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Abstract

The Pauli repulsion is the intermolecular force responsible for the volume and low

compressibility of condensed-phase matter at normal conditions. A simple model for this

force is presented, in which per-atom electron densities are represented as spherical charge

distributions that are prevented from significantly overlapping. In the example of two

noble gas atoms approaching one another beyond their van der Waals radii, the distance

between the centers of the electronic charge distributions becomes larger than the

distance between the nuclei, giving rise to an unfavorable electrostatic interaction. For

the purpose of calculating this interaction, the model is further simplified by representing

the per-atom electron density as a negative point charge, inspired by the classical Drude

oscillator. The dispersion interaction is simplified to an R−6 term, centered on the

aforementioned point charges. Despite the gross simplicity of the resulting formalism,

near-quantitative agreement with high-level QM interaction energies of noble gas dimers

is achieved. Accordingly, the present model is thought to have utility in force fields, in

post-HF and post-DFT dispersion corrections and in chemical education.
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1 Introduction

From the traditional statistical point of view, the Pauli repulsion is the only consistently

repulsive force in molecular liquids. It can be said to be responsible for enforcing the van der

Waals radii of the atoms, and as such, it is often cited as the force that keeps condensed-phase

matter from collapsing at normal conditions. While the nature of the Pauli repulsion is

well-understood at a Quantum Mechanical (QM) level, it is not straightforward to explain

to an audience that lacks the requisite QM background. Perhaps more importantly, QM

does not provide an analytical formula for the repulsive force as a function of the interatomic

distances. In applications where such a functional form is required, approximations that are

very empirical in nature are commonly employed. However, these approximations suffer from

one or more of the following disadvantages: (1) computational cost (mainly in the context

of condensed-phase Molecular Mechanics), (2) mediocre accuracy and (3) not being able to

overcome the attractive London Dispersion at short distances in models that represent the

latter force by an atom-centered R−6 term. Conversely, the present paper proposes a simple

and elegant model for the Pauli repulsion that is straightforward to explain to a general

audience and suffers from none of the aforementioned disadvantages.

To accurately classify the present model against the backdrop of the many existing models,

we must start from the observations that (1) there exist two fundamentally different classes of

methods to partition the electron density in a multi-atom system among its atoms and (2) any

decomposition of the interatomic energy into contributions is inherently linked to a specific

partitioning scheme of the electron density. Specifically, the electron density can be divided

into separate atomic domains along discrete boundary planes so that the density in any region

of space fully belongs to one unique atom. We will call this class of partitioning schemes

the “Bader-like partitioning”, after R. Bader’s Atoms In Molecules theory.1 Conversely, the

electron densities belonging to the different atoms can be taken to overlap so that in a given

region of space, different fractions of the density belong to different atoms. We will call this

class of partitioning schemes the “Hirshfeld-like partitioning” after the seminal work of F.
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Hirshfeld.2 We now observe that for any given decomposition of the interatomic energy, the

division of the total energy among different (covalent, electrostatic, dispersion, Pauli repulsion)

terms is entirely reliant on the underlying scheme for partitioning the electron density. As an

example, a Hirshfeld-like partitioning may give rise to an energy decomposition containing

a charge penetration term,3 while there exists no counterpart for this term in a Bader-like

partitioning. Yet, both partitioning schemes can be applied to the same electron density

and thus should reproduce the same interatomic forces following the Hellman-Feynman

theorem. This implies that in a Bader-like partitioning, the repulsive contribution of the

penetration term is incorporated into the other terms, likely including the Pauli repulsion

term. Consequently, there is no uniquely correct decomposition of the interatomic energy in

the same fashion as there is no uniquely correct partial charge assignment algorithm. Rather,

as demonstrated at a conceptual level in the above example, two energy decomposition

methods may yield different Pauli repulsion terms when viewing the same system though the

framework of different density partitioning methods. While this is presumably well-known

in at least part of the community, it is essential for the purpose of comparing the present

work method to existing models - in particular the Pauli repulsion model of Rackers and

Ponder4 and that of Van Vleet et al.5 Indeed, while some of the basic premises behind the two

models appear somewhat similar, the work of Rackers and Ponder assumes a Hirshfeld-like

partitioning and their Pauli repulsion term is used alongside a charge penetration term.

