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Abstract

We present a new parameterization of the ChIMES physics informed machine-

learned interatomic model for simulating carbon under conditions ranging from 300 K

and 0 GPa to 10,000 K and 100 GPa, along with a new multi-fidelity active learning

strategy. The resulting model shows significant improvement in accuracy and temper-

ature/pressure transferability relative to the original ChIMES carbon model developed

in 2017, and can serve as a foundation for future transfer-learned ChIMES parameter
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sets. Model applications to carbon melting point prediction, shockwave-driven con-

version of graphite to diamond, and thermal conversion of nanodiamond to graphitic

nanoonion are provided. Ultimately, we find our new model to be robust, accurate, and

well-suited for modeling evolution in carbon systems under extreme conditions.

1 Introduction

The nature of carbon under extreme conditions (i.e., > 1000 K and 10 GPa) remains a

topic of significant scientific interest due to relevance across a broad range of research do-

mains including planetary, fusion, materials manufacturing, and detonation sciences.1–5 At

the same time, elucidating response and transformation in carbon remains a significant ex-

perimental challenge arising from limitations in drivers capable of imposing such conditions,

and probes capable of characterizing ensuing evolution in low-Z materials like carbon.1,6,7 In

particular, static or quasi-static compression methods (e.g., using a diamond anvil cell) can

generate conditions up to 100s of GPa and 1000s of K over long timescales and thereby allow

precise characterization, but use of diamond as the pressurizing material when measuring

properties of a carbon sample leads to difficulties, particularly near the material melt line.8

While dynamic compression (e.g., shock) methods circumvent this challenge, the extreme

conditions they generate are very short lived (e.g., ≈ 1 µs), significantly complicating char-

acterization.9 The complimentary capabilities afforded by simulation have led it to become

a mainstay in extreme conditions research, e.g., providing an atomically-resolved picture of

system structure, and enabling assignment of properties particularly challenging to determine

in analogous experiments.

First principles (FP) approaches have long been the preferred method for computational

studies under these conditions since they preempt the need to identify suitable approxi-

mate (e.g., classical mechanics) interatomic descriptions and because timescales for material

evolution under such high T and P are quite amenable to those accessible through FP sim-

ulation.10 This approach has been used to probe shock-induced transition from graphite to
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diamond,11 investigate the possibility of a liquid liquid carbon phase transition,12 character-

ize amorphous carbon properties and kinetics,13,14 and predict phase boundaries under TPa

pressures.15 However the associated computational expense precludes probing phenomena

with characteristic spatial scales exceeding more than a few hundred atoms. Early efforts to

overcome these limitations manifested in computationally efficient “bond-order” approaches

including LCBOP16,17 and REBO,18 which have since been deployed in comprehensive stud-

ies of thermodynamic properties of carbon at extreme conditions.17,19,20 However, the rigid

underlying functional form of these models hinders accurate description of the disordered

molten carbon phase.

Recently, machine-learning (ML) -based interatomic potentials (IAP) have emerged as

a powerful tool for bridging the FP/classical interatomic model accuracy/efficiency gap,

thereby providing an opportunity to revisit the problem of carbon under extreme conditions.

In contrast to molecular mechanics methods, which require assumptions of underlying physics

by way of the expressions used to describe interatomic interactions, ML-IAPs employ a highly

flexible underlying form (e.g., neural network, Gaussian process, among other approaches).

Provided appropriate volumes of relevant FP training data, these models are able to “learn”

topography of the FP method’s underlying potential energy surface, significantly minimizing

foreknowledge necessary to model a given system. In the space of carbon under extreme

conditions, particularly notable examples of these models include GAP,21,22 which was the

first among the high-accuracy general purpose ML-IAPs for carbon, quadratic SNAP,23,24

which has since been used to conduct billion atom simulations predicting shock synthesis

of BC8 carbon25 (i.e., under TPa conditions), and ACE,26 which has been shown to be

both efficient and effective for modeling mechanical properties of carbon. Nevertheless,

there remains a need for ML-IAPs capable of modeling shockwave-driven phenomena, i.e.,

applicable from nominally ambient conditions to intermediately extreme conditions of 1000s

of K and 10s to 100s of GPa – regimes relevant to planetary science, shock- and detonation-

induced chemistry, and advanced materials manufacturing.
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In 2017, we developed the ChIMES ML-IAP to enable accurate modeling of condensed-

phase chemistry under extreme conditions27 and published its first application to molten

carbon.28 Though the model yielded significant improvement upon classical bond-order

methods, the domain for model applicability was confined to 5000 – 6000 K and 2.25 –

3.00 g cm−3. Since then, the ChIMES model and underlying framework has been sig-

nificantly enhanced27,29–31 to improve model accuracy, robustness, efficiency and automa-

tion/reproducibility in training, bringing it in line with the capabilities and efficiency of

GAP, SNAP, and ACE. At the same time, the unique underlying form of ChIMES, dis-

cussed in greater detail below, provides an inherent capability for explicit chemical exten-

sibility without the need for retraining – that is, a sufficiently accurate ChIMES-C model

can, in principle, serve as fixed foundation upon which multi-atom-type models containing

carbon can be built, which could greatly simplify future model development efforts.

