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Introduction 

 

The historical application of molecules of natural origin as starting points for drug discovery1 has 

largely been replaced by today’s primary hit-seeking strategies of library screening (diversity-based, 

fragment-based, knowledge-based, virtual) and exploitation of known compounds.2,3  Accordingly, 

the computed natural product (NP) probability score of approved oral drugs has fallen significantly 

for drugs invented after 1990,4 when primary in vitro screening at cloned human targets began to be 

widely adopted.  Despite this change, NPs, their derivatives, and synthetic compounds inspired by 

NPs make up 6%, 28% and 33% respectively of all small molecule drugs approved from 1981 to 

2019.5  This is consistent with the widespread appearance in approved drugs of NP partial structures 

and fragments.6  Opportunities for the re-emergence of NPs in drug discovery have been widely 

heralded.1, 4, 7-11 

 

Pseudo-natural products (PNPs) provide a new approach to quantifying the appearance of NP 

structural elements.12-14  PNPs contain low molecular weight NP fragments, selected from a designed 

library,15 which are connected in defined ways not currently known to be achievable by biosynthetic 

pathways.  The PNP concept has been validated by their appearance in the literature16,17 and by the 

design of several new classes of biologically active compounds.18,19 Thousands of PNPs are available 

from commercial sources, and a PNP screening library can be readily established.17 

 

Some 90% of approved drugs have a Tanimoto similarity of >0.5 to their structurally closest human 

endogenous metabolite, and screening collections were found to be less ‘metabolite-like’ than 

drugs.20  NP-likeness has been proposed21 to assist drug permeation via transporters, which evolved 

to facilitate entry of beneficial exogenous natural molecules, helping achieve selective tissue access 

and therapeutic efficacy.  The aim of this work is to seek further support for the existence of ‘natural 

selection’ in drug discovery.  We employ a highly curated dataset22 from ChEMBL (version 32)23 to 

assess the impact of quantitative NP measures, including the presence of PNPs, in marketed drugs 

and phase 1-3 clinical compounds in comparison with a background of relevant, target-matched 

reference compounds. 

 

Methods 

 

The general approach used is similar to our previous analysis of ‘drug-like’ properties,24 but with the 

following notable differences in the dataset assembly:22  1) a newer version of ChEMBL was used 

(version 32), with the dataset limited to published literature information only (excluding a large 

amount of patent data associated predominantly with kinases which was added to ChEMBL in 2013-
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1622); 2) clinical compounds in phases 1-3 as well as approved drugs (phase 4) are examined; 3) both 

clinical and background reference compound sets are carefully time-matched using first literature 

publication dates, with the emphasis here on recent practice (post-1990 and post-2008, see Results 

section); 4) the contemporary dataset is significantly larger, with >1000 clinical compounds and 

drugs published since 2008 versus the 141 drugs first approved in 2010-2020 used previously.24 

 

Approved drugs (phase 4) and phase 1-3 clinical compounds, here collectively called Clinical 

compounds, were curated from ChEMBL version 32 as described.22  In addition, non-clinical 

compounds were curated, here called Reference compounds, limited to those compounds with 

reported activity at the annotated biological targets understood to be responsible for the efficacy of 

the Clinical compounds.22  Reference compounds qualified for entry only if they had a recorded 

pChEMBL value for in vitro activity at one or more of the Clinical compound’s targets; Clinical 

compounds, already having published annotated targets, did not require pChEMBL values.  Biological 

targets included mutated versions, and took into account the originating organism (95% were 

human targets); targets are defined in this paper by unique ‘target name_mutant_organism’ 

identifiers.  Target classes were exhaustively identified22 and further consolidated here to 17 major 

groups.  Kinases and G-protein coupled receptors (GPCRs, subdivided into aminergic, peptidic and 

others based on their ligands) were the largest target classes, making up ~25% each of the post-2008 

dataset, followed by transferases, nuclear receptors, proteases, oxidoreductases, and 8 smaller 

target classes.  

