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Abstract

Knowledge of the bound protein-ligand structure is critical to many drug discovery

tasks. One tool for in silico bound structure elucidation is molecular docking, which

samples and scores ligand binding conformations. Recent work has demonstrated that

convolutional neural networks (CNNs) for protein-ligand pose scoring outperform con-

ventional scoring functions. Scoring performance can be further increased by taking

the average of multiple CNN models, termed ensembles. However, ensembles of large

parameter models require significant computational resources and therefore are difficult

to apply to high-throughput molecular docking for virtual screening. We investigate

knowledge distillation as a framework to condense the knowledge of large, powerful

CNN model ensembles into a single reduced CNN model for a significant reduction in

computational cost. Ensemble KD produces single models that outperform non-KD

trained single models.
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Introduction

Understanding the bound, three-dimensional (3D) conformation of small molecules to their

targets is critical for drug discovery. Molecular docking serves as an in silico tool for the

prediction of protein-ligand binding conformations. Molecular docking is generally composed

of two steps: sampling, in which the conformational space of the complex is explored, and

scoring, where a score denoting the quality of the protein-ligand complex is given to rank the

conformations. Traditional scoring functions include force field, empirical, and knowledge-

based approaches.1 Force field-based scoring functions employ molecular mechanics-based

energy functions to analyze atomic interactions and calculate scores.2 Empirical scoring

functions assign weights to the energetic interaction terms to better fit experimentally deter-

mined binding affinities.1 Knowledge-based scoring functions extract interaction frequencies

or observed patterns from 3D structures of protein-ligand complexes to determine the like-

lihood of a new sample being from the data distribution.

While traditional scoring functions have been successful in scoring protein-ligand inter-

actions using hand-crafted 3D features, recent advances in deep learning provide the ability

to predict scores directly from the 3D structure of the protein-ligand conformation. Deep

learning scoring functions utilize multiple layers of learned weights to learn complex func-

tions directly from protein and ligand poses to evaluate the quality of binding. Convolutional

neural networks (CNNs) are widely used in computer vision, particularly for grid-structured

data, such as images.3 They can capture both low-level and high-level spatial patterns or

features by performing convolutions across the input. Recent studies have demonstrated

the considerable potential of CNNs in molecular docking scoring, exemplified by AtomNet4

and PotentialNet.5 Notably, GNINA6,7 has proposed several effective CNN architectures for

scoring binding poses and predicting affinity. More recent work has proposed graph neural

networks (GNNs) for both pose scoring and pose sampling.8–11 Both CNNs and GNNs show

marked improvement in docking over traditional scoring methods; however, due to heavy

computation, they require the use of a GPU for reduced docking time.
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McNutt et al. 6 observed that an ensemble of CNN models achieves the best binding

pose ranking performance but requires longer running times compared to a single model,

especially when used without a GPU (458 s and 72 s for the best ensemble and single

model, respectively). When molecular docking is used for high-throughput screening, dock-

ing upwards of tens of millions of molecules, reducing computational cost is of foremost

importance.12 Knowledge distillation (KD) was developed to condense the knowledge of a

large neural network into another, smaller neural network for faster inference with similar

model performance.13 The small model, the “student,” is trained to match the representation

of the large neural network, the “teacher,” on the training dataset of the teacher. Ensemble

KD transfers the knowledge learned by multiple teacher models to a single student model

by minimizing the discrepancy between the average representation of the teachers and the

student.14,15 Ensemble KD could therefore significantly reduce the computational overhead

of workflows that use an ensemble of large models. We evaluate Ensemble KD to condense

the pose ranking power of CNN model ensembles into a single model, thereby decreasing

the molecular docking time. Our work shows ensemble KD produces more powerful single

models than non-KD model training. We find the distilled models performance is correlated

with pose score variation within the teacher ensemble.

Methods

We briefly describe the data and model architectures used for our study and then explore

the setup for the distillation of the CNN model ensembles.