Therefore, in this manuscript we describe a new ChIMES carbon model intended for use

primarily in the range 1000 K and 10 GPa to 10,000 K and 100 GPa that is also accurate

under nominally ambient conditions (i.e., 300 K, 0 GPa). In depth discussion of our fitting

procedures and improvements relative to our early model are provided, and a new strategy

for multifidelity learning is presented. The remaining manuscript is structured as follows:

the ChIMES model is presented in detail, followed by discussion of training data generation

and fitting protocols. Model training and validation results are then presented, followed

by selected “proof-of-concept” applications that include predicting carbon melting points

as well as modeling shockwave-driven synthesis of diamond from a graphitic precursor and

carbon nanoonion synthesis from nanodiamond. Where possible, methodologies and results

are compared against our original ChIMES-C model. We conclude with discussion of best

practices, and implications for future research. We note that parameters for the presently

developed model are available in our public repository.32
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2 Methods

2.1 The ChIMES Interatomic Model

ChIMES is a unique, physics informed ML-IAP that describes system energy through a

generalized explicit many-body cluster expansion, i.e.:

EnB
=

na∑
i1

1Ei1 +

na∑
i1>i2

2Ei1i2 +

na∑
i1>i2... inB−1>inB

nBEi1i2...inB
, (1)

where EnB
is the total ChIMES system energy, nB is the maximum bodiedness, nEi1i2... in is

the n-body ChIMES energy for a given set of n atoms with indices i = {i1, i2, . . . , in}, and

na is the total number of atoms in the system.

In contrast to the many other ML-IAPs that employ a cluster-expansion formalism for

system energy based on atom-centered clusters, ChIMES uses a cluster -centered descriptor

- that is, ChIMES views n-body clusters as fully-connected graphs of constituent atoms

rather than as a graph for which edges are only connected to a central node. This subtle

but important distinction makes ChIMES particularly well-suited for modeling molecular,

covalently bonded, and/or reacting systems,30,31,33–38 and gives ChIMES models the unique

property of being explicitly chemically extensible, since energy of a given cluster depends

only on the types of atoms represented within that specific cluster rather than on the types

of all possible atoms described by the model.

In the ChIMES framework, single-body energies are constant values and n-body energies

are constructed from the product of Chebyshev polynomials for the pairs that comprise

that cluster. Thus, a 2-body interaction would involve a single pair, ij, while a three-body

interaction would involve 3 pairs, ij, ik, jk, a 4-body interaction would involve
(
4
2

)
pairs,

and so on. For a 2-body interaction, we have:

2Eij = feiej
p

(
rij
)
+ feiej

s

(
rij
)O2B∑
α=1

ceiejα Tα

(
s
eiej
ij

)
, (2)

where rij is the distance between a pair of atoms ij of respective element type ei and ej, sij

is the transformed pair distance that lies within the [−1, 1] domain over which Chebyshev
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polynomials are defined, and O2B is the 2-body polynomial order. The functions fp and fs

are penalty and smooth cutoff functions defined below.

The transformation from rij to sij can generally be defined as:

s
eiej
ij = (x

eiej
ij − xeiej

avg )/x
eiej
diff (3)

where

xeiej
avg = 0.5(x

eiej
c,out + x

eiej
c,in ), (4)

x
eiej
diff = 0.5|xeiej

c,out − x
eiej
c,in |. (5)

Here, we define xeiej
ij = exp(−rij/λ

eiej). This choice of Morse-like transformation function en-

codes that interatomic interaction strength generally decreases with increasing interatomic

distance, which implies that the potential energy surface topography is more featured at

short range. In essence, this transformation stretches the short-ranged r portion of the

[rcut,in, rcut,out] domain while compressing the longer-ranged r portion, sensitizing our Cheby-

shev basis in the former region. Practically, this affords higher accuracy models with lower

overall polynomial order.39

For higher bodied interactions, cluster energies are taken as the product of interactions

for constituent atom pairs, where for a 3-body interaction, we have:

3Eijk = feiej
s

(
rij
)
feiek
s (rik) f

ejek
s

(
rjk
) O3B∑
α=0

∑
β=0

∑
γ=0

∗

cEα,β,γTα

(
s
eiej
ij

)
Tβ

(
seiekik

)
Tγ

(
s
ejek
jk

)
, (6)

where E gives the atom pair element types, {eiej, eiek, ejek}. As shown elsewhere,29,31 higher

bodied interactions follow a similar convention, with a larger number of constituent pairs

(e.g., 6 pairs for a 4-body) interaction.

In our 2017 ChIMES-C model, we used a cubic smooth cutoff function:

feiej
s (rij) =

(
1− rij

r
eiej
c,out

)3

(7)

However, when applied to models with > 3-body interactions, this form was found to modify

the polynomial series too aggressively (e.g., for a 4-body interaction, this form would result

in the sum over Chebyshev polynomials being multiplied by the product of 6 numbers < 1).
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Hence, we have since transitioned to use of a “Tersoff” style40 smooth cutoff function that

leaves a significant portion of the interaction unmodified, i.e.:

feiej
s (rij) =



0, if rij > r
eiej
c,out

1, if rij < dt

1
2 + 1

2 sin

(
π

[
rij−dt

r
eiej
c,out−dt

]
+ π

2

)
, otherwise

(8)

where dt is a hyperparameter controlling point at which this function activates. Finally, the

penalty function is given by:

feiej
p

(
rij
)
=


A

eiej
p

(
r
eiej
c,in + d

eiej
p − rij

)3
, if rij < r

eiej
c,in + dp

0, otherwise
(9)

where d
eiej
p and A

eiej
p are hyperparameters controlling the point at which the penalty func-

tion activates, and the penalty function strength, taken as 0.02 Å and 1 × 106 kcal mol−1,

respectively.