 

Because changes to drug properties over time are significant,24, 25 we aimed to ensure that Clinical 

and Reference compounds were strictly compared in time-matched periods.  A Journal publication 

date was necessary for all entries; for Reference compounds, this was extracted from ChEMBL 

directly.  For Clinical compounds, the dates of the first disclosure (normally the patent) were 

obtained from Scifinder® (CAS SciFinderⁿ - Chemical Compound Database | CAS) and used for 

analysis of long-term trends.  The first Journal publication dates of Clinical compounds, where not in 

ChEMBL for post-1990 first disclosure compounds, were obtained from Scifinder®.  The median 

Journal publication date for post-1990 Clinical compounds was five years after the first disclosure. 

 

The full dataset, after removal of molecules filtered by the PNP algorithm17 (predominantly 

molecular weight >1000 and presence of uncommon elements) contained 3173 unique Clinical 

compounds and 388,027 unique Reference compounds.  In all there were 9644 Clinical compound-

target pairs, 596,341 Reference compound-target pairs, covering 2285 targets.  For the post-2008 

Journal publication period, used for Clinical versus Reference compounds analysis (see Results 

section), there were 1212 unique Clinical compounds and 229,569 unique Reference compounds, 
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comprising 2842 Clinical compound-target pairs, 320,927 Reference compound-target pairs, and 726 

targets. 

 

For analysis by individual mean or median Reference compound properties by target, we required 

the target to have ≥ 100 Reference compounds.22,24 The post-2008 set contained 422 targets with ≥ 

100 Reference compounds, acted on by 1091 Clinical compounds unique to each target class, 

comprising 2011 Clinical compound-target pairs; 28 of the 1091 compounds are duplicated because 

they act at more than one target class.  The range of Reference compound numbers acting at the 

Clinical targets was 100-7484 (median 408).  Of the 1091 Clinical compounds, 737 had one biological 

target, 132 had two targets and 222 (122 acting at protein kinases) had three or more targets (range 

3-17). 

 

For quantitation of NP character, three complementary measures were used: 

 

1. PNP_Status.  Compounds were assigned to one of four categories according to their NP 

fragment combination graphs.16 The NP library fragments used for this purpose are Murcko 

scaffolds26 (the core structures containing all rings without substituents except for double bonds, 

n=1673) derived16 from a representative set of 2000 NP fragment clusters.15  Because of their 

ubiquitous appearances in NPs, the phenyl ring and glucose moieties were specifically excluded 

as fragments.16  The phenyl ring however does appear in some fragments, combined with other 

ring systems.  The categories are: 

• NP (natural product). Naturally occurring compounds with defined structures and 

fragment combinations. 

• NPL (NP-like).  Fragment connections appear as found in NPs, but the structures are 

different from NPs, e.g. NP derivatives, or compounds with additional NP fragments. 

• PNP (pseudo-natural product). Two or more NP fragments linked by 0-3 atoms in defined 

ways not found biogenetically.  Where NP fragment combinations in a molecule had both 

NP and PNP motifs, they were assigned to the PNP category. 

• NonPNP.  All others. 

2. Frag_coverage_Murcko.   This measure has no dependency on the connectivity between 

fragments, and is equal to the number of heavy (non-H) atoms (HA) present in the NP fragments 

divided by the total number of HA that are present in the Murcko scaffold of each molecule. 

3. NP-likeness.  A Bayesian measure of similarity to the structural space covered by natural 

products, calculated by the method of Ertl.27 
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PNP_Status is a compound categorization, whereas Frag_coverage_Murcko and NP-likeness have 

quantitative values for all compounds.  Some illustrative examples of marketed drugs that are 

classified PNP, NonPNP and NPL, and the fragments they contain, are shown in Figure 1. 

