evaluated with the QM method of
choices, added to the training data, and the surrogate retrained on the augmented dataset. An iterative framework,
where data is gathered continuously, is also a promising avenue that would allow the generative model to move towards
regions of interest that were not well covered in the initial dataset.

We envision a significant scope for future work in both methodological development and application areas. While the
framework was shown to work in a rather small data regime and with limited variety in the training data, pre-training on
a relevant database [82], e.g. the TMQM database [16], before fine-tuning it in the chemical space of interest might
allow for more valid, and novel molecules that lie beyond the neighborhood of the property-labeled training data. To
be useful in practice, a generative model should suggest compounds that are valid and feasible to synthesize [8]. In
OM-DIFF, the generation is steered towards promising parts of the chemical space based on a chemical target function,
regardless of the potential validity and synthesizability. Within the guidance setup described in Section 2.3, the target
function could further be modified to include the feedback of a classifier trained to distinguish between valid and invalid
compounds, or the feedback of a surrogate trained to estimate synthesizability. Multi-property conditioning is also
particularly relevant for performing inverse design of catalysts for more complex reactions where high catalytic activity
requires optimal binding energy for multiple reaction steps.

Methodological improvement in OM-DIFF can include modelling of atom and bond types as categorical variables [83,
82] (instead of the continuous relaxation used in this work) and predicting the denoised structures directly, as it has
been shown to work better for atomistic data [82]. Regarding the conditional sampling procedure, finding a better way
to combine the feedback from the generative model and the regressor would be useful as well. As seen in Fig. S12, the
time-conditioned is equivalent to a random guess on the early phases of the denoising process. If the surrogate provides
uncertainty, this could also be leveraged to bias the generation, either to avoid uncertain regions or, in an active learning
setting, to explore uncertain areas.
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Code availability

Along with this paper, we release a code repository, that can be accessed at https://github.com/frcnt/om-diff,
allowing other researchers to build upon our work.
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S1 Implementation Details

S1.1 Denoiser architecture

In this section, we provide additional details regarding the architecture of the different variants of the denoising neural
network εθ. As a recall, εθ maps a noisy atomistic structure Ct and a time step t to a noise estimate [ϵ̂x(L) , ϵ̂h(L) ].

OM-DIFF(✓, {✓, x}) These variants implement an architecture similar to that of EDM [26], based on EGNN [38].

OM-DIFF({✓, x},✓) These variants implement an improved architecture εθ. Internally, each atom i is given a
hidden state defined by a tuple hm

i = (smi ,vm
i ) where smi ∈ R1×D is a scalar feature vector, and vm

i ∈ R3×D a set of
vectorial features. Initially, s0i is obtained via a linear projection of the one-hot encoded atom type, while v0

i is set to 0.
Time is featurized through 16 random Fourier features, and concatenated with each atom scalar features. Then, h0

i gets
updated through M successive message-passing rounds. We employ message and update blocks similar to those of
PAINN [37]. Connectivity is defined with a 7.5Å cutoff, and for each edge we keep track of a scalar state, that also
gets updated at each message passing step through a simple one layer MLP that maps the current edge state and the
states of the two corresponding atoms to the new edge state. The initial edge states are obtained by featurizing pairwise
distances through Gaussian radial basis functions. After the message-passing phase, the final states hM

i are read out
to produce [ϵ̂x(L) , ϵ̂h(L) ]. A gated equivariant block [37] is employed to obtain ϵ̂x(L) from hM

i , while sMi is processed
through a one hidden-layer MLP to obtain ϵ̂h(L) . The different hidden sizes are kept constant throughout the network.
The most important hyperparameters are summarized in Table S1.

S1.2 Denoiser performance

In Fig. S1, we display the loss of the different variants of OM-DIFF. The loss is evaluated on a held-out validation fold.
The left column displays the errors related to h, i.e. the atom types, while the right column displays the errors related to
x, i.e. the coordinates. The top row shows the noise prediction error – similar to the training objective of the neural
network. The bottom row displays the resulting error on the estimated denoised sample obtained using the relationship
C(L) = 1

αt
(C(L)

t − σtϵ).
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Table S1: Hyper-parameters setup for the denoiser architecture εθ

Hyper-parameter Value
Number of interactions size 5
Hidden node size (D) 256
Edge size 64
Activation functions SILU
RBF Gaussian
Cutoff 7.5 Å

Optimizer AdamW
Learning rate 10−4

Weight decay 10−12

Denoising steps (T ) 1000
Noise schedule VP-Polynomial [26]
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Figure S1: Evaluation of the different denoisers. (Top row) Prediction error for the different denoisers. (Bottom row)
Resulting error on the estimated denoised sample for each denoiser.