2.2 ChIMES Model Fitting

There are several interrelated aspects to fitting ML-IAPs. A target application space must

be clearly defined, a “ground truth” data labeling method must be specified, a training set

and target properties within that set must be generated, “conventional” hyperparameters

(i.e., controlling model architecture) must be specified, other hyperparameters (e.g., weights

to be applied during fitting) must be identified, and training protocols (e.g., single-step,

iterative, or active learning) must be selected. An overview of these choices for our 2017 and

present ChIMES-C model (henceforth referred to as the 2024 model) is provided in Table 1.

Both our 2017 and present ChIMES models treat spin-restricted Kohn-Sham density

functional theory (DFT) as the ground truth. In both cases, initial training sets were gener-

ated using VASP41–44 with the Perdew–Burke–Ernzerhof generalized gradient approximation

functional,45,46 projector-augmented wave pseudopotentials47,48 (PAW), and the DFT-D2

method49 for description of dispersion interactions. This method was selected because it has
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Table 1: ChIMES hyperparameters used for generation of the 2017 and present (2024) ChIMES-C model.
Weight units are the inverse of the property they are multiplied by, i.e., Å mol kcal−1, mol kcal−1, and
Å3 mol kcal−1 for wF, wE, and wσ, respectively; all cutoffs and λ are given in Å.

hyperparameter 2017 Model 2024 Model
O2b 12 20
O3b 5 10
O4b 0 4
rc,in 1.0 0.98

rc,out,2b 3.15 5.0
rc,out,3b 3.15 5.0
rc,out,4b – 4.5

λ 1.25 1.40
Cutoff cubic Tersoff
dt – 0.75
wF 1.0 1.0
wE – 100.0
wσ – 0.1

nf,train 26 1116
nparam 42 442

been previously shown well-suited for modeling C, H, O, and N-containing materials under

the target conditions and because resulting data will be consistent with our previously gen-

erated datasets, facilitating ongoing transfer learning efforts described in the introduction.

However, future work will explore use of more modern dispersion-correction methods. All

DFT calculations were finite temperature, where electronic eigenstates were occupied accord-

ing to Fermi-Dirac distribution with the electronic temperature set equivalent to the target

ionic temperature. The plane-wave-basis set energy cutoff was set to 1000 eV; henceforth,

these protocols are simply referred to as PBE-D2.

The 2017 model was developed specifically to reproduce DFT-predicted carbon structure

and dynamic properties at 5000 K and 12 GPa (i.e., in the triple point vicinity); the training

set for the model comprised 26 evenly spaced frames from a 5 ps 256 carbon atom simulation

at the target T and P . In contrast, the 2024 model’s objective is to yield accurate prediction

of structure, dynamics, and equation of state in diamond, graphite, and molten carbon

over conditions ranging from 300 K and 0 GPa to 10,000 K and 100 GPa. Hence, the initial

training set contains 25 evenly spaced frames over 5 ps simulations for each of these phases at

the range of conditions detailed in Table 2. Additionally, 5 cold-compression configurations
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Table 2: Overview of initial training set used for the 2024 model. Bolded lines indicate state points that
were used for parallel active learning. “MD” indicates single-phase simulations at constant temperature
and density, while “Cold Curve” indicates structure optimizations performed at 0 K, with external pressure
applied.

State Point Index nF Type Phase ρ (g cm−3) P (GPa) T (K)
0 25 MD diamond 3.56 7.14 300
1 25 MD diamond 3.67 40.57 3000
2 25 MD graphite 2.39 0.47 300
3 25 MD graphite 2.56 8.28 1500
4 25 MD graphite 2.67 17.74 3000
5 25 MD liquid 0.50 -0.29 1000
6 25 MD liquid 1.00 -0.84 2000
7 25 MD liquid 2.00 6.17 6000
8 25 MD liquid 2.00 8.16 7000
9 25 MD liquid 2.50 16.83 6000
10 25 MD liquid 3.00 55.73 8000
11 25 MD liquid 3.60 95.04 6000
12 5 Cold Curve diamond – 0 to 40 0
13 5 Cold Curve graphite – 0 to 40 0

were included for diamond and graphite, for P ranging from 0 to 40 GPa.