 

 

Figure 1.  Examples of marketed drugs illustrating the NP metrics used.  NP fragments are 

filled and those with >1 ring system are circled.  Colour filled NP fragments show 

molecules classified as pseudo-natural products (PNP) or NP-like (NPL); see Methods 

section for details.  In PNPs and NPLs, fragments are connected in several non-

biogenetically accessible ways shown in parentheses (see ref 16 for complete definitions), 

using ≤ 3 atoms in PNPs, and biogenetically in NPLs.  The most common PNP 

connectivities seen in the post-2008 Clinical compounds in this study are exemplified in 

the compounds shown: monopodal (single bonds, termed cm, 73.9%), ring fusion (termed 

fused edge, fe, 14.1%), bridged ring (termed fused bridge fb, 4.7%), and two bipodal 

options with one connecting ring (cbe, 2.2%; cbb, 1.4%).  NonPNPs can contain NP 

fragments, connected by >3 atoms.  Frag_coverage_Murcko values show the heavy or 

non-H atom counts (HA) in combined fragments and the Murcko scaffold. 

Avacopan (C5a) 
2 NP fragments; NonPNP

Frag_coverage_Murcko = 18/35 HA = 0.51
NP-likeness = -1.25

Sotorasib (KRAS G12C) 
4 NP fragments; PNP (cm & fe)

Frag_coverage_Murcko = 23/29 HA = 0.79
NP-likeness = -0.59

Berotralstat (plasma kallikrein) 
2 NP fragments; NonPNP

Frag_coverage_Murcko = 14/32 HA = 0.44
NP-likeness = -1.71

Selpercatinib (RET kinase) 
6 NP fragments; PNP (cm, fb, fe)

Frag_coverage_Murcko = 28/29 HA = 0.97
NP-likeness = -1.27

Dolutegravir (HIV integrase) 
2 NP fragments; PNP (cbe)

Frag_coverage_Murcko = 12/26 HA = 0.46
NP-likeness = -0.92

Ivosidenib (isocitrate dehydrogenase) 
4 NP fragments; NPL (cm)

Frag_coverage_Murcko = 21/35 HA = 0.6
NP-likeness = -1.57

Venetoclax (Bcl-2) 
5 NP fragments; PNP (cm, fe)

Frag_coverage_Murcko = 27/55 HA = 0.49
NP-likeness = -1.01

Glecaprevir (HCV NS3/NS4A protease) 
5 NP fragments; PNP (cm, cbb)

Frag_coverage_Murcko = 26/48 HA = 0.54
NP-likeness = 0.40

https://doi.org/10.26434/chemrxiv-2024-9j2wj ORCID: https://orcid.org/0000-0003-0212-3437 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-9j2wj
https://orcid.org/0000-0003-0212-3437
https://creativecommons.org/licenses/by/4.0/


6 
 

In addition, the specific NP fragments, fragment combination pairs, and PNP fragment combinations 

that are found in Clinical and Reference compounds were identified in the post-2008 set, in full and 

by major target classes.  Their relative Clinical versus Reference abundances were estimated using 

odds ratios.  Compound physicochemical properties were added to the dataset,22 taken from 

ChEMBL and RDkit.28 

 

Calculations were performed using Microsoft Excel (https://www.microsoft.com/excel) and 

DataWarrior (www.openmolecules.org).  Statistical significance (p values) was obtained from t-tests 

assuming unequal variance for unpaired data, or from Wilcoxon signed rank tests for paired data. 

 

Source datasets: caveats and limitations 

 

NP fragment library.  This was generated for use in fragment based drug discovery (FBDD), with a 

focus on practical application and commercial fragment availability.15  Although not originally 

intended to be used for statistical analysis of NP characteristics, it is used as such here because it 

forms the basis of the PNP classification algorithm.16  The library was assembled starting from 