S2 Evaluation of sampled complexes

In this section, we provide additional details regarding the evaluation of the complexes sampled from our generative
model.

S2.1 Validity, Uniqueness, Novelty

All the reported numbers are expressed as proportions of the generated samples.

Validity A generated complex has to pass a series of checks to be deemed valid:

1. (one TM check) It has to have exactly one transition metal atom;

2
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2. (distance check) All atoms should have the distance to their nearest neighbour that falls within a specified
range,

∀i : min
j ̸=i

dij ∈ [dmin
zi ; dmax

zi ] (S1)

where dmin
zi and dmax

zi are minimal and maximal distances to nearest neighbour for atom of type zi across the
training database (99% percentile ± a 10 % margin);

3. (RDKit check) The ligands, i.e. complex where the TM has been removed, have to be valid according to
RDKit [79]. As the algorithm implemented in RDKit to determine bonds can not handle transition metals,
we proceed as follows: we remove the metal center, and we then use rdDetermineBonds.DetermineBonds
(with useHueckel=True) on the remaining atoms. We do not allow charges as the training ligands are neutral.
A sample is deemed valid if the bond allocation succeeds, and the inferred Mol object is composed of two
distinct fragments, i.e. corresponding to L1 and L2.

While not bulletproof, the validation method classifies around 99% of the training database as valid. We provide the
detailed validity results for unconditional sampling in Table S2.

Table S2: Detailed validity results for unconditional sampling. All presented numbers are expressed in % of the number
of sampled complexes. Higher is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

Exactly one MC 99.28 100.00 96.57 100.00

Distance check All 15.99 27.94 36.77 46.60
Ni 16.27 28.67 37.59 46.37
Cu 14.65 25.68 39.34 45.15
Pd 16.35 27.27 38.33 47.93
Ag 12.38 21.17 34.60 41.95
Pt 20.39 34.63 40.29 50.56
Au 18.50 31.55 37.21 46.06

RDKit check All 8.95 19.57 18.88 28.22
Ni 6.86 18.89 14.79 25.30
Cu 7.12 15.10 17.06 23.50
Pd 10.18 19.40 20.98 28.34
Ag 6.62 14.51 16.84 25.25
Pt 14.58 27.84 23.60 35.41
Au 11.09 23.11 19.84 31.55

Uniqueness and Novelty Once a complex is deemed valid, we convert it to a tuple
(
M, {L1, L2}

)
, where {} denotes a

multiset data-structure, i.e. unordered collection of elements which may be repeated. Uniqueness is defined as the ratio
of unique tuples among all generated tuples. Novelty is defined as the ratio of unique and novel tuples, i.e. that are not
part of the training database, among all generated tuples:

V =
# valid

# samples
, (S2)

V&U =
# (valid and unique)

# samples
, (S3)

V&U&N =
# (valid, unique and novel)

# samples
. (S4)

In Fig. S2, we show how the different metrics evolve as the number of sampled complexes increases.

3
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Figure S2: %Valid, %(Valid & Unique) and %(Valid & Unique & Novel) complexes for each variant of the generative
model, as a function of the number of generated complexes. Novelty can come from novel combinations of
existing compounds or from novel ligands.

Sources of novelty Due to the combinatorial nature of the training database, there are three possible sources of
novelty:

NC = the tuple
(
M, {L1, L2}

)
is novel, but L1and L2 are not, (S5)

1L = either L1or L2 is novel, (S6)
2L = both L1and L2 are novel. (S7)

In Fig. S3, how the number of novel ligands increases as the number of sampled complexes increases.
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Figure S3: #Unique and #(Unique & Novel) ligands for each variant of the generative model, as a function of the
number of generated complexes.