Conversely, the present work consists of a simple model that is fundamentally based on

a Bader-like partitioning, yielding a very different Pauli repulsion term but equally good

intermolecular potentials on simple test systems. Also, while the distance-dependent Rackers

and Ponder Pauli repulsion term is in line with the exchange term of a SAPT decomposition,

our model is not. While this would appear worrisome at first glance, it becomes trivial in

light of the dependence on the underlying partitioning scheme: SAPT treats the interatomic

potential as a perturbation of a reference state that essentially consists of non-interacting

spatially overlapping atoms and therefore is implicitly based on a Hirshfeld-like partitioning.
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1.1 Rationale

Figure 1: A scheme in which the internuclear distance, r, and the distance between the
electron clouds, r′, of noble gas atoms is schematically given. In A, r′ is defined as the
distance between the centroids of the electron clouds. In B, r′ is defined as the centroids of
the outer-shell electrons.
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Applying a Bader-like partitioning to a simple noble gas dimer at distance r < 2rvdW

yields per-atom electron densities that are deformed from their non-interacting shape. Most

notably, the overall electron density is shifted away from the interatomic plane4 such that a

net repulsive Coulombic force is obtained, thereby satisfying the Hellman-Feynman theorem.

Aiming for a thoroughly simplified model that captures this basic property, we apply a shift to

the center of the spherical electron density rather than deforming it upon approach between

the two atoms, as illustrated in Fig. 1A. In addition, we neglect the “tails” of the electron

distribution, reducing it to a finite symmetrical sphere whose external electric field is the

same as that of a point charge. This yields a model in which a noble gas dimer is reduced to

a set of 4 point charges, in this respect mimicking the classical Drude model of polarization
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as it is implemented in molecular mechanics.6 While the Drude model features a harmonic

potential to represent the attraction between a nucleus and its own electron density, we

neglect this contribution for now; its treatment will be discussed in §1.2. Doing so reduces

the interaction energy to the sum of the dispersion and Coulombic interactions:

E = −C6

r′6
− 2

C1

1
2
(r + r′)

+
C1

r′
+

C1

r
(1)

Where r is the internuclear distance and r′ is the distance between the two centers of the

atomic electron densities. The C6/r
′−6 term represents the London dispersion interaction.

Indeed, this interaction can be defined as a weakening of the electronic repulsion due to a

decrease in the probability of repulsive configurations in the many-electron wave function,

or expressed less formally, due to a tendency of electrons (within the total densities of the

interaction partners) to “instantaneously” avoid one another. Therefore, in a model where

electron densities are displaced in space, the classical r−6 term should trivially be centered

on the electron densities rather than the nuclei, becoming an r′−6 term. Notably, this yields

a dispersion term that is inherently immune to the common problem of divergence at short

distances, because r’ will not approach 0 when r does; see below. The dispersion coefficient

C6 is fitted to the potential energy surface of the interaction distance; as shown in “Results”,

doing so yields values that are in agreement with the literature. Finally, the three C1 terms

represent the Coulombic interactions as depicted in Fig. 1A. Naively, C1 should simply be

equal to the product of the two nuclear charges. This yielded an acceptable potential energy

surface for the neon dimer, but not for larger species. Conversely, when treating C1 as another

parameter and fitting it to the potential energy surface, C1 values were obtained that roughly

approached the product of the numbers of valence electrons on each of the interacting atoms,

suggesting that the deformation of the electron cloud is mostly limited to the valence shell!
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1.2 Present model

As mentioned above and corroborated by table 4, in the context of the present formalism,

the deformation of the electron clouds seems to be largely limited to the valence shell. This

prompted a refinement to the naive model introduced in §1.1. The actual model that is the

subject of this paper is more accurately represented by Fig. 1B, wherein r is the distance

between the nuclei along with their immutable inner electron clouds and r’ is the distance

between the centers of two (isotropic) hollow shells of outer electrons. Furthermore, r’ is

taken to be a predetermined function of r. While this does not change the mathematical

form of Eq. (1), it resolves problem of the absence of an explicit term for the attraction

between a nucleus and its own electron density. Indeed, if the atom’s “proper” electron cloud

is split into a part that is always spherically symmetric around the nucleus and a second part

that is a hollow sphere, its electrostatic force on the nucleus is always 0. Note that this does

not imply that the mobile part of the electron cloud is allowed to move freely: instead of

restraining it with an additional force, we constrain it at a position that is determined by the

function r’(r), as elaborated in §1.3. This use of a constraint is conceptually analogous to the

QM Pauli repulsion, which is not the result of some ghostly “QM force” acting upon the wave

function, but the electrostatic consequence of the antisymmetry constraint. Interestingly,

attempts to add more conventional energy terms for the interaction between a nucleus and

its own electron density to Eq. (1) failed to improve the potential energy surfaces (data not

shown), empirically supporting Eq. (1) as written.

