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ABSTRACT: As discovered by the previous selection outcomes, we developed a Rhodium-promoted C-H activation/ annulation 
reaction of DNA-linked terminal alkyne and aromatic acid. This reaction exhibits excellent efficiency with high conversions and a 
wide broad substrate scope. Most importantly, the unique DEL-compatible condition provides a better scenario to yield an iso-
coumarin scaffold compared to conventional organic reaction condition, and this newly developed on-DNA method has confirmed 
its feasibility in preparing DNA-encoded libraries. 

DNA-encoded library technology (DELT) 1-3 represents a pow-
erful high-throughput selection platform facilitating the dis-
covery of ligands for targets of interest in the early phase of 
drug discovery. Conceptualized by Sydney Brenner and Rich-
ard Lerner three decades ago, DEL technology has undergone 
iterative advancements, evolving into a widely embraces tool 
in both academics and industry. Notably, several drug candi-
dates identified through DELT have progressed into clinical 
phases, including WPV01 4, X-165 5, and 177Lu-OncoFAP-23 6, 
et al. DELT embodies an interdisciplinary convergence of or-
ganic chemistry, molecular biology, and computational sci-
ence. A typical workflow of DELT encompasses the develop-
ment of on-DNA reactions, the construction of DNA-encoded 
libraries (DELs) via on-DNA chemistries and enzymatic DNA 
ligation, target selection using DELs, high-throughput se-
quencing of the DNA tags of selected library members, data 
analysis to identify enriched structural features, and valida-
tion of results through on/off-DNA synthesis and biological 
assays. Central to this process is the creation of DNA-encoded 
libraries characterized by high structural diversity and purity, 
which underpins DELT’s success. 

Regardless of the specific approach employed in constructing 
DNA-encoded libraries, on-DNA chemical transformations 
serve as the linchpin for assembling building blocks into de-
sired products 7-8. Recognizing the pivotal role of these trans-
formations, researchers have endeavored to develop DNA-
compatible chemical tools meeting stringent criteria for li-
brary synthesis. These criteria include ensuring that reactions 
occur under mild, highly dilute aqueous conditions, exhibit 
chemoselectivity to prevent undesired modifications of DNA 
tags, demonstrate high reactivity and efficiency to react with 
pooled library members, tolerate a broad substrate scope to 
cover extensive chemical space, and ideally yield pharmaco-
logically relevant features such as chemical bonds or privi-
leged scaffolds. 

To date, researchers have access to a plethora of on-DNA 
chemical tools and strategies, offering a rich toolkit for library 
synthesis. By harnessing these tools in conjunction with a 
diverse array of building blocks, scientists have achieved the 
synthesis of libraries characterized by linear, branched, scaf-
fold-based, and macrocyclic topologies, catering to diverse 
requirements posed by disease-related targets. Typically, 
researchers draw inspiration from conventional organic syn-
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thesis methodologies, leveraging established techniques as a 
foundation for developing DEL-compatible approaches. They 
meticulously adapt and optimize these methods to align with 
the stringent standards of DNA compatibility, thereby ena-
bling the preparation of DNA-encoded libraries endowed with 
pharmacologically significant features. 

Recently, Zhang and colleagues reported a notable instance 
of "reverse transformation," serendipitously discovered from 
DNA-linked tetrazole and primary amine 9-11. This discovery 
yielded a 1,2,4-triazole product previously unreported in the 
literature. The authors extensively validated this reaction 
both on-DNA and off-DNA models, extending its utility to 
diverse applications such as peptide macrocyclization, nucleo-
tide cross-linking, and protein labeling. Similarly, our labora-
tory encountered a comparable scenario. In 2018, we suc-
cessfully executed a Ruthenium-promoted C-H functionaliza-
tion of aromatic acid with DNA-tagged acryl amide for DNA 
construction purposes 12. Building upon the established reac-
tion conditions and synthetic pathway, we subsequently inte-
grated this methodology into the synthesis of a three-cycle 
DNA-encoded library. Following preliminary selection against 
pharmaceutically relevant targets and thorough data analysis, 
we observed enrichment of a cycle 2 building block (BB) fea-
turing a terminal alkyne group. This intriguing outcome 
prompted us to investigate whether the acidic terminal al-
kyne could also serve as a coupling partner with aromatic acid 
under the on-DNA C-H functionalization condition (Figure 1). 
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Figure 1. The previous selection work revealed an enriched 
terminal alkyne group, which was potentially involved into 
the C-H activation reaction.  