Data

Training data

The same datasets used to train GNINA’s CNN models are also used in this work. Three

datasets are used to impart the CNN models with different expertise.7 The PDBbind General
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dataset v201616,17 consists of 11,324 protein-ligand complexes with experimentally deter-

mined binding affinity data and 201,839 generated binding poses. The CrossDock2020 v1.3

dataset7 contains cognate protein-ligand complexes and non-cognate (crossdocked) protein-

ligand complexes. This dataset includes a total of 22,566,449 binding poses, with protein-

ligand poses being at least 0.25 Å RMSD from any other pose in the same pocket to provide a

diverse set of poses for training. The updated version 1.3 addresses ligand and receptor mis-

alignment problems and incorrect bond typing problems present in earlier versions. Finally,

we used the Redock v1.3 dataset, a subset of the CrossDock2020 v1.3 dataset which removes

all non-cognate ligand docked poses and consists of 550,562 generated binding poses.

Every protein-ligand pose in each dataset has two labels. One label is binary, indicating

whether the pose is less than or equal to 2 Å RMSD from the ground truth ligand con-

formation. During redocking experiments, the crystallographic pose of the ligand within

the target protein serves as the ground truth. During crossdocking evaluations, the ground

truth is designated as the ligand pose after alignment of the cognate protein structure with

the receptor conformation used for docking. The second label provides the experimentally

determined binding affinity of the protein-ligand complex. For the CrossDock2020 dataset,

ligands are assumed to have the same affinity for all receptors of a given pocket. Rather than

using the raw Kd of the complex, we take the − log10(Kd) to teach the scoring functions the

magnitude of the complex’s binding affinity.

More information on the model training datasets and their labels are provided in Fran-

coeur et al. 7 .

Evaluation data

As in McNutt et al. 6 , trained models are evaluated on two tasks within the GNINA molecu-

lar docking pipeline: redocking and crossdocking. Redocking is evaluated using the PDBbind

Refined v.2019 dataset;16,17 ligands smaller than 150 Da or larger than 1000 Da are removed,

resulting in 4,260 protein-ligand complexes. Redocking evaluates the models performance
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when docking ligands to their cognate receptor structures. However, redocking performance

is an unrealistic benchmark since most real-world docking is between new ligands and a

non-cognate receptor structure. To this end, we perform a crossdocking evaluation using the

dataset from Wierbowski et al. 18 ; this dataset provides a benchmark to evaluate protein-

ligand docking without a cognate receptor structure. The dataset was filtered via the same

size and parsing criterion as the redocking dataset. We used a downsampled subset of the

whole dataset for evaluation, which contains 7,970 protein-ligand pairs. More details on the

evaluation datasets and the filtering process is provided in McNutt et al. 6 .

GNINA’s molecular docking time was benchmarked on a random subset of 100 com-

plexes from the PDBbind Core set v2016.19 A list of the PDB IDs of this subset and the

specifications of the benchmark are detailed in the supplement.

Molecular docking models

Knowledge distillation is performed on two different CNN model architectures. Both archi-

tectures take a 3D grid of Gaussian-like atom type densities as input and predict a CNNscore,

indicating the quality of the protein-ligand pose, and a binding affinity, as a pK. The small-

est architecture, Default2018 (Figure 1a) is composed of a small number of convolutional

and average pooling layers. The larger Dense architecture (Figure 1b) contains several max

pooling layers, convolutions, and distint units called “dense blocks”.20 Dense blocks are com-

prised of series of convolutions in which every subsequent layer is provided the outputs of

all preceding layers. The Dense and Default2018 architectures are composed of 685,123 and

389,059 parameters, respectively.

The Default2018 architecture was trained on each of the three datasets (PDBBind Gen-

eral, CrossDock2020 v1.3, and Redock v1.3) to generate three models while the Dense archi-

tecture was only trained on the CrossDock2020 dataset due to resource constraints. There-

fore, there are four variants of CNN models: general default2018, redock default2018,

crossdock default2018, and dense.