1.3 The interatomic electron cloud distance

Apart from the parameters C6 and C1, the key undefined quantity in Eq. (1) is r′; indeed,

an analytical expression of r′ as a function of r is required in order to turn the above

equation into a practical model. Unfortunately, deriving even an approximate analytical

expression for r′ from first principles is highly nontrivial. Instead, we follow the time-honored

tradition of proposing a number of parametrical mathematical functions and optimizing
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the newly introduced parameters to optimally reproduce high-level QM Potential Energy

Surfaces. Specifically, we selected analytical functions that satisfied the following (boundary)

conditions:

• At large distances, the electron cloud is centered around the nucleus, i.e. r = r′ Eq. (3).

• At shorter distances, around and below the sum of the van der Waals radii, r′ should

gradually and monotonously become larger than r.

In other words, the difference r′ − r should approach 0 when r approaches infinity and should

monotonously increase when r becomes smaller, reaching a finite value for r = 0. We will

henceforward define

f(r) := r′ − r (2)

because large parts of the mathematics that follow can be expressed somewhat more compactly

and intuitively in terms of this f(r). This yields:

lim
r→∞

r′ = r ⇒ lim
r→∞

r′ − r = lim
r→∞

f(r) = 0 (3)

When evaluating the resulting parametrized functions, we consider an additional, somewhat

less rigorous criterion for the fitness of the function. This criterion is based on the generally

accepted notion that the Pauli repulsive wall becomes very steep over a very short distance

range; for some intents and purposes, atoms can even be approximated as hard spheres (e.g.

in the van der Waals equation of state). Accordingly, as the internuclear distance r decreases

significantly below the sum of the van der Waals radii, the response of r′ on the decrease

in r weakens. In the present work, we will further assume that when r the approaches 0,

so will dr′/dr. This is in intuitive agreement with a “hard Pauli repulsive wall” or more

fundamentally with the idea that the Pauli exclusion principle enforces the antisymmetry of
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the wave function as a hard constraint.

dr′

dr

∣∣∣∣
r=0

= 0 ⇒ dr′ − r

dr

∣∣∣∣
r=0

=
df(r)

dr

∣∣∣∣
r=0

= −1 (4)

Formulated this way, it becomes apparent that candidate functions can be constructed as

f(r) = a(1− σ(br)) (5)

where σ(x) is a sigmoid function in a standardised form:

lim
x→−∞

σ(x) = −1, lim
x→+∞

σ(x) = +1, σ(0) = 0,
dσ(x)

dx

∣∣∣∣
x=0

= 1 (6)

The resulting “sigmoid-based” functions automatically satisfy (3); the parameter a (or f(0))

can be though of as a measure for “the sum of the vdW radii of the electron clouds” and

criterion (4) is satisfied when a/b = 1.

In the present paper, we evaluate six such “sigmoid-based” functions (7)-(12).

f(r) = a

(
2

1 + e2br

)
(7)

f(r) = a

(
1− 2

π
arctan

(
sinh

(π
2
br
)))

(8)

f(r) = a

(
1− br√

1 + b2r2

)
(9)

f(r) = a

(
1− br

1 + |br|

)
(10)

f(r) = a

(
1−

(√
π

2
br

))
(11)

f(r) = a

(
1− 2

π
arctan

(π
2
br
))

(12)

In addition, polynomial functions can be made to fulfill condition (3) by introducing a

cut-off distance d and eliminating the 0th order term, as in (13) and (14). Note that we also
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eliminated the 1st order term so that f ′(d) = 0, ensuring a smooth transition when f(r)

switches to 0. This corresponds to a model where at distances ≥ d, the electron cloud is

distributed symmetrically around the nucleus and the force due to the Pauli repulsion is

exactly 0. While this leaves an artificial discontinuity in the 2nd derivative, the aforementioned

steepness and sudden onset of the Pauli repulsive wall suggest that it would make a very

good approximation. In addition, being able to switch to a more conventional treatment

beyond a given cut-off distance is highly desirable for force fields (as is the mathematical and

computational convenience of a polynomial function).

f(r) =


a(r − d)3 + b(r − d)2 if r ≤ d

0 if r > d

(13)

f(r) =


a(r − d)4 + b(r − d)3 + c(r − d)2 if r ≤ d

0 if r > d

(14)

It should be noted that, unlike the standardized sigmoid based functions (7) - (12), polynomials

(13) and (14) do not automatically satisfy condition (4). Doing so requires an additional

constraint, as explained in §2.2.