Conventional hyperparameters for the original ChIMES model were selected based on a

comprehensive hyperparameter sensitivity study.50 Since then, we have established physically-

motivated guidelines for selecting these parameters.39 For example, r
eiej
c,in are taken to be

slightly less than the minimum distance sampled in the DFT-MD simulations used to gener-

ate the initial training/validation sets (by typically 0.02 Å); dp is then set to 0.02 Å, which

ensures that the penalty function will never be sampled for an interatomic distance observed

in a DFT-MD simulation. λeiej is set to the location of the first peak in the radial pair distri-

bution function for the ei,ej pair and therefore can be thought of as a characteristic bonding

distance. Outer cutoffs are generally selected such that r
eiej
c,out,2B ≥ r

eiej
c,out,3B ≥ r

eiej
c,out,4B ≥ . . .

and r
eiej
c,out,2B is typically selected to be long enough to capture the longest 3rd non-bonded

solvation shell. We note that, in contrast to our 2017 model, outer cutoffs for the 2024 model

(see Table 1) were selected to enable approximate recovery of the graphite inter-layer spac-

ing, but due to a desire for computational efficiency enabling large-scale (e.g.., million atom)

simulations under high pressure conditions, our selected cutoffs preclude fine recovery of the

low-lying dispersion forces that modulate energetics associated with small changes in inter-
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layer spacing. To overcome this limitation, future work will explore training models directly

to PBE and overlaying a suitable dispersion correction during the ChIMES simulation.

Selection of bodiedness and corresponding polynomial order still requires some trial and

error - for this work, we evaluated fitting RMSE based on our initial training set, varying

polynomial orders and outer cutoffs to identify a combination affording relative computa-

tional efficiency and accuracy. Notably, this endeavor provides only a rough estimate of

appropriate polynomial orders, since necessary complexity is directly connected with train-

ing set completeness. In particular, if a sparse initial training set is produced, hold-out cross

validation may recommend a model that is insufficiently complex to recover key features in

the ground truth PES. Conversely, if a higher complexity model is used, some form of itera-

tive refinement or active learning will likely be needed to generate a robust model. However

this new data may sample configurations that cannot be adequately described using model

hyperparameters originally identified based on the initial sparse training set. Therefore, we

find it best to initially err on the side of higher model complexity - once a final training set

is identified, the model can always be refit at lower complexity as needed.

In general, ChIMES models can be fit by force-, stress-, and/or energy- matching, i.e. to

an objective function of the form:

Fobj =
1

nf (3na + 10)

nf∑
i=1

 na∑
j=1

3∑
k=1

w2
Fijk

(
∆Fijk

)2
+ w2

Ei
(∆Ei)

2
+

9∑
j=1

w2
σij

(
∆σij

)2 , (10)

where ∆X = XDFT − XChIMES{c}. Fobj and {c} are the weighted root-mean-squared error

and model coefficients, respectively. The number of frames and atoms are given by nf and

na, respectively, and the factor of 10 in the denominator arises from inclusion of a single

per-configuration energy and stress tensor, Ei and σijk. Fijk indicates the kth Cartesian

component of the force on atom j in configuration i while σij indicates the j component of

the stress tensor for configuration i. Note that units of kcal mol−1 Å−1, and kcal mol−1, and

kcal mol−3 Å−1 were used for forces and energies, respectively. The superscripts “ChIMES”

and “DFT” indicate forces/energies predicted from the present force-matched model and the

DFT molecular dynamics (DFT-MD) training trajectory, respectively. Our 2017 model was
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only fit to forces, without any explicit weighting, whereas the present model included forces,

energies, and stresses, weighted by an initial factor of 1.0, 100.0, and 0.1, respectively to

afford a balance between magnitude and quantity of each type of data point.

Since ChIMES is entirely linear in its fitted parameters, the model optimization problem

can be recast as the following over-determined matrix equation:

wMc = wXDFT, (11)

where XDFT is the vector of FDFT
ijk , EDFT

i , and σDFT
ij values, w is a diagonal matrix of weights

to be applied to the elements of XDFT and rows of M , and the elements of design matrix

M are given by:

Mab =
∂Xa,ChIMES{c}

∂cb
. (12)

In the above, a represents a combined index over force and energy components, and b is

the index over permutationally invariant model parameters. Parameters for our 2017 model

were generated using regularized singular value decomposition (SVD) through the SciPy

package,51 whereas the present model employed a locally developed distributed code34 that

implements the LARS algorithm52,53 for LASSO54 for large problems, capable of performing

feature (parameter) selection (see Ref. 29 for implementation details). Practically, models

generated via LASSO can have fewer parameters than implied by specified polynomial orders

– 10% fewer for the 2024 model.

Our 2017 model was fit in a single step – that is, a fixed training set was generated,

from which the final model was produced via steps 1 and 2 using the ChIMES-LSQ code55

as shown in Figure 1. In contrast, for the present model, we have no a priori indication

that our initial training set was sufficient to constrain our model; hence, the 2024 model was

generated through parallel active learning using the basic ChIMES strategy. We note that

this process was conducted autonomously through the ChIMES Active Learning Driver.56 As

shown in Fig 1, this entails generating an initial ChIMES model (steps 1 and 2), simulating

with that model (step 3), deciding whether the model is suitable as is, or if it requires further
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Figure 1: Workflow for generating a ChIMES model via active learning. This process is automated through
the ChIMES Active Learning Driver.29

refinement (step 4). If additional refinement is needed, candidate configurations from the

ChIMES simulations are selected to add to the training set (step 5), DFT forces, energies,

and/or stresses for the selected configurations are assigned (step 6), and the process is

repeated until user-specified performance criteria are met. We note that step 4 relies on user

inspection since acceptable tolerances can vary significantly between different applications.

In this case, our criteria were stable simulations (i.e., conserving the appropriate quantity)

and yielding good agreement with DFT in predicted structure via the radial pair distribution

function, equation of state, and dynamic properties including vibrational power spectra and

diffusion coefficients.