In the last few decades, C-H activation/ oxidative annulation 
between aromatic acids and alkynes has been explored under 
various transition-metal-catalyzed systems 13-22. While car-

boxylic acids are generally considered weaker directing 
groups compared to others, their distinct advantage in DNA-
encoded library technology lies in the ubiquity and ready 
availability as building blocks, which can be directly utilized 
for DEL synthesis without requiring structural modification. 
However, the utilization of terminal alkynes as coupling part-
ners in C-H activation/annulation reactions has posed signifi-
cant challenges, primarily due to undesired homocoupling 
reactions under oxidative conditions 23-25. To date, only one 
Co(hfacac)2-catalyzed system 15 has been reported to success-
fully employ terminal alkynes as coupling partners. Nonethe-
less, for on-DNA synthesis, we could address this issue by 
employing a large excess of aromatic acid to mitigate the 
homocoupling of DNA-tagged alkynes. We hypothesize that 
the C-H activation reaction may exhibit enhanced perfor-
mance under on-DNA reaction conditions compared to con-
ventional organic conditions.   

Furthermore, in 2021, Gao and colleagues presented ground-
breaking research on diverse C-H activation/ [4+2] annula-
tions of benzoic acid and gem-difluoromethylene under an Ir-
catalyzed system, subsequently optimizing it for on-DNA ap-
plications 26. This study validated the feasibility of employing 
alkynes in C-H activation reactions within a DEL-compatible 
environment. Another driving force behind our pursuit of on-
DNA reactions is the potential to construct isocoumarin scaf-
folds, pivotal structural motifs found in numerous biologically 
active compounds. In this manuscript, we elucidate the Rh-
catalyzed C-H activation/oxidative annulation reaction under 
both on-DNA and off-DNA reaction conditions, while also 
confirming its applicability in DNA-encoded library technology 
by preparing two types of DNA-encoded libraries (Figure 2).  

Previous C-H activiation between aromatic acid and alkyne
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Figure 2. Strategies for the C-H activation/ annulation  

We commenced a proof-of-concept (POC) experiment em-
ploying DNA-linked alkyne 1 and benzoic acid 2 as model sub-
strates under previously reported reaction conditions without 
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any modification (Table 1, entry 1). The deconvoluted molec-
ular weight of the predominant product was consistent with 
the proposed structure, confirming our initial hypothesis that 
the enriched alkynes identified in the selection outcome were 
indeed utilized in the C-H activation reaction. Various experi-
mental parameters were extensively investigated to define 
the optimal reaction conditions. A survey of transition-metal 
catalysts revealed that RuPhos Pd G3 yielded excellent reac-
tion outcomes (entry 3), while (A-taPhos)2PdCl2 resulted in a 
comparatively lower conversion (entry 4). However, other 
catalysts failed to yield the desired products. It is worth not-
ing that beyond the transition metal itself, the choice of lig-
and may also significantly influence the reaction efficiency. 
[Cp*TM] complexes, for instance, have demonstrated re-
markable efficacy in catalyzing C-H activation reactions.  

Given the favorable conversions achieved with both [RuCl2(p-
cymene)]2 and [RhCpCl2]2 using simple model substrates, we 
conducted a preliminary test with four aromatic acids under 
both catalytic systems to discern which reaction condition 
warranted further investigation. The results indicated superi-
or conversions with the Rh catalyst (2b–2e, 2b’-2e’). Thus, 
[RhCpCl2]2 was selected as the catalyst for subsequent reac-
tion optimization.  

To mitigate potential degradation of the oligonucleotide 
caused by excess transition-metal catalyst, we sought to re-
duce the catalyst equivalents while concurrently enhancing 
the benzoic acid equivalents to facilitate complete reaction. 
Catalyst loading screening under 1000 equivalents of benzoic 
acid revealed that 4 equivalents of the Rh catalyst were suffi-
cient to achieve full conversion. Ultimately, entry 9 was iden-
tified as the optimal reaction condition.   

Table 1. Optimization of reaction conditions 
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Armed with the optimized conditions, we embarked on ex-
ploring the scope and limitations of the aromatic acid sub-
strates, as depicted in Scheme 1. Functional groups such as 
halides (4a – 4c), methylsulfonyl (4d), carboxylic acid (4i), 
ester (4j), benzyl alcohol (4k), phenol (4l), and amine (4m) 
were all well-tolerated, yielding the intended products with 
excellent conversions. However, attempts with the aldehyde 
group (4o) proved futile. Moreover, the positioning of sub-
stituents on the phenyl ring exhibited no discernible impact 
on reaction outcomes, as both meta- and ortho-substituted 
benzoic acids demonstrated compatibility (4d-4j). Heteroaryl 
acids, including thiophene (4p-4q), furan (4r), thiazole (4s), 
indole (4t), pyrrole (4u), and indazole (4v), alongside pyridine 
(4v), proved to be viable substrates, yielding the desired 
products with moderate to good conversions. Additionally, 
DNA-linked alkyl alkynes exhibited smooth reactivity with 
benzoic acid, affording the desired product 4w with a favora-
ble conversion rate.  