2 Methods

2.1 Generation of target data

Potential energy scans of the neon-neon (NeNe), argon-argon (ArAr) and argon-neon (ArNe)

dimers were performed from 1.5-7.5 Å for NeNe and 2.0-7.5 Å for the other two dimers

in steps of 0.1 Å using the Psi4 program.7 To obtain a high accurate interaction energy

profile, the following two point Complete Basis Set (CBS) extrapolation scheme was used (15):8
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ECBS
total = Eaug-cc-pV5Z

total,HF + E
aug-cc-pV[Q5]Z
corl,MP2 + δ

CCSD(T)
MP2 |aug-cc-pVTZ (15)

Following the notation conventions from,8 Eaug-cc-pV5Z
total,HF is the Hartree-Fock energy,

E
aug-cc-pV[Q5]Z
corl,MP2 is a correction for the CBS extrapolation and δ

CCSD(T)
MP2 |aug-cc-pVTZ is the correc-

tion for the level of theory. The first two terms were calculated using the Density Fitted

(DF) versions of the respective algorithms but δCCSD(T)
MP2 not (because of technical limitations).

Similarly, a Counterpoise Correction was applied to the first two terms but not δ
CCSD(T)
MP2 ,

because the computational cost of doing so was not deemed worth the modest improvement

in accuracy for this particular purpose. The interaction energy obtained in this fashion for

internuclear distance x will henceforward be referred to as EQM(x)

2.2 Parameter optimization

For each EQM in the PES, a corresponding r′QM (and hence fQM(x)) was calculated by solving

Eq. (1) for r′. For this purpose, the constant C6 was initially fitted to the long-distance

“tail” of the PES, while C1 was taken as the product of the atomic numbers of the interacting

atoms (when expressed in atomic units).

Based on (7)-(14), two sets of fitted algebraic functions were generated as candidates for

f(x). In the first set, the parameters (a, b and d, where applicable) were optimized to minimize√〈
(f(x)− fQM(x))2

〉
, while the second set aimed to minimize

√
⟨wi(E(x)− EQM(x))2⟩ using

(1) for E(x).

Because the range of E(x) spans several orders of magnitude, it was necessary to apply weight

factors: wi = 1 for EQM(x) < 17 kcal/mol and wi = k/EQM(x)
2 for EQM(x) > 17 kcal/mol.

For the neon dimer k was arbitrarily set to 10 and for the other dimers k was set to 1. Note

that for the sake of comparison, only the points with EQM(x) < 17 kcal/mol were used for

calculating the RMS energy differences (RMSE) in Table 2 and Table 3.
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In the case of the quartic function, parameter c was not optimized but instead fixed to the

value given by Eq. (16) in order to satisfy the “hard Pauli repulsive wall” condition (4).

dr′

dr

∣∣∣∣
r=0

= 0 ⇒ c = ad2 − 3

2
bd (16)

The actual fitting was performed using the Differential Evolution and Particle Swarm

(DEPS) algorithm as provided by the “Solver” feature in Libreoffice Calc 6.0.7. Different

initial guesses were provided for each parameter optimization in order to verify that the

problem was single-minimum and well-conditioned. While the process occasionally needed to

be continued after reaching its time limit, robust solutions were eventually obtained in all

cases.

3 Results

3.1 Fit of r′QM − r

When substituting the QM interaction energy E for a given distance r into equation (1), it

can be solved for r′, yielding an “ideal” r′QM. The shape of the resulting graph (black curve

in Fig. 2 for Ar-Ar) provided inspiration for proposing functions Eq. (7) - (14). The latter

were fitted to r′QM − r by optimizing parameters a, b and d (where applicable). C1 and C6

were not included in the fit but rather set to precomputed values (see “Methods”) in order to

minimize the risk of overfitting in this “exploratory” stage of the work.

To assess the fitness of the proposed functions, the RMSD values of f(r) for NeNe, ArAr

and ArNe are given in Table 1. f(0) and f ′(0), i.e. the value of f(r) and its first derivative

at r = 0, are included in the same table for the purpose of evaluating f(r)’s behavior. At

small distances; per Eq. 4 and the associated reasoning, f ′(0) should ideally be close to -1.