S2.2 Geometry and Binding Energy

In this section, we measure the discrepancy between training distributions and distributions induced by the generated
samples using the 1-Wasserstein distance. If Pz denotes the empirical measure for center z ∈ Z across the dataset, and
Qz denotes the empirical measure the same center across the samples generated by the diffusion model, the distance
between the two empirical distributions is given by

W (Pz, Qz) =
( 1
n

n∑
i=1

||X(i) − Y(i)||
)
, (S8)

where X(i) and Y(i) denote samples from Pz and Qz respectively.

To obtain an aggregated distance value, we compute a weighted sum over the different metal-centers,

W (P,Q) =
∑
z∈Z

p(z)W (Pz, Qz), (S9)

where p(z) denotes the empirical categorical distribution over the metal center obtained from the training data.

Geometry around the metal center Given the importance of the direct neighbourhood of the center, we assess the
geometry of central and the two proximal atoms by comparing the empirical distribution of the L1,2 − M distances
and the L1 − M − L2 angle. We provide all numerical results in Table S3, along with the corresponding distribution in
Fig. S4, and the details of L1,2-M for each metal center Fig. S5.

Binding energy Similarly, we compare the training distribution of binding energy with the distribution induced by
the generated samples. The latter is estimated tas the mean prediction of an ensemble of 10 surrogate models. The
numerical results are provided in Table S4 with the corresponding distributions being displayed in Fig. S6. In Fig. S7,

4

https://doi.org/10.26434/chemrxiv-2024-882hh ORCID: https://orcid.org/0000-0003-3198-5116 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-882hh
https://orcid.org/0000-0003-3198-5116
https://creativecommons.org/licenses/by-nc-nd/4.0/


OM-DIFF: Inverse-design of organometallic catalysts with guided equivariant denoising diffusion

Table S3: Detailed geometry results for unconditional sampling. All presented numbers represent the Wassertein
distance between the empirical histograms obtained from the dataset and generated samples. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓) MMFF

W L1,2−M 0.2559 0.1647 0.2034 0.1468 0.8135
W L1,2−Ni 0.3215 0.2213 0.2279 0.1828 0.8164
W L1,2−Cu 0.2621 0.1355 0.1567 0.1129 0.9225
W L1,2−Pd 0.1680 0.1184 0.1389 0.0977 0.7440
W L1,2−Ag 0.3895 0.1907 0.2766 0.1678 0.8531
W L1,2−Pt 0.3365 0.2214 0.2527 0.2262 0.8681
W L1,2−Au 0.2903 0.2219 0.3001 0.2123 0.7960

W L1−M−L2 0.0113 0.0084 0.0089 0.0079 0.0257
W L1−Ni−L2 0.0139 0.0130 0.0119 0.0113 0.0330
W L1−Cu−L2 0.0149 0.0092 0.0080 0.0065 0.0330
W L1−Pd−L2 0.0073 0.0062 0.0066 0.0064 0.0259
W L1−Ag−L2 0.0096 0.0089 0.0097 0.0102 0.0250
W L1−Pt−L2 0.0153 0.0116 0.0132 0.0113 0.0198
W L1−Au−L2 0.0136 0.0088 0.0108 0.0083 0.0194
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Figure S4: (Top) Distribution of L1,2-M distances. (Bottom) Distribution of L1-M-L2 angles.

we additionally provide the cumulative distribution of predictive uncertainty, estimated as the standard deviation across
the same ensemble, detailed for each metal center.

Table S4: Detailed energy results for unconditional sampling. All presented numbers represent the Wassertein distance
between the empirical histograms obtained from the dataset and generated samples. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

W∆E All 0.0044 0.0040 0.0044 0.0036
Ni 0.0071 0.0064 0.0061 0.0058
Cu 0.0051 0.0049 0.0050 0.0043
Pd 0.0032 0.0030 0.0028 0.0026
Ag 0.0026 0.0024 0.0024 0.0025
Pt 0.0085 0.0049 0.0059 0.0043
Au 0.0040 0.0045 0.0065 0.0045
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Figure S5: Distribution of bonds involving the metal center for the different variants of the diffusion generative model.
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Figure S6: Distribution of binding energies for unconditionally generated samples.
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Figure S7: Predictive uncertainty, as estimated by an ensemble of 10 surrogates, evaluated on the samples generated by
the different variants of the generative diffusion model. Similar to Fig. 6a, with each metal centre illustrated
separately.
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S2.3 Chemical composition

We compare the chemical composition of the sampled complexes and that of the training data, by comparing marginal
distributions of atom types through total variation. We also compare distributions of molecular weights in Fig. S9, as
molecular weight act as a proxy for the joint distribution of atom types.

