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Abstract 

Machine-learning (ML) and Deep-Learning (DL) approaches to predict the molecular 

properties of small molecules are increasingly deployed within the design-make-test-

analyse (DMTA) drug design cycle to predict molecular properties of interest. Despite 

this uptake, there are only a few automated packages to aid their development and 

deployment that also support uncertainty estimation, model explainability and other key 

aspects of model usage. This represents a key unmet need within the field and the large 

number of molecular representations and algorithms (and associated parameters) 

means it is non-trivial to robustly optimise, evaluate, reproduce, and deploy models. 

Here we present QSARtuna, a molecule property prediction modelling pipeline, written 

in Python and utilising the Optuna, Scikit-learn, RDKit and ChemProp packages, which 

enables the efficient and automated comparison between molecular representations 

and machine learning models. The platform was developed considering the increasingly 

important aspect of model uncertainty quantification and explainability by design. We 

provide details for our framework and provide illustrative examples to demonstrate the 

capability of the software when applied to simple molecular property, reaction/reactivity 

prediction and DNA encoded library enrichment analyses. We hope that the release of 

QSARtuna will further spur innovation in automatic ML modelling and provide a platform 

for education of best practises in molecular property modelling. The code to the 

QSARtuna framework is made freely available via GitHub. 
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Introduction 

A typical drug design project consists of a design-make-test-analyse (DMTA) cycle 

aiming to optimise small molecules for activity against a desired protein target whilst at 

the same time maintaining a desirable absorption, distribution, excretion and toxicity 

(ADMET) profile, thereby improving chances for in vivo efficacy[1]. Since measuring 

such properties requires substance samples and is resource- and time-consuming, 

cycle times can be slow and compound prioritisation might be cumbersome[2, 3]. 

 

To address this, Machine learning (ML) and artificial intelligence (AI) approaches have 

been increasingly integrated into medicinal chemistry projects[4-6]. Here their routine 

use towards Quantitative Structure Activity Relationship prediction (QSAR) accelerates 

DMTA cycle times[7-9]. As shown in Figure 1, their application is designed to direct 

resources towards prospective screening experiments, and they have been used to 

screen extensive compound databases and to optimise efficacy[10-12]. In silico safety 

assessment can also minimize ethically concerned activities, such as animal or human 

experimentation[13, 14]. QSAR has also been combined with other fields such as 

molecular de novo design, where molecule property prediction is used to direct the 

objective function (capturing [un]-desired properties) of generative algorithms toward 

desirable chemical space[15-17], or coupled with active learning approaches to 

optimise free energy calculations[18]. Other applications include the prediction of 

chemical reaction yields, where reactants and yield are provided as training data[19]. 

 

The development of novel algorithms capable of rationalising complex relationships 

between chemical and biological information[20, 21], exponentially growing chemical 

and biological space added to molecule databases[22], falling cost of computational 

resources [23, 24], and MLOps systems for accessing production-level models[25] have 

spearheaded the development and use of QSAR models in practice[26-28]. Despite 
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this, the assortment of workflows, algorithmic methods, and parameters means training 

and updating models is non-trivial and finding the relatively optimal modelling setup is 

a time-consuming task for data scientists. Consequently, there is a need to compare 

different models for specific properties reproducibly, efficiently, and robustly across 

different molecular representations and algorithms.  

 

A platform offering this functionality should maintain and update QSAR models 

throughout their “life cycle” and needs to involve the standard steps critical for reliable 

model building in a temporal setting. The automatic evaluation of the ML stack 

(including the sequential steps of data ingestion, pre-processing and model training) is 

a distinct area identified as AutoML[29]. The application of AutoML toward the field of 

molecular property prediction has only partially addressed despite the early attempts to 

attract attention towards this unmet need[30]. There remains a lack of robust, modular 

and scalable platforms for QSAR modelling, though some open-source tools have been 

presented (see Table 1 for an overview). SL Dixon, J Duan, E Smith, CD Von Bargen, 

W Sherman and MP Repasky [31] developed a machine-learning application 

(AutoQSAR) for automated QSAR modelling. eTOXlab [32] and offers an alternative 

automated QSAR framework, but is no longer maintained and requires advanced 

Python programming skills. An online alternative OCHEM[33] is available, however the 

cloud-based infrastructure renders the software unsuitable for private or sensitive data. 