5

https://doi.org/10.26434/chemrxiv-2024-0jh8g ORCID: https://orcid.org/0000-0001-6497-6019 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-0jh8g
https://orcid.org/0000-0001-6497-6019
https://creativecommons.org/licenses/by/4.0/


2x
2x

2 
A

ve
 P

oo
lin

g

2x
2x

2 
A

ve
 P

oo
lin

g

2x
2x

2 
A

ve
 P

oo
lin

g

3x
3x

3 
C

on
vo

lu
tio

n

48
x4

8x
48

x2
8 

M
ol

ec
ul

ar
 G

ri
d

24
x2

4x
24

x3
5

24
x2

4x
24

x3
2

12
x1

2x
12

x3
2

12
x1

2x
12

x6
4

6x
6x

6x
64

6x
6x

6x
12

8

Fu
lly

 C
on

ne
ct

ed
Fu

lly
 C

on
ne

ct
ed

Affinity

Pose
Score

So
ft

m
ax

+
Lo

gi
st

ic
 L

os
s

L2
 L

os
s

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

3x
3x

3 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

3x
3x

3 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

24
x2

4x
24

x3
2

1x
1x

1 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

12
x1

2x
12

x6
4

1x
1x

1 
C

on
vo

lu
tio

n
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

Def2018

(a) Default2018

2x
2x

2 
M

ax
 P

oo
lin

g

2x
2x

2 
M

ax
 P

oo
lin

g

2x
2x

2 
M

ax
 P

oo
lin

g

48
x4

8x
48

x2
8 

M
ol

ec
ul

ar
 G

ri
d

Affinity

Pose
Score

Fu
lly

 C
on

ne
ct

ed

So
ft

m
ax

+
Lo

gi
st

ic
 L

os
s

Fu
lly

 C
on

ne
ct

ed

L2
 L

os
s

3x
3x

3 
C

on
vo

lu
tio

n 
(3

2)
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

1x
1x

1 
C

on
vo

lu
tio

n 
(9

6)
R

ec
tifi

ed
 L

in
ea

r 
U

ni
t

1x
1x

1 
C

on
vo

lu
tio

n 
(1

60
)

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

G
lo

ba
l M

ax
 P

oo
lin

g

D
en

se
 B

lo
ck

D
en

se
 B

lo
ck

D
en

se
 B

lo
ck

Dense

Dense Block

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

Ba
tc

hN
or

m
 +

 S
ca

le

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

Ba
tc

hN
or

m
 +

 S
ca

le

3x
3x

3 
C

on
vo

lu
tio

n 
(1

6)

3x
3x

3 
C

on
vo

lu
tio

n 
(1

6)

3x
3x

3 
C

on
vo

lu
tio

n 
(1

6)
Ba

tc
hN

or
m

 +
 S

ca
le

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

3x
3x

3 
C

on
vo

lu
tio

n 
(1

6)
Ba

tc
hN

or
m

 +
 S

ca
le

R
ec

tifi
ed

 L
in

ea
r 

U
ni

t

(b) Dense

Figure 1: The model architectures take in a voxelized protein-ligand complex and predict
both a pose score, termed ‘CNNscore’, and affinity value.
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Ensemble knowledge distillation

Ensemble KD trains a student model on the representation of several teacher models, illus-

trated in Figure 2. GNINA provides four variants of CNN models for molecular docking;

each variant is trained five times using different random seeds. These five models form an

ensemble for each variant. Our ensemble KD utilizes the five teacher models to train a single

student model with the same architecture as the teacher models. Additionally, we consider

one more ensemble of the CNN models: “All Default2018 Ensemble”, consisting of all scoring

functions with the Default2018 architecture. During KD, the student model is trained on

the same dataset as the teachers were trained on. For the All Default2018 Ensemble, we

train the student on the CrossDock2020 v1.3 dataset since this is largely a superset of the

other training datasets. Overall, 6 single models are distilled from 5 ensembles (Table S2).

.

.

.

.

.

.

Teacher 

model 

N

Teacher 

model 

1
Student 

model

affinity output

pose output

Figure 2: Ensemble knowledge distillation. The ground-truth-based losses are in red, while
the KD loss uses the teacher pose classifier outputs, pre-softmax, as the label. The KD loss
only utilizes the pose classifier output. The affinity prediction of the students is trained with
the same loss as the teachers.

The teacher models predict both a probability that the pose is high quality, ŷTpose, and an

affinity, ŷTaffinity, which are trained on the ground truth pose, ypose, and affinity, yaffinity, using

cross entropy (1) and hinged mean squared error (2), respectively.