For the present ChIMES-C model, parallel active learning was conducted using the basic

ChIMES strategy, meaning at step 3, simulations were launched for several different state

points (see bolded data in Table 2), from which candidate configurations were harvested for

step 5. Configurations were selected using two criteria: (1) up to 20 evenly spaced con-

figurations were taken from each state point’s trajectory, for frames in which one or more

r
eiej
c,in < rij ≤ r

eiej
c,in + dp to inform close-contacts that are generally severely under-sampled

in DFT-generated configurations and contribute most significantly to model stability issues,

and (2) an additional set of up to 20 evenly spaced configurations were taken from each state

point’s trajectory, for frames in which all rij > r
eiej
c,in + dp, which contain model-generated
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predictions for timescales overlapping with DFT (i.e., that are useful for teaching the fitting

framework whether the ChIMES model and DFT are in disagreement), and predictions for

longer timescales than were accessed in the DFT training set. During each active learning

cycle, force, stress, and energy weights were reduced by a factor equal to the current learn-

ing cycle number divided by the total number of learning cycles attempted. As discussed

in ref. 31, this helps ensure that during later cycles (1) the initial FP-generated training

configuration are not forgotten by the framework and (2) model predictions converge.

2.3 Multifidelity Learning Strategy Details

A portion of the initial training configurations were taken from previously run DFT-MD

simulations. To improve the training set’s coverage of physicochemical space in a computa-

tionally efficient manner, semi-empirical density-functional-based tight binding57 (DFTB-

) MD simulations were used to supplement the training data with additional tempera-

ture/pressure/phase points. All initial training configurations were then relabeled with

DFTB to ensure consistent information is fed into the fitting framework, and models were

generated through a 5-iteration run of the Active Learning Driver, using DFTB as the label-

ing method. The resulting training set was then relabeled once more via DFT with PBE-D2

and run for an additional iteration using PBE-D2 as the ground truth. DFTB is orders of

magnitude faster than DFT even when run on a single processor, hence this strategy uses rel-

atively minimal computational resources during Active Learning Driver runs, consequently

reducing time spent queuing during the data labeling phase of each learning cycle and helping

improve job synchronicity when using parallel active learning. Notably, the success of this

approach also hints at viability of a multifidelity learning approach, wherein all simulations

for training data generation (i.e., that entail tens to hundreds of thousands of calculations)

can be performed at the DFTB-level, with DFT used only to relabel the orders-of-magnitude

smaller subset of configurations that are actually used for model training. This could make

ML-IAP model generation more tractable for users with relatively modest computing re-
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sources. We note that all DFTB calculations were run with self-consistent charges using

the DFTB+ code58 and the Mio-1-1 parameter set59 with dispersion described through the

Universal Force Field60 (UFF), rather than through a parameter set more optimized for

describing carbon materials (e.g., pbc61,62) to evaluate robustness of this fitting strategy.

3 Results

3.1 Model validation

Parity plots for the 2024 model are provided in Figure 2. Our model is in excellent agree-

ment with DFT, with root-mean-squared-errors (RMSE) for force, energy and stress of

15.5 kcal mol−1 Å−1, 1.5 kcal mol−1 atom−1, and 3.3 GPa, respectively (i.e., reduced RMSE,

RMSE / < |x| > where x is force, stress, or energy of 0.25, 0.01, and 0.41, respectively).

This is a significant improvement upon the 2017 model, which exhibited (reduced) force

RMSE of 26.4 (0.439), at only a single state point. A more direct comparison of the two

models is given in Figure 3, which provides the radial pair distribution function (RDF) and

vibrational power spectrum for both models relative to DFT at the state point for which

the 2017 model was fit, 5000 K and 2.43 g cm−3. While both models yield good predictions

of these properties, the 2024 model is clearly in better agreement, most notably for the

vibrational power spectrum, despite this state point not being included in its training set.

Predicted pressure at this state point is also improved by the 2024 model, yielding a value of

10.5, compared to the 2017 and DFT values of 19.7 and 13.8 GPa, respectively. Finally, 0 K

lattice parameters and corresponding energies per atom predicted by each model and DFT

are given in Table 3, along with finite temperature (≈ 300 K) experimentally derived values.

Though neither the 2017 nor 2024 models were trained on or intended for use in describing

BC8 carbon, we include it in the present validation to evaluate model transferability. Both

models exhibit good recovery of diamond, graphite, and BC8 a parameters, but the 3.15 Å

cutoff used by the 2017 model precluded ability to predict the graphite c parameter - in
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contrast, we find that the 2024 model yields a reasonable prediction relative to DFT, despite

use of a short cutoff relative to the long-range dispersion forces governing interlayer spacing,

and that our value is in good agreement with experiment. We also find that, unlike the

2017 model, our 2024 parameterization provides relative energies that are in quantitative

agreement with DFT.
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Figure 2: Parity plots predicted per-atom forces, full-system energies, and full system stress tensor compo-
nents predicted by DFT (Ref) and the 2024 ChIMES model (Pred), for configurations at all T/P considered
for fitting. The color bar gives point density.

Figure 4 provides a more comprehensive overview of model performance, i.e. for all state
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Figure 3: Comparison of the radial pair distribution function (left) and vibrational power spectrum (right)
predicted by DFT (grey), and the 2017 and 2024 carbon models (orange and purple, respectively), at 5000 K
and 2.43 g cm−3.