R Cox, DV Green, CN Luscombe, N Malcolm and SD Pickett [30] designed a Pipeline 

Pilot web application (QSAR Workbench) although this is restricted to Pipeline Pilot 

users. Automated Predictive Modeling[34] is also available but demands expert 

technical skills and significant resources for model development and maintenance. 

More recently, TranScreen provides a transfer-learning setup based on graph 

convolutional neural networks and focuses on small imbalanced data sets, though 

algorithmic choice is restricted to only deep-learning methods[35]. S Kausar and AO 

Falcao [36] also proposed an automated framework for QSAR model building, but this 
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is based on KNIME and requires expert knowledge for their implementation with a 

complicated interface. AMPL[37] was also developed as a modelling pipeline as an 

open-source software suite, allowing users to build models for a wide array of molecular 

properties. It extends the open source DeepChem library, supports an array of ML and 

molecular featurization tools and offers uncertainty quantification. Despite this, only four 

sets of algorithms are available, a restricted number of four descriptors are available 

(the MOE descriptors also require a license), and no GUI is provided. PREdictive 

modeling FramEwoRk (PREFER) was recently proposed by J Lanini, G Santarossa, F 

Sirockin, R Lewis, N Fechner, H Misztela, S Lewis, K Maziarz, M Stanley, M Segler, et 

al. [38]. In this package, popular libraries are used for hyperparameter optimization, 

with the authors stating the most important factor being the ability to customise the 

framework. AutoSklearn is supported by an active community, but the package relies 

on notebooks and requires a detailed four step installation process. Uni-QSAR was 

recently published[39], though this software must combine 1D tokens, 2D topology 

graphs, and 3D conformers to generate learnt representations and does not offer the 

same level of functionality or ease of use compared to other packages. Other 

approaches towards automated QSAR procedures are also available but are tailored 

to specific settings such as blood-brain barrier penetration and aqueous solubility[40], 

Leishmania High-Throughput Screening Data[41] or Gaussian Processes[42], which 

limits applicability. Molflux[43] was also recently released as a foundational package for 

molecular predictive modelling, though this platform does not optimise for algorithm 

hyperparameters. A variety of data mining and automation tools could offer the ability 

to develop custom pipelines, such as Pipeline Pilot[44], KoNstanz Information MinEr 

(KNIME)[45], Orange[46], Taverna[47], Kepler[48] and the Loni Pipeline[49]. However, 

workflow managers require specific competency to design or run pre-existing 

configurations, and developing custom workflows requires time and effort. Ideally a 

platform should provide both a CLI and GUI, without the need for proprietary software 

or licenses, expert knowledge or complicated installation steps. It should be developed 
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with a popular maintainable programming language, with ability to use the state-of-the-

art (well-maintained) open access packages for additional functionality. Uncertainty 

estimation and model explainability should also be considered during the design, given 

the increased focus placed onto these aspects of modelling[2, 4, 50], and since this will 

facilitate decision making when models are used in production. 

 

In this vein, we have developed QSARtuna; a platform which employs, to the best of 

our knowledge, all best practices from the field to deploy predictive QSAR models into 

production. The platform deals with data input, molecule standardardisation, 

deduplication, splitting, hyperparameter optimization and deployment in an easy to use, 

modular way. The platform is released as open source under a permissive license for 

educational purposes, and to facilitate further innovation.  It is intended to be a living 

project with continuous updates and new features. Here we outline the platform 

structure showing the workflow, implementation and the additional functions offered. 