Total variation We measure the discrepancy between two empirical categorical distributions as the total variation
between the histogram obtained from generated samples, Q, and the histogram obtained from the training data, P. It
writes

TV(P,Q) =
∑
z∈Z

|Pz −Qz|, (S10)

where Pz refers to the average count for category z across the training data, and Qz refers to the same quantity computed
across the generated samples.

Total variation of metal-centers In this case, we compare the distributions of metal centers across generated samples
and training data. For variants OM-DIFF(✓, {x,✓)}, the total variation is virtually 0, as they directly sample from the
empirical distribution. We provide the metal center distribution in Table S5.

Table S5: Metal center distribution in % for unconditional sampling. The last column refers to the variants of OM-DIFF
where the center is fixed.

OM-DIFF(x, x) OM-DIFF(x,✓) OM-DIFF(✓, {x,✓)}
Ni 12.97 9.45 5.93
Cu 28.25 25.67 18.34
Pd 27.21 32.19 37.26
Ag 9.21 8.29 10.06
Pt 7.75 9.02 8.98
Au 13.89 12.59 19.43

Total variation of non-TM elements We compute the total variation for all atom types except transition metals.

Total variation of proximal atoms We compute the total variation for proximal atoms, i.e. atoms that bind to the
metal center. In Table S6, we provide the detailed numerical values for each metal center, and the corresponding
distributions in Fig. S8.

Table S6: Detailed TVprox, i.e. total variation of proximal atomic elements, in unconditional sampling. Lower is better.

OM-DIFF(x, x) OM-DIFF(✓, x) OM-DIFF(x,✓) OM-DIFF(✓,✓)

All 0.082 0.028 0.028 0.019

Ni 0.110 0.032 0.014 0.021
Cu 0.074 0.023 0.040 0.039
Pd 0.068 0.022 0.025 0.011
Ag 0.058 0.035 0.028 0.014
Pt 0.181 0.017 0.043 0.033
Au 0.088 0.050 0.013 0.009
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Figure S8: Distribution of proximal atoms, in unconditional sampling. Proximal atoms are defined as the atoms of the
ligands to which the metal center is bound.
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Figure S9: Distribution of molecular weight of the samples generated by the different variants of the generative diffusion
model, detailed for each model. The mass of the metal center has been subtracted such that only the weight
of the ligands is displayed.
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Table S7: Mean Absolute Error (MAE) of the surrogate used for final screening detailed for each metal center. The
presented values are given in kcal/mol. Lower is better. For baselines SLATM [58] and string+MLP [24],
we report results are from the respective papers.

µM SLATM [58] string+MLP [24] Ours (MSE) Ours (revHuber)

All 6.49 2.61 2.42 2.14± 0.08 2.04± 0.08

Ni 7.69 3.74 – 3.85± 0.36 3.84± 0.47
Cu 7.32 4.04 – 2.64± 0.25 2.53± 0.19
Pd 7.12 2.81 – 2.07± 0.14 1.94± 0.12
Ag 5.12 2.08 – 2.06± 0.44 1.91± 0.36
Pt 7.72 1.81 – 1.77± 0.28 1.63± 0.24
Au 4.28 1.60 – 1.49± 0.17 1.44± 0.19

S3 Evaluation of the surrogate models

In this section, we provide details of the evaluatuon of the different surrogate models employed in this work.

S3.1 Screening surrogate

In this section, we detail the performance of the screening surrogate for the two different loss functions employed in
this work. For each variant, we performed 10-fold cross validation in order to get an error estimate for each sample in
the training database, while

In Fig. S10, we display the residuals. Fig. S11 shows the MAE across the property space, while Tables S8 to S10
provide the numerical details, comparison against baselines.
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Figure S10: Residuals of the two variants of loss functions employed to train the screening regressor for each metal
center. ’MSE’ refers to mean-square error, while ’revHuber’ stands for reverse Huber.
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Figure S11: MAE across the property space of the two variants of loss functions employed to train the screening
regressor, shown for each metal center. ’MSE’ refers to mean-square error, while ’revHuber’ stands for
reverse Huber.