Likewise, f(0) is the minimum possible distance between the centers of the mobile parts of

the electron clouds; on a conceptual level, it fulfills the role of a “sum of the van der Waals
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Figure 2: Fitted function f(r) targeting r′QM − r for the argon dimer
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radii of the electron clouds”. Based on Table 1, the inverse square root sigmoid (9), fast

sigmoid (10) and arctan (12) functions perform poorly, as can readily be observed for (9) and

(12) in Fig. 2. Furthermore, their RMSD values are roughly an order of magnitude higher

compared to the other candidate functions. The error (11) and cubic (13) functions have low

RMSD values and look acceptable in Fig. 2. However, their f ′(0) deviates too much from −1

in Table 1. Based on these numbers, one would expect the logistic (7), Gudermannian (8)

and quartic (14) functions to be suitable. Looking at Fig. 2, (14) does especially well in the

region where r′QM approaches r, i.e. between 7 and 9 a.u.

Table 1: RMS deviations between the fitted function f(r)fit and r′QM − r. Calculated f(0)
along with f ′(0), the function values and their derivatives at distance 0. All quantities are
distances and are given in a.u.

Eq. Function neon-neon argon-argon argon-neon
RMSD f(0) f ′(0) RMSD f(0) f ′(0) RMSD f(0) f ′(0)

7 Logistic 0.0037 1.9 -0.82 0.0060 2.0 -0.72 0.0053 1.6 -0.58
8 Gudermannian 0.0039 2.5 -1.36 0.0056 2.8 -1.21 0.0060 2.0 -0.89
9 Inv. sq. root sigm. 0.0240 2.5 -2.50 0.0268 157 -818 0.0421 11 -14.6
10 Fast sigmoid 0.0434 10 -346 0.0478 24 -1321 0.0628 44 -2901
11 Error 0.0065 1.2 -0.39 0.0040 0.50 -0.09 0.0033 1.1 -0.32
12 Arctan 0.0433 499 −3.8 · 105 0.0477 263 −1.0 · 105 0.0563 1003 −1.3 · 106
13 Cubic 0.0047 1.1 -0.44 0.0039 1.2 -0.36 0.0037 1.1 -0.39
14 Quartic 0.0037 1.6 -1.00 0.0024 2.1 -1.00 0.0043 1.8 -1.00

Finally note that f ′(0) is exactly -1 for the quartic function (14) because of constraint

(16). We attempted to constrain parameter b in cubic function (13) in a similar fashion, but

the optimization of the remaining parameters failed to converge and yielded extremely poor
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fits (data not shown). This suggests that the polynomial functions need a minimum of three

parameters in order to obtain acceptable fits; this observation is discussed in more detail at

the end of §3.2.

3.2 Fit of EQM using precomputed C6 and C1

While using a “back-calculated” r′QM − r provided a sure footing for the evaluation of the

different functional forms in §3.1, it relied on precomputed values of C6 and C1 in addition

to being mathematically somewhat cumbersome. For our final models, more flexibility was

afforded by optimizing the parameters in the selected functions (7), (8) and (14) so that

they optimally reproduce EQM when plugged into Eq. (1). As a consistency check, this

was initially performed using the same precomputed C6 and C1 as in §3.1. Zooming in on

the the potential energy surfaces for the argon dimer in Fig. 3, the logistic (7) (red) or

Gudermannian (8) (green) function led to a relatively substantial underestimation of the

interaction energy, while the quartic (14) (blue) function produced a slight overestimation.

The same observations hold for the neon dimer and the argon-neon complex (data not shown).

Additionally, the quartic function predicts the equilibrium distance of the dimers accurately

while the logistic and Gudermannian functions somewhat overestimate it. Table 2 shows that

comparable f(0) and f ′(0) values were obtained when compared to Table 1. Accordingly, the

quartic function is superior based on the RMS energy differences when compared to the other

two. It should be noted that the better fit of the quartic function is a natural consequence of

its having three “fittable” parameters (a, b, and d, since we still use Eq. (16) for c), compared

to the two (a and b) in the logistic and Gudermannian functions. Indeed, one could argue

that after constraining (3) and (4), three degrees of freedom (DOF) are needed to reproduce

three physical properties of f(r): (I) f(0), (II) the r at which f(r) becomes arbitrarily small

(for the polynomial functions, “arbitrarily small” can be taken as 0 and so that distance

becomes d) and (III) the concavity (“sag”) of f(r) between r = 0 and r = d. Viewed in

this framework, properties (II) and (III) are intrinsically tied together for sigmoids (7)-(12)
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and only the logistic and Gudermannian functions do this in a fashion that approximates

the physical f(x). Conversely, the quartic function (with constraint (16)) has exactly the

required freedom to fit all three properties independently.