Table 3: Energies relative to graphite and lattice parameters (a and c) of graphite, diamond, and BC8 pre-
dicted by experiment,63,64 DFT, and ChIMES models. DFT energies were taken from ref. 65. Experimental
measurements were at finite temperature (≈ 300 K) whereas DFT and ChIMES values were computed at
0 K.

a c eV/atom
graphite Exp 2.462 6.707

DFT 2.47 6.391 0
2017 ChIMES 2.50 – 0
2024 ChIMES 2.464 6.744 0

diamond Exp 3.57
DFT 3.565 –0.012 - 0.012

2017 ChIMES 3.565 1.27
2024 ChIMES 3.564 0.04

BC8 DFT61 4.50 0.72
2017 ChIMES 4.40 1.81
2024 ChIMES 4.39 0.77

points described in Table 2.2 for which temperature is > 300 K. Overall, we find excellent

agreement with DFT, though deviations can be seen in the 1000 K and 2000 K state points.

We note that these deviations are driven by the far-from-equilibrium nature of the DFT-

MD simulations for these two cases. In particular, these two low-density state points entail

highly reactive carbyne-like species that undergo significant changes over the course of the

simulations. While useful for model training purposes, time evolved structure of this system

over the short timescales used for DFT-MD simulations (and all comparisons made against

them) is highly dependent on initialization (e.g., structure and/or velocity distribution).

Comparison of each pressure and fluid-phase self-diffusion coefficients are given in Fig-

ure 5. We find excellent agreement for predicted pressures. Diffusion coefficients are also in
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Figure 4: Radial pair distribution functions (left column) and corresponding vibrational power spectra
(right column) predicted by DFT (grey) and the 2024 ChIMES model (purple) for diamond, graphite, and
liquid carbon at various state points.
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good agreement with the exception of a single outlier for 6000 K and 3.6 g cm−3; however

given the short timescales of these simulations (5 ps), and the small system sizes (≈ 200

atoms), this discrepancy is likely due to finite size effects. Figure 5 also provides a com-

parison of cold compression curves for diamond and graphite relative to the present 2024

model, both of which are generally well recovered, with the notable exception of graphite

at 5 GPa. We suspect our choice of short (4.5 to 5 Å) cutoff is the source for this discrep-

ancy, but note that we still recover the expected monotonic decrease in cell volume with

increasing pressure. Moreover, the model is intended for use at finite temperatures, where

thermal energy is sufficient to rival the relatively weak dispersion interactions that modulate

interlayer spacing at 0 K. This is seen, for example, in the 1500 K graphite data in Figures 4

and 5 where excellent agreement with DFT is observed. Performance of the 2024 model

was also evaluated in terms of the the BC8 cold curve. The model was found to yield cell

volumes within 5 % of those predicted by DFT66 up to 30 GPa, which is remarkable given

that no information on this phase of carbon was present within the training set. However,

the model was found to exhibit anomalous decreasing pressure with decreasing cell volume

above approximately 38 GPa.

3.2 Sample Applications

We provide three sample simulations to demonstrate efficacy of our model for problems

not explicitly accounted for in the training set yet crucial for accurately modeling materials

synthesis and transformation processes in carbon under extreme conditions: diamond melting

point prediction, shock synthesis of diamond from a graphite precursor, and high temperature

transformation of nanodiamond to a graphitic nanoonion structure. Notably, each of these

applications entail some form of phase transformation.
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Figure 5: Comparison of pressure, self-diffusion coefficient, and cold compression curves predicted (diamond
- top, graphite - bottom) by DFT and the 2024 model. In cold compression plots, DFT and ChIMES are
given by grey squares and purple circles, respectively.

3.2.1 Diamond Melting Point Prediction

Experimentally, the two standard approaches for equation of state measurement under ex-

treme conditions entail use of either a diamond anvil cell (DAC) (i.e., where diamonds are

used as the pressure-coupling materials), or shock-based methods (i.e., using either a pro-

jectile or laser to drive a sample to high pressure). Temperature measurement in these

experiments notoriously difficult, especially in carbon materials.8,9,67 In particular, shock

experiments are characterized by exceedingly short (i.e., sub µs) timescales that preclude re-

liable temperature measurement, whereas in longer timescale DAC experiments, prolonged

exposure to high temperature can cause degradation of apparatus materials. DAC challenges

are further exacerbated by the fact that the sample and pressurizing material are the same.

Due to these difficulties, experimental values for the carbon melt line vary by up to 1500 K

from experiment to experiment.67,68,68 At the same time, finite size effects preclude reliable

estimation from FP simulation at the present range of conditions of interest.