Lpose = −ypose log ŷ
S
pose − (1− ypose) log (1− ŷSpose) (1)
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Laffinity = 0.1


(yaffinity − ŷSaffinity)

2 (ypose = 1) | (ypose = 0 & yaffinity < ŷSaffinity)

0 ypose = 0 & yaffinity ≥ ŷSaffinity

(2)

The student is trained using the same ground-truth-based losses on its affinity, ŷSaffinity,

and pose classifier, ŷSpose. Additionally, the student is trained to model the output of the

teacher’s pose classifier with the KD loss (3), the sum of KL divergence between the pre-

softmax values of the pose classifier of the student, s, and each teacher, ti.
13

LKD = T 2

N∑
i=1

KL(σ(s/T ), σ(ti/T )) (3)

where T is the temperature and σ is the softmax function. The total loss (4) on the

student is a weighted sum of the KD loss and the ground truth loss.

Ltotal = α ∗ (Lpose + Laffinity) + β ∗ LKD (4)

where α and β weight the contributions of the ground-truth-based losses and the KD

loss, respectively. We set α = 1, β = 1, and T = 1 for our KD trainings.

Training details and hyperparameters are provided in the supplement.

Evaluation Metrics

We use the same evaluation metrics as in McNutt et al. 6 . After training the CNN models,

we employ them in the GNINA molecular docking pipeline with default settings. We set

the random seed to ensure consistency between runs of a given complex. We utilize TopN

to evaluate the pose ranking performance of the molecular docking pipeline. TopN indicates

the percentage of complexes with at least one pose, ranked N or higher, less than 2Å RMSD

to ground truth. That is, Top2 is the percentage of docking runs where at least one of the

top two ranked poses is less than 2 Å RMSD from the ground truth. We also investigate the

computational cost of using these CNN models by evaluating the time to dock ligands. Since
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our focus is on increasing the efficiency of CNNs for high-throughput molecular docking,

we examine the computational cost of the CNNs during CPU-only docking. GPUs can

significantly speed up CNN usage; however, docking millions of molecules generally requires

parallelizing the process across hundreds to thousands of machines which is prohibitively

expensive if GPUs are used. Therefore, we report the Avg Time Per System, the average

CPU-only docking time across the 100 complex subset of the PDBbind Core set v2016.19

More information on the calculation of these metrics is provided in the supplement.

Results

Train on CrossDock2020 v1.3

We retrained all of the built-in GNINA scoring functions using the updated CrossDock2020

v1.3 dataset. This resulted in five new versions of crossdock default2018, redock default2018,

and dense that show improved pose ranking performance on the crossdocking task (Fig-

ure S3, S2, and S4). Following Francoeur et al. 7 , we utilized Caffe21 for the crossdock default2018

and redock default2018 models. Due to complications with later KD training, the new

versions of the dense models were trained with PyTorch. Performance of these models is

comparable to the Caffe trained models (Figures S1). The PyTorch-trained dense models

are used for all molecular docking evaluations and KD training. All of the training details

and hyperparameters are outlined in the supplement.

The only decrease in performance is seen in the redocking performance of the redock default2018

models (Figure S2a). Both crossdock default2018 and dense have slightly increased per-

formance on the redocking task after training on the new version of the dataset. We see a gen-

eral increase in performance for all models during crossdocking (Figure S2b, S3b, and S4b),

with dense showing the largest increase in performance over the 1.0 version model.
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Top1-Time Benchmarking

Our primary goal is to retain docking performance while minimizing running time. We

focus our attention on the Avg Time per System when we do not use a GPU since this is

the most likely use case during high-throughput docking of large libraries. We present the

best performing distilled and non-distilled single models and all the ensembles in Figure 3.

Comparisons of all the single models, ensembles, and knowledge distilled models on redocking

and crossdocking are provided in Table 1 and 2, respectively.
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All Default2018
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Non-KD Single Model

KD to Dense

KD to Default2018

(b) Crossdocking

Figure 3: Evaluation of Top1 vs average time to dock one protein-ligand sample using CPU
only. We show the best performing single models, across both tasks, for the non-KD and KD
trained models visualized as circles and triangles, respectively. Ensemble KD, shown by the
arrows, reduces the computational overhead of the highest performing ensembles (denoted
by the “X”s), while having better or comparable rescoring performance on both tasks than
any non-KD single model.