Figure 3: Fitted potential energy functions for the argon dimer, targeting Eint,QM by optimizing
only f(r)
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Table 2: RMS energy differences between Efit with EQM (in kcal/mol) computed as explained
in "Methods" together with calculated values of f(0) and f ′(0) (in a.u.), the calculated values
of the functions and their derivatives at distance 0.

Eq. Function neon-neon argon-argon argon-neon
RMSE f(0) f ′(0) RMSE f(0) f ′(0) RMSE f(0) f ′(0)

7 Logistic 0.0326 1.8 -0.81 0.0669 2.1 -0.77 0.0348 2.0 -0.77
8 Gudermannian 0.0441 2.5 -1.32 0.0741 2.9 -1.25 0.0562 2.5 -1.16
14 Quartic 0.0065 1.8 -1.00 0.0250 2.1 -1.00 0.0163 1.9 -1.00

3.3 Fit of f(r), C1 and C6 to EQM

Finally, the models were further relaxed by including C1 and C6 in the set of parameters to be

fit to the QM interaction energy. As can be seen in Fig. 4 for the case of the argon dimer, this

makes all three functions yield potential energy surfaces that are visually indistinguishable

from the Eint,QM. However, the f(0) and f ′(0) values in Table 3 for the logistic (7) and

Gudermannian (8) functions are probably overfitted with respect to the physical justification

of the model, while they appear reasonable for the quartic (14) function.
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Figure 4: Fitted potential energy functions for the argon dimer, targeting Eint,QM by optimizing
f(r), C1 and C6
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Table 3: RMS energy differences between the Efit with EQM in kcal/mol with C1, C6 and
optimized f(r) parameters. f(0) along with f ′(0), the calculated derivatives at distance 0 in
a.u.

Eq. Function neon-neon argon-argon argon-neon
RMSE f(0) f ′(0) RMSE f(0) f ′(0) RMSE f(0) f ′(0)

7 Logistic 0.0035 4.5 -2.00 0.0101 23 -9.08 0.0057 11 -4.37
8 Gudermannian 0.0040 8.1 -4.59 0.0103 38 -19.1 0.0057 19 -9.66
14 Quartic 0.0006 1.9 -1.00 0.0027 2.7 -1.00 0.0021 2.3 -1.00
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Further insights can be gained from examining the fitted C1 and C6 factors as given in

Table 4. Using the quartic function led to an accurate reproduction of the precomputed C6

term for all dimers, while this term is somewhat (albeit not gravely) overestimated with the

logistic and Gudermannian functions. Conversely, the fitted C1 values are far lower than the

products of the nuclear charges that were used until now. It was in fact this discrepancy that

led us to propose the model in Fig. 1B. In this model, C1 (in a.u.) would be the product

of the numbers of mobile electrons in the two interaction partners. This implies that for

homodimers, the square root of C1 should be a measure for the effective number of mobile

electrons in the monomer.

For the models for NeNe and ArAr based on the quartic function, this yields
√
C1 values of

9.0 and 10.0, respectively, which seems plausible when considering that the nonzero mobility

of the inner electrons should add a modest positive correction term on top of the 8 valence

shell electrons. If so, ArNe would appear to be in contradiction with our model: its C1 is

not only lower than the product of the two
√
C1 values above, but also lower than that

for NeNe, despite Ar being a larger and more polarizable species. When considering the

logistic function,
√
C1 values of 4.5 for NeNe and 2.6 for ArAr were obtained. While the

product of the latter two values (12.0) is in reasonable agreement with the fitted C1 for

ArNe, the very small value for ArAr compared to the somewhat larger value for NeNe seem

difficult to reconcile with physical reality. Similarly unlikely results were obtained with the