We provide easy-to-follow examples using the tool toward three different types of 

applications reflecting the breath of modelling tasks a modern ML platform needs to 

handle; aqueous solubility prediction, probabilistic reactivity prediction and calibrated 

DEL enrichment classification. We consider they represent a diverse range and reflects 

the emerging landscape of popular QSAR tasks and demonstrates the versatility of the 

platform. 

 

Implementation 

The workflow is structured around three steps: 

1. (Bayesian) Hyperparameter Optimization: Train many models with different 

parameters using Optuna. Only the training dataset is used using cross-

validation. 

2. Build (Training): Select the optimal model from Optimization, and optionally 

evaluate its performance on the test dataset. 
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3. “Producition build (Re-training):  Re-train the best-performing model on the 

merged training and test datasets with the drawback that there no data remains. 

for evaluating the resulting model, but a large benefit that the final model is 

trained on all available data. 

A detailed overview of the standardised protocol toward automated QSAR modelling is 

shown in the Supporting Information Figure 1. 

 

The QSARtuna workflow starts with data preparation including the import of molecular 

structures and corresponding biological activity data for a specified molecule property 

prediction task. Several sanity checks are performed on the input data, including valid 

response values and input molecules. An optimisation protocol is next initiated, where 

internal validation is used to develop a QSAR model by following a rigorous internal 

and external validation process. Here, an initial split of data partitions training instances 

into internal and external validation, to avoid data leakage. This is a critical step, where 

many different splitting strategies are available to afford a more realistic evaluation of 

model performance in practice. Hyper-parameter optimisation is performed on the 

internal split using the Optuna package; a framework performing Bayesian 

hyperparameter optimisation across a set of molecular descriptors and algorithms. 

Finally, a selected model can be created by initiating a “production build”, which can 

comprise both internal and external training instances (model trained on all available 

data with the caveat of no performance assessment). Hence, our open-source 

automated workflow embeds all the tools and steps necessary to perform all steps of 

the QSAR life cycle by following best practices. The workflow is easily applied without 

having expertise in ML or programming. 

 

Data Preparation 
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One of the most important procedures in building QSAR models is the appropriate pre-

processing of the data prior training[51-53]. This section describes how the steps 

implemented in QSARtuna to ensure best practice in this regard. 

 

QSARtuna expects inputs to be in the form of a CSV or SDF file and the resources 

required to reproduce the results in this work are provided in the Supporting 

Information File 1. The pipeline provides an opportunity for automation since queries 

can be polled for continuous updates from project teams and is hence intended to cater 

for a variety of approaches. 

 

Input data is retrieved and processed retaining only the requested property of interest 

records, and any information related to chemical structures and assays (for example 

co-variates corresponding to time/date/protein) or side-information tasks for use in 

multi-task learning. Since the objective of QSAR is to quantify a ligand–molecular 

property values, any response column value may be utilised and related to the algorithm 

for training. Validation also includes the identification of missing data, duplicates and 

dealing with several forms of the same molecule (including salt groups). 

 

Next, deduplication of distinct compound replicates (based on the canonicalized 

SMILES of user inputs) is performed, where the current options are: 

• Keep First and Keep Last: keep the first or last occurrence  

• Keep Random (with a seed): keep a random observation 

• Keep Minimum and Keep Maximum: keep min or max  

• Keep Average: take the average 

• Keep Median (default in QSARtuna): take the median  

• Keep All: all observations are retained 
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The default option is Keep Median, which is recommended due the ability to utilise all 

experimental data in one value (accounting for experimental variability across 

replicates), whilst being robust to outliers. 

 

Response value transformations 

Scaling or transforming user response columns to normalise highly varying values in 

raw data is a common practice for proper training of a predictive model. QSARtuna may 

transform input labels so that log-scaled or irregularly distributed data can be 

transformed to a normal distribution as required for many ML inputs. Data can be 

transformed with different logarithmic functions, but this is deactivated by default, 

assuming data is already normalised. 