ML-IAPs like the presently developed 2024 model provide an exciting opportunity to
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Figure 6: Temperature trajectory of isenthalpic simulations at 30 GPa for diamond melting point prediction
(bottom) and representative snapshot showing the two phase structure. Black, purple, and orange atoms
are 4-, 3-, and 2-coordinated, respectively.

bridge this capability gap. Hence, we demonstrate use of the 2024 model to predict the

melting point at 30 GPa. Isenthalpic ensemble simulations, which are characterized by

constant N , P , and H, were for the employed for present predictions.69 Simulations were run

using the LAMMPS MD engine,70 with ChIMES interactions determined via the ChIMES

Calculator library32 and a 0.5 fs timestep. As shown in Figure 6, two 50 ps two-phase

simulations were launched at the target pressure, in which liquid and diamond carbon phases

were placed in direct contact. The ≈ 5000 atom simulations were initially thermalized at

temperatures above and below the expected melt line. In simulations above the melting

point, diamond near the interface begins to melt, absorbing heat and driving down the

simulation temperature. Conversely, in simulations initialized below the melt line, freezing

of liquid near the interface releases heat, driving up the simulation temperature. The two

simulations of coexisting liquid-solid phases converge to the same average temperature, which

can be taken as the material melting point at the simulation pressure.

Our simulations yield a predicted melting temperature of 4800± 60 K at 30 GPa, which
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is remarkably consistent with the experimentally determined value of 5000 K,68 particularly

given the comparatively large disagreement between experimental measurements at other

state points where multiple measurements are available,67,71 and that none of our model

training data are in this T/P vicinity. Our prediction is also in good agreement with avail-

able FP predictions determined using the explicit two-phase bracketing method15 (5080 K),

though those calculations assume zero electronic temperature. We note that the FP values

also have a large uncertainty (i.e, up to 1000 K in the T/P vicinity of interest) due to the

confluence of use of a bracketing strategy and the computational expense of FP approaches.

Notably, other FP predictions using thermodynamic integration methods72 yielded a melt-

ing temperature of ≈ 5500 K, while thermodynamic integration using the LCBOPII model

yielded a value of ≈ 4950 K. Experimental measurements and simulations using bracket-

ing and thermodynamic integration preclude examination of the coexisting solid and liquid

phases. The NPH simulations enabled by our model overcome this limitation. We find

that, as expected, carbon in the diamond phase is chiefly comprised of tetrahedrally (4-fold)

coordinated atoms whereas the coexisting liquid phase at this state point exhibits a mixture

of tetrahedrally and 3-fold coordinated carbon atoms.

Ultimately, these results suggest that the 2024 model is suitable for carbon phase bound-

ary prediction. Ongoing work is expanding these predictions to include graphite/liquid,

graphite/diamond, and diamond/liquid phase boundaries over the range of conditions from

2.5 to 100 GPa, to provide experimentally inaccessible information on interfacial structure

and evolution at the phase boundaries, which is critical for understanding phase transition

mechanisms governing high-temperature synthesis of carbon-based materials.36,37,73–76 We

expect that the 2024 model will also be useful for the study of amorphous carbon materials,

whose properties are dictated by a combination of thermodynamic conditions and kinetic

effects on time and length scales which are difficult to study experimentally or fully capture

using FP simulations alone.13,14
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3.2.2 Shockwave-Driven Graphite to Diamond Trasnformation

Under shock compression, graphite is believed to be capable of undergoing a martensitic

phase transition to cubic diamond, through a hexagonal diamond intermediate phase.11,77–81

This shock-induced phase transition was previously explored via FP shock simulations.11

Since then, DFTB,79 ML-IAP80 and molecular mechanics81 simulations have explored the

graphite to diamond phase transformation mechanism via adiabatic compression at constant

strain rate, constant volume compression, and by observing evolution in graphite seeded with

diamond-like nuclei. In all cases, formation of a hexagonal intermediate phase was identified.

Here, we deploy the 2024 model in simulations following the shockwave-driven approach

described in ref. 11 for comparison. Simulations were run using the LAMMPS MD engine,70

with ChIMES interactions determined via the ChIMES Calculator library.32 The Multi-Scale

Shock Technique82–84 (MSST) was used to constrain the system to thermodynamic states for

a steady planar shock wave within continuum theory (i.e., simulating steady shock waves by

constraining the stress and energy of a MD simulation to the Rayleigh line and the Hugoniot

energy relations). This approach enables direct prediction of the shock-compressed state

provided an initial state and shock velocity, avoiding the need for the much larger system

sizes required in direct-shock simulations, or interpolation schemes required for the bracketing

simulation approach. Simulations were run for a 768 atom system using a 0.5 fs timestep,

cell-mass-like parameter Q = 1.00×10−13 kg2 m−4, macroscopic explicit viscosity parameter

m = 1.2 kg m−1 s−1, and temperature scaling of 0.1. Simulations were run at a shock speed

of 12 km s−1, i.e. the same value used in Ref. 11.

As shown in Figure 7, we find qualitative agreement with the results presented in 11,

i.e., graphite to cubic diamond transition through a hexagonal diamond intermediate phase.

Temperature, pressures, and density for the resulting cubic diamond phase are given in

Table 4. Overall, we find values consistent with 11, noting that, in contrast to 11, our

simulations used starting configuration initialized from thermalized graphite simulations (i.e.,

allowing for inter-layer sliding). Between the Born-Oppenheimer (BO) and Car-Parinello
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Figure 7: Representative snapshots along an MSST shock-compression simulation showing martensitic
transformation from graphite (a) to cubic diamond (c) that proceeds through formation of a short-lived
intermediate hexagonal diamond phase (b).

results, our predictions are in better agreement with the former, consistent with the fact that

BO-MD was used for training data generation. Our predicted temperature is significantly

higher (i.e., in better agreement with the empirical Tersoff potential and equation of state

prediction); this discrepancy could be due to either the fact that the present simulations

neglect nuclear vibration effects, or because the calculations in ref. 11 were performed at

zero electron temperature. Nevertheless, these results show that the present 2024 model

is robust for application in non-equilibrium simulations, and extensible to pressures and

densities near but outside the initial target regime (e.g., 140 vs. 100 GPa).