183,769 NPs containing at least one ring, which contained 110,485 fragments.15  Using 

pharmacophore, physical property and chemical alert filtering, this was reduced to 2000 

representative clusters and further refined16 to a set of Murcko scaffold fragments.  The NP library is 

composed of 1673 fragments (MW 42-294) having either single ring systems (1421 fragments) or >1 

ring system (252 fragments).  Because of its targeted makeup, small size, and property distribution, 

the fragment NP library lacks NP acyclic substituents29 and there is no directly comparable ‘non-NP’ 

fragment set that could be used as a control set.  Representation of all NP chemical ring systems is 

an impractical proposition.  For example, other similar studies found 134,102 fragments (MW 100-

300) including acyclic moieties in a set of 210,213 NPs,6 and 38,662 unique ring systems were found 

in 269,226 NPs, of which 23,299 (60%) were singletons.30  High diversity is apparent in studies of 

scaffold occurrence: singleton scaffolds dominate the medicinal chemistry literature31  and only 763 

of 103,772 scaffolds (0.7%) in the ChEMBL 20 database were found in >10 compounds.32  Not 

surprisingly, high proportions of singleton NP fragments, and singleton NP fragment combinations, 

are also seen in the Clinical and Reference compound sets (see Results).  Of the 30 most abundant 

NP ring systems reported,30 21 passed the fragment filtering process applied15,16 and are present in 

the NP fragment library. 

 

CheMBL data.  The freely available ChEMBL database abstracts comprehensive structure-activity 

data from the medicinal chemical literature and has become an established mainstay for 

chemoinformatic studies.23  As discussed above, here we use only those Reference compounds that 
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are reported in scientific journals.22  A major caveat22, 24 is that compounds revealed in publications 

are generally selected to illustrate how various problems were addressed and solved, and therefore 

carry a risk of being unknowingly biased by author selection.  A published medicinal chemistry case 

history is unlikely to be representative of all that was done, as in practice it discloses only a small 

proportion of all molecules synthesised in a project.  Additionally, in describing structure-activity 

relationships, there may be a general tendency to emphasise more of the ‘better’ compounds (more 

potent, good pharmacokinetics) than the ‘poorer’ (less potent or metabolically unstable) 

compounds.  While patented compounds are more likely to be representative of what was done, 

they often lack quantitative potency data, which we required for entry in the Reference compound 

set.  Restricting the analysis to higher potency Reference compounds by introducing a pChEMBL cut-

off could in principle improve quality.  This was not done for two reasons: 1) it is not possible to 

compare relative potency values across very widely differing assay formats,33 and 2) it would reduce 

the numbers of clinical compounds as well as clinical targets with ≥ 100 Reference compounds.  

Finally, the annotation of specific biological targets to Clinical compounds is based on current 

knowledge and could change in future. 

 

Target class NP statistics.  While trends in NP properties are clearly apparent (see Results), 

statistically significant differences (p < 0.05) are often absent for individual target classes with lower 

numbers of Clinical compounds and/or targets. 

 

Impact of time on Clinical and Reference compound NP properties   

 

The long-term progression of the fraction of Clinical compounds by phase reached in each of the 

PNP_Status categories (Figure 2a) shows near-identical time trends in all clinical phases (1-4), so 

Clinical compounds were combined into a single group for further analysis (Figures 2b-d).  The 

consistent increase in PNP fraction is striking, approximately doubling every 2-3 decades, reaching 

67% of all Clinical compounds in the 2010s (Figures 2a, b).  Significant increases in 

Frag_coverage_Murcko values have occurred every second decade, with their distribution narrowing 

over time: after 2010 the average clinical compound has a value of 0.66, with 1st and 3rd quartile 

values of 0.50 and 0.84 respectively (Figure 2c).  The fraction of NP compounds is falling over time 

(Figure 2b), which is consistent with the trend in NP-likeness, which falls significantly from historical 

levels in the 1960s-1990s, and further again from 2000 onwards (Figure 2d).4  Interestingly, NPL 

compounds consistently appear in all time periods at ~10-20% of the total (Figure 2b).  NonPNPs 

were the majority class until the 1990s; because PNPs and NonPNPs are the dominant classes 

overall, their fractional occurrence over time is inversely related.  It is clear from Figure 2 that while 

application of NP structures per se has declined markedly, the ‘NP signal’ is nevertheless present, 
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expressed by the increasing application of NP-derived fragments, resulting in the current dominance 

of PNP Clinical compounds. 