 

 

Data partitioning 

To facilitate external predictive performance assessment, input data is divided into the 

internal training set and external validation set using different options. By default, the 

platform applies a stratified (real-valued) shuffle split. For classification, data is split 

ensuring the same distribution of classes. For regression, data is split according to a 

binning scheme of response values, ensuring that the (binned) distribution of regression 

values for modelling are consistent between test and training sets. This split is robust 

for both classification and regression settings and provides a good baseline for most 

cases. A variety of other splits, including a scaffold-based split (to emulate when models 

may be used for scaffold hopping) are also available. Hence there are a wide array of 

splitting strategies capturing most user applications. Next, the internal training set is 

further split using a K-fold cross validation process (either stratified or random) for 

internal hyperparameter optimisation, evaluation, and selection. The external split is 

never used for any feature selection or model training procedure, to avoid leakage. The 

full list of splitting strategies in QSARtuna are as follows: 
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• Random  

• Stratified (real-value) shuffle 

• Temporal  

• Scaffold-based  

• Predefined (from a user column) 

 

Descriptor calculation 

QSARtuna calculates several molecular descriptors which are parallelised and cached 

to reduce trial runtime. Users can submit precalculated molecular descriptors using the 

precomputed descriptors option. The full complement of descriptors currently includes: 

• RDkit circular fingerprints (Morgan-like) 

• RDkit circular fingerprints (Morgan-like) with counts 

• RDKit physchem descriptors 

• Avalon[54] 

• MACCS[55] 

• Jazzy[56] 

• Composite descriptors (concatenate any combination of descriptors together) 

• Predefined descriptors 

• Scaled descriptors (ensures custom descriptors are scaled) 

 

Model Selection 

A variety of different algorithms for classification or regression are provided. We apply 

many popular ML approaches, such as neural networks (ChemProp[57]), support 

vector machines (SVMs), random forests (RF). We also provide an implementation of 

the Probabilistic Random Forest (PRF)[58] for use with the probabilistic data transform, 

which has been shown to improve uncertain bioactivity predictions[59]. Other 

algorithms are easily integrated given the modular nature of QSARtuna. 
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Each QSARtuna trial is evaluated via the primary performance metric (this is ROC-AUC 

or negated Mean Squared Error (MSE) by default) which is customisable. QSARtuna 

also calculates other Scikit-learn metrics in addition to BEDROC (implemented via 

RDKit)[60]. All metrics are available for review by the user though only the primary 

metric is used as an objective function in Optuna trials. The user may (optionally) 

specify multi-parameter optimisation for minimisation of the standard deviation of 

primary performance scores across the folds, thereby suggesting descriptor and 

algorithm pairs that are more generalisable across splits (and therefore in production). 

External validation is finally performed for the realised model on the external test set. 

 

Functions offered by QSARtuna compared to other platforms 

 

Probabilistic modelling transformation 

Since molecule properties derived from experiments have reproducibility limits due to 

experimental errors, models based on this data have such unavoidable error influencing 

performance. This should ideally be factored into modelling and consequently a 

probabilistic transform of the activity scale is available in QSARtuna, based on the 

approach performed here[59]. 

  

With this setting enabled, QSARtuna treats compound response labels as probability 

distribution functions (rather than deterministic values) on a per-threshold basis based 

on the cumulative distribution function (CDF) of a normal distribution. The activity values 

become represented in a framework in-between a classification and regression 

architecture (given dataset experimental variability), with philosophical differences from 

either approach. Compared to classification, this enables better representation of 

factors increasing/decreasing inactivity. Conversely, one can utilize all data (even 

delimited/operand/censored data far from a cut-off) at the same time as considering the 
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granularity around the decision boundary, compared to a conventional regression 

framework. Enabling this setting thereby combines characteristics from both 

classification and regression settings. 