Gudermannian function, in line with the earlier assessment that functions (7) and (8) are

probably overfitted. On a more algebraic level, it has been pointed out at the end of §3.2 that

the sigmoid functions are one DOF short of being able to perfectly fit the relevant properties

of f(r). In the present context, this provides the fitting algorithm with an incentive to

compensate possible shortcomings in f(r) with unphysical C1 values. Conversely, the quartic

function not only posesses the correct number of DOF, but its more accurate C6 and more

realistic f(0) and f ′(0) values make it seem more likely to also yield physical C1 values. In

this light, its somewhat contradictory C1 for ArNe may be explained by observing that Eq.
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(1) is probably too simplistic for heterodimers. Indeed, in its present form, our model would

likely become inaccurate if the deformabilities of the monomers differ significantly. While we

see a number of ways to address this without compromising the model’s conceptual simplicity,

they unavoidably require a much larger training set of dimers in order for the parametrization

problem to be properly determined, and therefore are beyond the scope of the present paper.

Table 4: (Pre)calculated and fitted C1 and C6 parameters (in a.u.) for three noble gas dimers.
[a] The product of the nuclear charges was used as a calculated C1. [b] The calculated C6

was derived from the “tail” of the PES.

C1 C6

calc[a] Quartic Logistic Gudermannian calc[b] Quartic Logistic Gudermannian

NeNe 100 81.4 20.6 13.3 8.1 8.4 10.5 10.6
ArAr 324 99.6 7.0 6 91.4 91.1 110 111
ArNe 180 77.9 9.7 7.3 26.5 27.6 33.0 33.4

4 Discussion

4.1 Dispersion corrections for QM methods lacking correlation

The most popular post-HF and post-DFT dispersion corrections9,10 represent the dispersion

interaction as an R−6 energy term (occasionally augmented by higher order terms11 and/or

anisotropy12) that is centered on the nuclei. An important pitfall of this approach is that

the magnitude of an R−6 function increases faster for R → 0 than any other interaction in a

(supra)molecular system, resulting in a collapse at short distances and artifacts at intermediate

range. Accordingly, said dispersion corrections always feature a “damping function” that

causes the final dispersion energy to level off at short distances. Examples of such damping

functions are Becke-Johnson,13 zero-damping/Chai-Head-Gordon14 and Wu-Yang15 damping

function. Viewed in this context, the present work proposes way to damp post-HF and

post-DFT dispersion corrections that is more “natural” in our opinion, while yielding accurate

noble gas dimer interaction energies as a function of distance.
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4.2 Molecular Mechanics

Over the years, many different Potential Energy Functions (PEF) for Molecular Mechanics

(MM) have been proposed. However, the field of biomolecular simulations - which arguably

plays a front-runner role in capturing subtle interactions using MM - until recently has been

dominated by the Class I PEF, with improvements that were mainly driven by refinements

of the parameter sets. Only in the 2000s, the limits of the Class I PEF started becoming

tangible. Specifically, the lack of polarizability in the underlying fixed point charge model

became a limiting factor for the accuracy and transferability of Class I Force Fields (FF),

precipitating a sudden proliferation of polarizable biomolecular force fields.16 The rate at

which polarizable biomolecular force fields are adopted in applications studies is steady but

slow due to their higher computational cost as well as the fact that they are still undergoing

significant changes/improvements.17,18 However, looking further ahead, they will eventually

encounter limiting factors in their PEF too. One such factor is possibly the Pauli repulsion

term. Indeed, the classical R−12 term of the Lennard-Jones potential leaves much to be

desired.19 Accordingly, a number of alternatives have been proposed.5,20–23 However, none of

these functional forms have found widespread popularity, owing to similar shortcomings in

quality and/or computational cost. Conversely, the present model closely matches high-level

QM results while being based on computationally inexpensive mathematical operations - at

least in the case of functions (9), (10), (13) and (14).

4.3 Chemical education

The nature of the Pauli repulsion is often shrouded in confusion even in professional scientific

discussions outside of physics and physical chemistry. Specifically, it is often pictured as a

unique force with a quantum nature that has no classical equivalent. This is incorrect in

the sense that the force associated with the Pauli repulsion is fundamentally electrostatic

in nature, as a textbook consequence of the Hellman-Feynman theorem. Indeed, as two

non-reacting molecular entities approach one another beyond the sum of their vdW radii,
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the antisymmetry of the fermionic wave function requires the electron density to adapt

a “less ideal” configuration that possesses a higher electrostatic energy than the sum of

the non-interacting entities. It is the authors’ opinion that the confusion on this matter

represents a significant shortcoming in basic chemical education. We further speculate that

this hiatus is caused by the fact that the established description of the Pauli repulsion as an

exchange interaction is too abstract/advanced for students in a basic chemistry course, forcing

educators to seek refuge in treatments that are oversimplified at best. In our opinion, the

current model presents an opportunity to remedy this problem. Specifically, when discussing

non-covalent interactions, it is straightforward (and important) to point out that the same