First, we compare the performance of the distilled Default2018 ensembles to the non-KD

single models. Overall, the distilled Default2018 ensemble models do not have large differ-

ences from their non-KD trained counterparts. The distilled general default2018 ensemble

shows slightly reduced performance on the redocking task, while the other Default2018 mod-

els show a slight increase in performance on the redocking task (Figure S6a, S7a, and S8a).

The crossdock default2018 model shows a slight reduction in performance on the cross-
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Table 1: Average redocking performance of GNINA scoring functions. ± indicates the
standard deviation of five models trained from different random seeds, except in the case of
“All Default2018 Ensemble” distillation which only has three student models.

Single Model Ensemble KD → Default2018 KD → Dense

Model name Top1
(%)

Avg
CPU
Time (s)

Top1
(%)

Avg
CPU
Time (s)

Top1(%) Top1(%)

crossdock default2018 65.01(±0.62) 24.6 66.48 53.1 66.33(±0.45) N/A
redock default2018 63.23(±0.69) 24.6 66.41 53.1 65.04(±0.43) N/A
general default2018 66.82(±0.71) 24.6 66.41 53.1 65.92(±0.48) N/A

dense 67.97(±0.25) 72.2 73.08 457.6 65.69(±0.44) 69.71(±0.48)
All Default2018 N/A N/A 70.61 123.2 69.46(±0.18) N/A

Table 2: Average crossdocking performance of GNINA scoring functions. ± indicates the
standard deviation of five models trained from different random seeds, except in the case of
“All Default2018 Ensemble” distillation which only has three student models.

Single Model Ensemble KD → Default2018 KD → Dense

Model name Top1
(%)

Avg
CPU
Time (s)

Top1
(%)

Avg
CPU
Time (s)

Top1(%) Top1(%)

crossdock default2018 33.43(±0.59) 24.6 34.30 53.1 33.07(±0.22) N/A
redock default2018 31.08(±0.78) 24.6 32.87 53.1 32.22(±0.33) N/A
general default2018 33.23(±0.69) 24.6 35.43 53.1 34.17(±0.48) N/A

dense 38.27(±0.51) 72.2 41.57 457.6 35.93(±0.20) 38.38(±0.39)
All Default2018 N/A N/A 36.99 123.2 35.93(±0.40) N/A
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docking task, while the general default2018 and redock default2018 show a slight in-

crease in performance for crossdocking (Figure S6b, S7b, and S8b). Finally, we distill the

ensemble composed of all models with a Default2018 architecture, referred to as “All De-

fault2018 Ensemble,” into a single Default2018 model. This distilled Default2018 model

shows the highest performance of any Default2018 distilled model (Figure S9). The distilled

model has higher performance than any single non-distilled Default2018 model and higher

performance than any ensemble of Default2018 model on both redocking and crossdocking

tasks. This distillation shows the greatest decrease in docking time while nearly maintaining

the performance of the full ensemble on both docking tasks.

The dense ensemble is the highest performing CNN model for both redocking and cross-

docking, but it is also the most computationally demanding (Figure 3) so distilling the

dense ensemble’s knowledge would be the most useful for accurate high-throughput dock-

ing. Figure S10 shows the dense ensemble distilled into a Dense architecture has about the

same crossdocking performance as the non-KD trained dense single models while demon-

strating improved performance on redocking over the non-KD trained dense single models.

Additionally, since the Dense architecture has a higher number of parameters than the De-

fault2018 architecture, we distill the dense ensemble into a Default2018 architecture. We

compare the dense ensemble to Default2018 architecture distillation to the non-KD trained

crossdock default2018 single models and ensemble since it has the same architecture and

training dataset. The distillation into the Default2018 architecture shows about the same

redocking performance as crossdock default2018 single models and a higher crossdock-

ing performance relative to both the crossdock default2018 single models and ensemble.

However, the distillation of the dense ensemble into a single Default2018 model shows about

the same crossdocking performance and reduced redocking performance when compared to

distilling the “All Default2018 Ensemble” into a Default2018 model(Figure 3, Table 2 and 1).