 

Probability calibration 

Probability calibration methods are provided via the Calibrated Classifier with Cross 

Validation option (based on the inductive cross-validated method in Scikit-learn). The 

available functions are Sigmoid, Isotonic regression and VennABERS[61], and a review 

of those calibration methods for QSAR has been performed here[62]. Calibration can 

improve probabilities by representing the ground truth and should be useful for making 

decisions under uncertainty. 

 

Uncertainty estimation 

QSARtuna offers uncertainty via three different methods: 

1. VennABERS discordance, based on the “Uses for the Multipoint Probabilities 

from the VA Predictors” from [62] 

2. Ensemble uncertainty (ChemProp models trained with random initialisations). 

3. Dropout uncertainty at inference time (ChemProp models) 

4. Model Agnostic Prediction Interval Estimator (MAPIE)[63] (uncertainty for 

regression) 

 

Model Explainability 

Model explainability is incorporated into QSARtuna using two different approaches that 

focus on the input descriptors for molecules. Each depend on the algorithm chosen: 

1. SHapley Additive exPlanations (SHAP)[64] (available for all models) 

2. ChemProp interpret (available for ChemProp models and based on the interpret 

function in the original package) 
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Results and Discussion 

This section demonstrates three diverse and relevant use cases for QSARtuna: 

1.) ESOL aqueous solubility regression[65] 

2.) Probabilistic reactivity prediction (evaluated via regression metrics)[66] 

3.) DNA encoded library (DEL) enrichment classification[67] 

 

Each seeks to exemplify platform capabilities reflecting the latest prediction task trends 

in QSAR. The datasets are provided in the Supporting Information File 1 for 

reproducibility. 

 

Solubility modelling 

We first applied QSARtuna toward the ESOL solubility dataset which represents a 

typical regression task based on an assay readout important in early drug discovery. 

An overview of external performance is provided in Table 2. Results show a marked 

improvement during scaffold-based testing when using QSARtuna over conventional 

approaches; with an improvement in Pearson correlation from 0.264 to 0.636 (margin 

of 0.372) between the simple RF & ECFP (No optimisation) baseline compared to a full 

QSARtuna run (150 start-up trials, proper 300 trials) optimising for low standard 

deviation across hyper-parameter folds. Optimising for folds improved performance by 

a Pearson correlation margin of 0.130, indicating this approach can be used for better 

selection of hyperparameters in the analysis presented here. To our knowledge 

minimising for standard deviation across folds in an automated multi-parameter 

optimisation in this manner is not available in alternative open-source AutoML 

platforms. Results for the RF grid search also highlight the clear benefit for performing 

proper optimisation within QSARtuna, since the grid optimised RF achieved a Pearson 

of only 0.297. 
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The stratified split also showed benefit in performing optimisation over a baseline, with 

improvements from 0.725 to 0.907 for the RF and ECFP model and obtained QSARtuna 

models, respectively. QSARtuna identified the same optimal (start-up) trial for this 

splitting evaluation approach, so there is no benefit to activating the multi-parameter 

optimisation approach for standard deviation for this analysis. The RF grid search 

present only modest performance gains over the baseline model, with a Pearson 0.763, 

further highlighting the importance of fully optimising both algorithm and descriptor 

spaces. 

 

Taken together, results highlight the benefit in performing hyper-parameter optimisation 

using the QSARtuna package for a solubility dataset and present evidence for 

usefulness of the unique functionality offered by our package. Although some additional 

latency is introduced by the time taken for optimisation, we consider this is mitigated by 

substantial performance gains as observed for the ESOL dataset. 

 

 

 

Reactivity modelling 

QSARtuna was applied to a Buchwald-Hartwig reactivity prediction dataset[66] to 

demonstrate its application to a different molecule property prediction endpoint. 