Table S8: Root Mean Square Error (RMSE) of the surrogate used for final screening detailed for each metal center. The
presented values are given in kcal/mol. Lower is better. For baseline string+MLP [24], we report results
from the paper.

µM string+MLP [24] Ours (MSE) Ours (revHuber)

All 8.50 3.85 3.50± 0.34 3.42± 0.29

Ni 9.50 – 5.40± 0.68 5.44± 0.96
Cu 9.27 – 3.84± 0.45 3.79± 0.30
Pd 9.16 – 3.35± 0.67 3.23± 0.64
Ag 7.15 – 3.58± 1.62 3.38± 1.54
Pt 9.26 – 2.95± 0.65 2.84± 0.49
Au 5.92 – 2.41± 0.43 2.33± 0.37

Table S9: Maximum Absolute Error (Max AE) of the surrogate used for final screening detailed for each metal center.
The presented values are given in kcal/mol. Lower is better. For baseline string+MLP [24], we report results
are from the respective papers.

µM string+MLP [24] Ours (MSE) Ours (revHuber)

All 41.71± 12.38 26.02 32.09± 16.94 32.36± 16.37

Ni 23.79± 5.09 – 17.03± 4.13 17.33± 6.65
Cu 27.56± 2.96 – 16.90± 6.74 17.49± 6.50
Pd 35.84± 12.64 – 21.83± 15.97 21.45± 15.33
Ag 26.21± 13.90 – 18.77± 15.48 17.96± 14.88
Pt 24.25± 4.14 – 12.35± 3.60 12.89± 3.43
Au 22.45± 4.03 – 13.60± 6.38 12.51± 5.08
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Table S10: Coefficient of determination (R2) of the surrogate used for final screening detailed for each metal center.
The presented values are given in kcal/mol. Higher is better. For baseline string+MLP [24], we report
results are from the respective papers.

string+MLP [24] Ours (MSE) Ours (revHuber)

All 0.974 0.978± 0.004 0.979± 0.004

Ni – 0.652± 0.104 0.650± 0.104
Cu – 0.824± 0.043 0.830± 0.027
Pd – 0.865± 0.043 0.874± 0.041
Ag – 0.735± 0.161 0.763± 0.149
Pt – 0.891± 0.046 0.899± 0.039
Au – 0.830± 0.050 0.842± 0.036
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S3.2 Time-conditioned surrogate

In Fig. S12, we display the error of the time-conditioned surrogates detailed for each metal center.
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Figure S12: Performance of the two variants of the time-conditioned regressor as a function of the diffusion time step
for each metal center individually. C+L refers to the noise model that jointly corrupt center and ligands,
whereas L stands for the noise where the corruption is limited to the ligands. The horizontal dotted lines
represent the errors of the mean and conditional mean predictors.
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S4 Conditional sampling

In this section, we provide the conditional distributions for metal center in Fig. S13, and the corresponding Valid-
ity/Uniqueness/Novelty breakdowns in Fig. S14.
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Figure S13: Binding energy distributions, as evaluated by surrogate, obtained through conditional sampling of OM-
DIFF. The distribution in grey in the background represents the training data distribution, i.e. DFT labels.
Black vertical lines represent target values.
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Figure S14: #Valid, #(Valid & Unique) and #(Valid & Unique & Novel) complexes for conditionally sampled complexes.
The novelty is further divided in 3 categories: ’NC’ standing for ’Novel Combination’, ’1L’ referring to
samples where 1 ligand is novel, and ’2L’ referring to samples where both ligands are novel.
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S5 Overview of dataset

In Fig. S15, we provide an overview of the different metal-ligand combinations that are found in the dataset. All ligands
are illustrated in Figs. S16 and S17.
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Figure S15: Combinations metal-ligand L1 − M − L2 composing the dataset. Black squares represent data points
present in the dataset.
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Figure S16: Ligands 0-41 used to build the dataset[58].
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Figure S17: Ligands 42-72 used to build the dataset [58].
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