There is significant pose ranking performance lost during the distillation of the dense en-

semble to both the Dense and Default2018 architecture.
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Discussion

In this work, we established the effectiveness of KD in reducing the cost of CNN model en-

sembles used by GNINA for scoring protein-ligand binding conformations while maintaining

their pose ranking superiority over non-KD-trained single models. Upon applying ensem-

ble KD, the Top1 performance for the redock default2018, All Default2018, and dense

distilled models in redocking and crossdocking tasks landed between the best-performing

single models and their corresponding ensembles (Figures S7, S9, and S10). The distilled

general default2018 model did not outperform the best single model for redocking; how-

ever, the distilled models show better performance than the single models for crossdock-

ing (Figure S6). The crossdock default2018 distilled models showed the opposite trend,

with increased performance on redocking tasks and decreased performance on crossdocking

tasks over the single models (Figure S8). We hypothesize the failing of these distillations

is due to a lack of diversity among the single model pose outputs in these ensembles (Fig-

ure S18). This aligns with the low improvement seen of the crossdock default2018 ensem-

ble over the single models on crossdocking (Figure S8b) and the decrease in performance of

the general default2018 ensemble over the highest performing single model for redocking

(Figure S6a). We also note that the CNNscore learned through KD training is indicative of

lower RMSD to ground truth poses (Figures S12, S13, S14, S16 and S17). Therefore, the KD

process is teaching the students a useful pose predictor that generalizes well for molecular

docking, rather than prompting the students to mimic the teachers.

Ensemble KD proved markedly effective at reducing the cost of large ensembles while still

maintaining much of the performance. Distilling the All Default2018 Ensemble, composed of

15 different models, into a single model proved effective for both redocking and crossdocking

(Figure S9). This distillation reduces the computational cost of docking from about 123

seconds to about 25 seconds (CPU-only docking), a 5x speedup, with only a small decrease

in Top1 percentage on both tasks (Tables 1 and 2). This distillation performance is notably

different from the distillation of the basic Default2018 ensembles (general default2018,
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redock default2018, and crossdock default2018), which is likely due to the diversity

of pose ranking performance of the models composing the All Default2018 ensemble (Fig-

ure S18). Since “All Default2018” is composed of models trained on different datasets, each

of the teachers provided a different expertise during the distillation.

Distillation of the dense ensemble into a Default2018 architecture was also effective.

The Dense architecture has about twice as many parameters compared to the Default2018

architecture, which, combined with the more compute-demanding dense convolutions, results

in a CPU-only docking time of about 458s. Distilling this ensemble into a Default2018 model

slightly reduces Top1 pose ranking performance from 73.1% to 65.69% and 41.6% to 35.9%

on redocking and crossdocking, respectively. The Default2018 architecture distilled from

the dense Ensemble has the best performance of any single Default2018 architecture model.

This paves the way for future research focusing on the development of efficient molecular

docking scoring functions derived from larger architectures. Due to their increased capacity,

large models can capture a more comprehensive representation of the protein-ligand complex,

thereby achieving higher generalization capabilities. Moreover, deriving a single model from

an ensemble of larger models significantly trims docking time, particularly for large-scale

docking endeavors.

While ensemble KD exhibits considerable potential for enhancing the efficiency of exist-

ing molecular docking CNNs, there is much room for further exploration. One of the key

challenges is the current lack of understanding regarding which protein and molecule features

contribute most significantly to the distillation process. Additionally, our work focused only

on distilling the pose scoring of the CNN models as the KD field largely focuses on the dis-

tillation of classification tasks. Future work can explore simultaneously distilling the affinity

prediction regression value using newly proposed regression distillation methods.22 Addi-

tionally, KD could be used for the distillation of increasingly large state-of-the-art molecular

docking graph neural networks (GNNs)11 to reduce model computation with minimal per-

formance impact.
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Conclusion

While traditional scoring methods are interpretable and efficient CNNs provide a more per-

formative yet computationally expensive alternative for evaluating binding pose quality.

Previous work has found that ensembles of CNN models perform better at ranking binding

poses, but require longer running times. We applied ensemble KD to condense the knowl-

edge of these ensembles into a single CNN, resulting in shorter running times with higher

pose ranking performance than any non-KD trained single model. This efficiency gain is

more apparent when the teacher model has a large number of parameters or the ensemble

is composed of a diverse set of models. We were able to distill an ensemble of 15 models

into a single model, gaining about a 5x docking runtime speedup, with pose ranking per-

formance higher than any other single CNN model with comparable computational cost on

both redocking and crossdocking tasks.
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