Probabilistic thresholding of the regression scale was implemented to outline this 

functionality, which to our knowledge is not offered by alternative software. In this 

procedure, reactivity response values were discretised using an activity threshold 

boundary of 5 and provided a standard deviation of 2, thereby accounting for 

experimental variability of reactivity assays within the modelling procedure and 

representing the reactivity prediction task in a probabilistic framework. In this setting, a 

yield of 5 is assigned a likelihood score of 50%, whereas scores of 2.5 or 7.5 would be 

assigned scores of 10.6% and 89.4%, respectively. Yields below or above the standard 
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deviation range converge to the minimum and maximum values of 0% and 100%, 

respectively, thereby allowing the use of even delimited (qualified) values of “<” or “>”. 

 

Results are shown in Table 3 and demonstrate that QSARtuna with probabilistic 

modelling combined with PRF performs with the most relatively optimal performance of 

any of the approaches evaluated; with an improvement in Pearson correlation from 

0.880 and 0.967 (margin of 0.087) between the simple RF & ECFP (No optimisation or 

probabilistic modelling) baselines when compared to a full QSARtuna run (15 start-up 

trials, proper 15 trials). This finding highlights the clear benefits for representing the 

reactivity scale in this manner and accounting for uncertainty near the decision 

boundary, which to our knowledge, is a unique option offered by QSARtuna. 

 

 

DEL modelling 

In this section we chose to evaluate QSARtuna performance for a DEL enrichment 

dataset from KS Lim, AG Reidenbach, BK Hua, JW Mason, CJ Gerry, PA Clemons and 

CW Coley [67], since this task type represents a more recently popularised prediction 

problem, comprising a highly imbalanced classification set with large numbers of 

enrichment response values. This provides an opportunity to not only benchmark the 

software on a larger, more noisy data set, but also to demonstrate the calibration 

methods available in QSARtuna, to obtain better probability estimates representing the 

ground truth. This is an important aspect of model behaviour to consider since the 

outputs from poorly calibrated models can be misleading and not always actionable. 

 

Results from our DEL classification analysis is presented in Table 4. The findings 

highlight the clear benefit for using QSARtuna with the VennABERS calibration 

approach, since the VennABERS scaling has the most relatively optimal ROC AUC 

whilst also maintaining the highest negated Brier score loss (which indicates superior 
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calibration performance), with 0.906 and -0.003, respectively. To our knowledge, this 

approach is a unique option offered by QSARtuna. 

 

We next analysed how well calibrated the VennABERS (optimal QSARtuna run) is 

compared to a (uncalibrated) QSARtuna model obtained without the VennABERS 

functionality activated, for a stratified subset of 3,800 test set compounds. Results 

provided in Supporting Information Figure 2 illustrate a reliability plot (a common 

method to evaluate model calibration) relating the ground truth likelihood of compounds 

obtaining a positive prediction as a function of different probability bins. Findings clearly 

demonstrate the superior calibration performance of the model obtained by the 

VennABERS predictor over the uncalibrated baseline (a higher proportion of 

compounds are assigned estimates closer to the ideal) as outlined by markers near to 

the diagonal (ideal) line. Again, this represents a key benefit for QSARtuna over 

alternative software (when considering model calibration). 

 

 
Discussion & Conclusion 

In this work, we present a robust, modular, and extendable platform designed as a 

QSAR modelling pipeline to obtain robust predictive models for molecule property 

prediction tasks. The pipeline can perform fully automated QSAR modelling to assist all 

users including those not an expert in the ML field or those which have limited 

knowledge in data preparation and QSAR best practices. 

 

Since the training of a most relatively optimal model is reliant of many critical and time-

consuming steps (including data collection and processing, data representation via 

descriptors, model training, hyper-optimisation, and validation), this workflow 

completely automates these laborious processes. The following are the main 

advantages of the QSARtuna framework: 
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• Automatically deployable in a three-step framework 

• Data ingestion (selecting only the property of interest) offering classification and 

regression 

• Deduplication, removing invalid/missing data 

• Descriptors calculation across a wide range of state-of-the-art options 

• Data normalization, standardisation and transformation (including probabilistic 

transformation for probabilistic modelling) 

• Best practice validation procedure using internal and external splits 

• State-of-the-art interpretation or explainability methods available 

• Model calibration using inductive methods 

• Uncertainty quantification options depending on the algorithm selected 

• Support for model architectures utilising auxiliary domain information (e.g. 