3.2.3 Thermally-Driven Nanodiamond to Graphitic Nanoonion Transformation

Experiments dating back to the 1950s have demonstrated that nanodiamond can be rapidly

synthesized through detonation of carbon-rich materials.73 Since then, detonation synthe-

sis of a diversity of interesting and technologically-relevant nanocarbon materials have been

realized.73,74,85–87 However, the mechanism and governing kinetics by which these materials
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Table 4: Comparison of properties predicted for cubic diamond synthesized by 12 km s−1 shock compression
of diamond, predicted by Born-Oppenheimer (BO) and Car-Parinello (CP) FP-MD MSST, classical MD
using a Tersoff potential, and equation of state-based prediction (EOS), and the 2024 ChIMES model. Pcmpr

is the pressure in the compression direction while Ptotal is the overall pressure.

BO CP Tersoff EOS ChIMES
T (K) 4084 3351 4981 5300 5000100

Pcmpr (GPa) 140 136 130 150 1403
Ptotal (GPa) 95 83 – – 961
ρ (g cm−3) 3.9 3.8 3.6 4.2 4.0003

(a) Initial (b) Melted (4000 K) (c) Cooled (3000 K) (d) Quenched (1500 K)

3.
44 3.

20
3.0

9
3.1

6

(e) Quenched Structure:
Cutaway

(f) Quenched Structure:
Sample Interlayer Spacings (Å)

Figure 8: Representative configurations along the thermally driven nanodiamond to graphitic nanoonion
transformation pathway are given in a–b. Internal structure of the resulting nanoonion is highlighted in e,
with each layer rendered in a different color. A closer look at the layered structure is given in f, with sample
interlayer spacing between the two graphitic layers, in terms of distance between a single atom (magenta) of
the inner layer and nearby atoms in the outer layer.

evolve remain an open question,75,88 confining efforts to Edisonian studies. Recently, simula-

tions have been shown capable of providing key missing insights into this phenomenon,36,37,89
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but necessitate high accuracy interatomic models capable of faithfully describing the com-

plex, reaction-driven phase transformations underlying this process.27,29,31,33

To evaluate suitability of the 2024 model for this application space, we probe thermal

transformation from a 768 atom cubic nanodiamond to a graphitic ≈ 1 nm nanoonion. The

simulations, which were conducted through LAMMPS with the ChIMES Calculator, entailed

a series of NVT simulations in vacuum with a 0.5 fs timestep, i.e., melting at 4000 K for

5.5 ps followed by cooling at 3000 K for 15 ps, prior to a final quenching phase at 1500 K

for 5.5 ps. Representative snapshots from these simulations are provided in Figure 8.

As shown in Figure 8 panel e, the resulting nanoonion has two distinct layers, with

carbyne-like material within its core. This result is particularly interesting within the context

of recent experiments probing detonation synthesis of core-shell graphitic nanoonions from

3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF),74–76 in which cores appear to have sp charac-

ter.90 Notably, prior simulations probing nanoonion formation with the molecular mechanics

LCBOPII model found innermost cores still exhibit graphitic character.91–93

Figure 8 panel f gives a sense of predicted interlayer spacing, which we find to be less

than the 3.35 Å (3.37 Å) expected for planar graphite experimentally (based on the 2024

model), yet consistent with the 3.05 to 3.24 Å, averaging 3.15 Å75 spacings found for DNTF

detonation nanoonions. Overall, these results demonstrate that the present 2024 model

is suitable for describing the range of carbon allotropes relevant for T/P from ambient

to 10,000 K and 100 GPa, as well as the transformations between them, including those

not present in training, (e.g., graphitic nanoonions). Studies of larger nanoparticle sizes,

nanoparticle systems under finite pressure, multi-element systems, and amorphous carbon

materials are the subject of ongoing work.36,37
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4 Conclusions

A new, T/P transferable model for carbon targeting application under extreme conditions

of up to 10,000 K and 100 GPa has been developed using the physics-informed ChIMES

ML-IAP, and a new multifidelity learning strategy has been presented. The resulting 2024

model has been shown to substantially outperform the previous 2017 parameterization and

provide accurate modeling of a diversity of carbon allotropes as well as transformations

between them. This model is of immediate utility for planetary, astrochemical, detonation,

and synthesis sciences, enabling investigation of carbon equation of state and evolution in,

e.g., planetary interiors, presolar grains, detonation nanocarbon, and lab-synthesized carbon

nanomaterials. Critically, the underlying form of ChIMES also allows for direct chemical

extensibility, meaning the 2024 ChIMES-C parameters can serve as a fixed foundation upon

which models for multielement systems can be generated. Ultimately, this can expedite

generation of future models (i.e., by reducing the number of parameters that must be fit)

while simultaneously ensuring carbon interactions are well-described and not compromised

during the fitting process. Ongoing work is exploring this unique transfer learning strategy.
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