Scheme 1. Reaction scope with respect to aromatic acids 
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For the on-DNA chemical transformations, the reaction condi-
tions were determined through LCMS analysis. Unlike con-
ventional organic chemistry, where techniques such as NMR 
and IR spectroscopy are common analytic approaches, these 
methods cannot be directly utilized in DEL technology. Identi-
fying the structure of DNA-linked products, particularly iso-
mers, poses a significant challenge. To verify the proposed 
regioselectivity and isocoumarin structure of the product, we 
conducted a co-injection experiment. Compound 3b' was 
synthesized using conventional organic methods and con-
firmed by LCMS and NMR spectroscopy. Subsequently, ami-
dation with the headpiece yielded the authentic DNA-tagged 
compound 4b'. Co-injection of compounds 4b and 4b' was 
performed, and the resulting spectra are depicted in Scheme 
2A. The identical retention time and molecular weight ob-
served confirmed the characterization of 4b, synthesized 
through the developed on-DNA chemical transformation.   

In light of the functional group compatibility afforded by this 
novel reaction condition, a series of validation experiments 
were conducted prior to its application in generating DNA-
encoded libraries centered on the isocoumarin scaffold. Ini-
tially, Suzuki coupling was executed with DNA-tagged com-

pound 4a. Analysis via LCMS revealed the predominant prod-
uct has a molecular weight of proposed product plus 18 Da, 
indicative of lactone hydrolysis product 5. To corroborate this 
finding, subsequent experiments involving ketone reduction 
with NaBH4, reductive amination with benzylamine, and con-
densation with aryl hydrazine were performed, yielding mo-
lecular weights consistent with our conjecture. Additionally, 
reduction of the nitro group of 9 to the primary amine 10, 
followed by acylation with acid, furnished the corresponding 
proposed product 11. 

Moreover, an exemplary library, DEL-A, comprising 13,064 
DNA-tagged members, is depicted in Scheme 3. DEL-A was 
assembled through two iterative cycles, incorporating 91 
Fmoc AAs and 141 aromatic acids as building blocks respec-
tively. All library constituents share a common isocoumarin 
scaffold. Similarly, DEL-B was synthesized through three itera-
tive cycles, with Suzuki coupling employed with aryl boronic 
acids/esters in cycle 3. Building upon previous research, this 
library is anticipated to exhibit a branched structure, serving 
as a contrasting counterpart to DEL-A in subsequent DEL se-
lection processes. 

Scheme 2. The validation experiments and prepared DNA-encoded libraries 
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Subsequently, our focus shifted towards validating the Rh-
promoted, terminal alkyne-utilizing C-H activation/annulation 
reaction condition through off-DNA synthesis, a novel en-
deavor not previously documented. As delineated in Scheme 
3, a 20 mol% concentration of [RhCp*Cl2]2 was employed as 
the catalyst. Traditional oxidative annulation methodologies 
often require external or internal oxidants. However, in the 
on-DNA reaction milieu, the stoichiometric quantities of met-

al catalysts, along with the dissolved O2 in the solvent, are 
adequate to propel the reaction. In the off-DNA reaction sys-
tem, we explored various additives, ultimately discovering 
that K2S2O8 served as a potent oxidant. Furthermore, the in-
clusion of AdCOOH aimed to mitigate the formation of unde-
sired homocoupling side products originating from the termi-
nal alkynes. Despite these efforts, the presence of such side 
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products persisted in the mass spectrum, resulting in dimin-
ished yields of the desired products. 

Scheme 3. Off-DNA C-H activation/ annulation reaction and 
the substrate scope of terminal alkynes and aromatic acids. 
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Based on our study and published paper, we have proposed a 
viable catalytic cycle, as illustrated in Scheme 4. Initially, the 
active Rh complex V was formed by ligand exchange. subse-
quently, the coordination/ ortho C(sp2)-H bond activation of 
benzoic acid happened to yield complex VI. Following this, 
the alkyne is inserted into the Rh-aryl bond to generate com-
plex VII, which could conceivably undergo direct reductive 
elimination, thereby furnishing the annulation product. 

Scheme 4. Plausible Mechanism 

[Cp*RhCl2]2
RCOO

O
O

Rh
O(CO)R

R

OH

O

C-H activation

Rh
LO

O

Insertion

RhOO

H

Ph
L

reductive
elimination

O

O

Ph

Rh
LL

oxidation RCOOH

L
Ph

H
L

V

VI

VII

VIII

 

In conclusion, we have developed a novel approach for Rh-
catalyzed C-H activation/annulation of terminal alkynes with 
benzoic acid under both on-DNA and off-DNA reaction condi-
tions. Traditionally, DNA-involved reactions are presumed to 
offer inferior reaction conversions and a restricted substrate 
scope compared to conventional organic synthesis. However, 

in certain instances, this paradigm is reversed. As demon-
strated in this study, the surplus amount of aromatic acid 
coupling partner and the highly dilute concentration of the 
DNA-tagged alkyne strongly mitigate the formation of homo-
coupling side products, resulting in heightened conversions 
and an expanded substrate scope compared to off-DNA reac-
tions. This presents a novel direction for advancing the field 
of on-DNA chemical transformations. 
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