Proteochemometric [PCM] modelling, dose, timepoint, etc.) 

 

Due to its modular nature, QSARtuna is transparent in comparison to alternative black-

box solutions available from other platforms. Our extensible and highly customisable 

package will aid the development of robust predictive models and provide an ideal 

framework for a predictive model life cycle. It ensures the same protocol is used for 

updating models as new data becomes available, thereby improving reproducibility. By 

integrating the latest explainability and uncertainty quantification, we intend for the 

realised models to have more impactful and actionable predictions when used in 

production. QSARtuna is made open source as an automated QSAR modelling 

framework to spur further innovation in the field. We hope that the most important 

aspects of QSAR modelling are addressed and consistently applied when using 

QSARtuna. 
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Figure 1. Importance of integrating well-trained models into the drug design 
process. A well-established infrastructure of model hosting (MLOps) and re-training of 
models is required for effective model deployment. The principal way to impact the cycle 
via modelling approaches is to make the best up-to-date models available to all 
scientists at the point of Design
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Table 1. QSARtuna comparison with alternative open-source software for molecule property prediction.  

Software 

Dataset 
modellabili

ty/ 
pre-

modelling 
analysis 

Custom 
Splitting 

technique
s 

Number of 
descriptor

s 

Composite 
descriptor

s 

Custom 
descriptor

s? 

Custom 
train/test 
splits? 

Shallow 
models 

Neural 
network-

based 
algorithms 

Inductive 
model 

calibration 

Uncertaint
y 

estimation 

Explainabi
lity 

Multi-
parameter 
optimisatio

n? 

Probabilist
ic 

transform 

QSARtuna No Yes 8 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

AMPL No No 4 No No No Yes Yes No Yes No No No 

PREFER No No 4 No No No Yes Yes No No No No No 

Uni-QSAR No No 5+ No No No Yes No No No No No No 
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Table 2. ESOL prediction performance demonstrates the value of optimising parameters. Hyperparameter optimisation obtains better models regardless 
of split method considering all six performance metrics evaluated. 
 

 

Run 
no. 

Modelling Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

parameter) 
Optimisation Build Total Explained 

Variance Max Error 

Negated 
Mean 

Absolute 
Error 

Negated 
Mean 

Squared 
Error* 

Negated 
Median 

Absolute 
Error 

Pearson 
correlatio

n 

1 RF & ECFP  
(No optimisation) 

Scaffold 

- - 00:00:29 00:00:29 0.347 -4.13 -1.1 -2.274 -0.693 0.264 

2 RF grid optimisation & 
ECFP Stratified 00:28:06 00:00:28 00:28:34 0.362 -3.907 -1.095 -2.174 -0.764 0.297 

3 QSARtuna Stratified 09:28:26 00:08:30 09:36:56 0.533 -3.601 -0.867 -1.527 -0.709 0.506 

4 QSARtuna Min 
Std.Dev Stratified 02:44:56 00:01:11 02:46:07 0.675 -3.496 -0.698 -1.124 -0.553 0.636 

5 RF & ECFP  
(No optimisation) 

Stratified 

- - 00:00:27 00:00:27 0.727 -3.972 -0.819 -1.172 -0.631 0.725 

6 RF & ECFP  
(grid optimisation) Random 00:18:25 00:00:22 00:18:47 0.766 -3.964 -0.745 -1.009 -0.585 0.763 

7 QSARtuna Random 04:14:41 00:01:29 04:16:10 0.907 -3.587 -0.448 -0.398 -0.326 0.907 

8 QSARtuna Min 
Std.Dev Random 02:47:08 00:01:16 02:48:24 0.907 -3.587 -0.448 -0.398 -0.326 0.907 
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Table 3. Probabilistic modelling for reactivity prediction best considers experimental variability. QSARtuna with probabilistic modelling 
provides the most optimal setup for modelling the probabilistic likelihood of a successful reaction (considering experimental variability), obtaining 
the highest external performance. 
 