Pauli exclusion principle that prevents two electrons from having the same set of quantum

numbers also prevents two filled orbitals from occupying the exact same space. When two

(non-reacting) atoms approach one another, this principle starts asserting itself gradually,

resulting in a situation resembling the one depicted in Fig. 1. This can be expressed in

words as a fundamental limitation of the wave function (i.e. the Pauli exclusion principle)

that requires the electron density to deflect outward, resulting in a net repulsive electrostatic

interaction.

4.4 Limitations

While the current model is appealing for its simplicity and accurate performance on noble

gas homodimers, its present simplistic form is also very limited in scope. On a practical

level, its most obvious shortcoming is that it is not expected to perform well when the

interacting atoms are dissimilar. As discussed at the end of §3.3, extending the model to

address this seems mathematically straightforward but would require a much larger training

set of dimers. As the scope of the present paper is more conceptual, this will be deferred to a

later publication.

On a more fundamental level, the present model remains a substantial simplification of

the QM reality. First, the electron density is rather coarsely represented as a point charge
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that is also the origin of a pure R−6 dispersion interactions. By doing this, we preclude

directly capturing (among others) non-spherical deformations of the electron density and

crowding-induced contraction of the electron clouds. Relatedly, the model in its present form

would fail to account for the Pauli repulsive force that arises if an atom is approached by

other atoms from several (isotropically distributed) directions at once. For the simplest case,

a central noble gas atom with 2 other noble gas atoms approaching from opposite directions,

one could propose to split the “classical Drude particle” on the central atoms into two (or

more) such particles that avoid orbital overlap by deflecting perpendicular to the interatomic

axis (similar to the two lobes of a p-orbital). This would give rise to unfavorable dipole-

quadrupole interactions, tentatively restoring the validity of the model. For a larger number

of surrounding atoms, this approach could be generalized to any geometrically appropriate

number of Drude particles, yielding higher-order multipole moments. However, we surmise

that this modus operandi will eventually encounter a fundamental limit. Specifically, under

uniform compression, the volumetric confinement of the wave function (and the accompanying

rise in zero-point energy) will start contributing significantly to the observed repulsion. This

effect is completely absent from the current model, underlining its approximate nature.

Viewed in this light, the model probably performs as well as it does by implicitly recovering

some physical phenomena through the parametrization of the function f(r). It is our opinion

that this is not a fundamental problem for the applications listed above. Indeed, cancellation

of error through parametrization is the “default modus operandi ” in the Force Field world and

can reasonably be assumed to play a significant role in the success of post-HF and post-DFT

dispersion corrections. As for the context of chemical education, the utility of the present

model is essentially limited to the fundamental notion of electron clouds being constrained

to avoid one another, giving rise to an unfavorable electrostatic interaction, regardless of

the specific choices of representing the electron clouds as point charges and describing their

mutual avoidance mathematically with a function f(r). Nevertheless, we anticipate that

these very crude and simplistic choices cannot entirely be upheld when applied to molecules
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and supramolecular assemblies in the condensed phase.

5 Conclusions

We have presented a novel model for the Pauli repulsion that is intuitively accessible to

audiences with little QM background, possibly encouraging a more accurate general under-

standing of the physical basis of this important phenomenon in these audiences. Combined

with additional simplifications, it yields a simple and computationally inexpensive formalism

for the empirical treatment of the van der Waals interactions in computational chemistry.

While this formalism is able to closely reproduce high-level QM interaction energies of noble

gas dimers, we anticipate that some of the aforementioned simplifications - most notably the

use of a single point charge per atom - will need to be abandoned to be generally applicable

to condensed phase molecular systems, in agreement with existing models.4,24 Additionally,

it should be emphasized that the present model is not meant to comprehensively capture

the quantum mechanical reality behind the Pauli repulsion. Rather, we present it as an

alternative to existing approximate models. In this capacity, it can potentially be employed

in future force fields as well as post-HF and post-DFT dispersion corrections. Doing so will

require building and validating an extended version of the present model with support for

dissimilar atoms. This will be the subject of future work.
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