  

Run 
no. 

Modelling 
Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

parameter) 
Optimisation Build Total Explained 

Variance 
Max 
Error 

Negated 
Mean 

Absolute 
Error 

Negated 
Mean 

Squared 
Error* 

Negated 
Median 

Absolute 
Error 

Pearson 
correlatio

n 

1 RF & ECFP (No 
optimisation & no 

probabilistic 
modelling) 

Stratified 

- - 00:01:40 00:01:40 0.880 -
0.710 -0.078 -0.017 -0.040 0.880 

2 RF grid search & 
ECFP ( No 
probabilistic 
modelling ) 

Random 00:22:49 00:01:59 00:24:48 0.905 -
0.688 -0.064 -0.013 -0.025 0.905 

3 QSARtuna ( No 
probabilistic 
modelling) 

Random 01:56:09 00:05:27 02:01:36 0.953 -
0.565 -0.042 -0.007 -0.010 0.953 

4 QSARtuna 
(Probabilistic 
modelling) 

Random 01:25:41 00:26:34 01:52:15 0.967 -
0.480 -0.035 -0.005 -0.004 0.967 
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Table 4. VennABERS calibration (scaling) for optimally calibrated DEL enrichment models. QSARtuna with VennABERS scaling provides 
the most optimal setup during modelling, with the relatively optimal balance between ROC AUC (objective performance) whilst being well 
calibrated (indicated via negated Brier score loss). 
 

 

Run 
no. 

Modelling Approach 

Split Methods Time External Performance 

External 
 

Internal 
(hyper-

parameter) 
Optimis

ation Build Total 
AUC PR 
Calibrat

ed 

Average 
precisio
n (AUC 

PR) 

BEDRO
C 

F1 
(macro) 

Negated 
brier 
score 
loss 

Precisio
n 

macro 

Recall 
macro 

ROC 
AUC 

1 RF & ECFP 
(No optimisation or 

scaling 

Stratified Stratified 

- 02:22:48 02:22:4
8 0.367 0.021 0.341 0.519 -0.08 0.514 0.647 0.801 

2 RF & ECFP 
(No optimisation & 

VennABERS scaling) 
- 02:31:33 02:31:3

3 
0.331 0.017 0.295 0.499 -0.003 0.498 0.5 0.802 

3 
RF grid search & ECFP 

(No scaling) 

1-
03:10:2

6 
02:24:55 

1-
05:35:2

1 
 

0.508 0.051 0.424 0.499 -0.08 0.498 0.5 0.906 

4 
QSARtuna 
(No scaling) 

1-
02:22:2

0 
00:11:19 

1- 
02:33:3

9 
 

0.486 0.226 0.467 0.553 -0.122 0.553 0.793 0.874 

5 
QSARtuna 

(VennABERS scaling) 

3-
21:56:4

4 
02:24:55 

1- 
00:21:3

9 
 

0.499 0.033 0.437 0.499 -0.003 0.498 0.5 0.906 
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Data and Software Availability statement 
 
The source code to QSARtuna is made freely available via GitHub at 
https://github.com/MolecularAI/QSARtuna/tree/master and distributed under an 
Apache-2.0 license open-source license. The GitHub repository contains all the new 
methods presented here with clear instructions on setup. Additional instructions on 
how to install QSARtuna, detailed documentation and further usage examples are 
available at the GitHub pages located at https://molecularai.github.io/QSARtuna/. The 
solubility, DEL and reactivity datasets are made available here in the Supporting 
Information file “Supporting_Information_File_1.zip”. Each dataset is provided via the 
.csv file in each example folder. The accompanying JSON files contain the JSON 
configurations necessary to reproduce each of the QSARtuna runs for all results in 
this work. 
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