 

Figure 2.  NP properties of Clinical compounds by decade of 1st publication (usually a patent).  

a)  % Clinical compounds by Phase reached in each PNP_Status category.  b)  Same data as a) 

with Clinical phases combined.  c)  Frag_coverage_Murcko.  Significant increases (p <0.05, 

unpaired t-test) occur every 2nd decade from the 1970s.  d)  NP-likeness.  Significant 

decreases (p <0.05, unpaired t-test) occur in the periods 1960s-1990s and 2000s onwards. 
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Figure 3.  Clinical and Reference compound NP properties by first Journal publication date 

since 1990. Clinical and Reference compounds all act at the same targets. Clinical compounds 

all have first publication (usually patent) dates 1990 or later (the years 1990-4 have <20 

Clinical compounds and are not shown). a) % Clinical compounds in each PNP_Status 

category.  b)  % Reference compounds in each PNP_Status category.  c) 

Frag_coverage_Murcko.  d) NP-likeness.  p Values are from t-tests assuming unequal 

variance.  Reference compound NP values do not alter post-2008 (shaded green), and this 

period was chosen for target class analysis. 

 

Upper curves = means + std dev
Lower curves = means – std dev

*
*

*
* * * * * * * *

* p <0.05

Upper curves = means + std dev
Lower curves = means – std dev

*
*
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*

* * * *

* p <0.05

b) Reference compounds

c) d)

a)  Clinical compounds

Total ≥ 20 compounds per year Total 4028-21874 compounds per year
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The period from 1990 onwards was selected for comparing Clinical with Reference compounds by 

NP properties, because of both the sharp increase in numbers of Clinical PNPs (Figure 2b), and the 

availability of several thousand comparative ChEMBL Reference compounds each year.  Figures 3a 

and 3b show the progression of the PNP_Status categories of the post-1990 Clinical compounds 

present in Figure 2b, and target-matched ChEMBL Reference compounds, both by first Journal 

publication date.  While increases in PNP fraction occur in both Clinical (Figure 3a) and Reference 

(Figure 3b) compounds until ~2008, later Reference compounds show a markedly smaller increase 

than do Clinical compounds.  Comparing Figures 3a and 3b shows a clear ‘enrichment’ of PNPs in 

Clinical compounds versus Reference compounds in the post-2008 period.  It is also apparent from 

Figures 3a and 3b that the fractions of compounds in the NP and NPL categories are very similar in 

Clinical and Reference compounds and are not changing over time. 

 

Consistent with the PNP time trend, Frag_coverage_Murcko (Figure 3c) values are increasing over 

time, with Clinical compounds having significantly higher values than Reference compounds in eight 

of the years after 2010.  NP-likeness is decreasing over time, as expected, in both Clinical compounds 

than Reference compounds (Figure 3d).  However, higher NP-likeness values for Clinical compounds 

versus Reference compounds are seen in nine of the years post-2000, although the differences are 

less pronounced in the post-2010 period.  Comparing all Clinical and Reference compounds since 

2008 confirms statistically significant increases in the three NP properties (Table 1).  By odds ratio 

analysis of the full dataset, a post-2008 Clinical compound is 54% more likely to be a PNP than a 

Reference compound (Table 1). 

 

Table 1.  NP property values for Clinical and Reference compounds for the full post-2008 set. 

a) % PNP and Clinical vs Reference Odds Ratio 

Category 
Clinical count 

(%) 
Reference count 

(%) 
Odds ratio 95% CI p 

PNP 666 (57.3%) 101925 (46.6%) 
1.54 1.37-1.73 <0.0001 

Other 497 (42.7%) 116848 (53.4%) 

b) NP Properties: Clinical vs Reference Compounds 

Property Category Mean Median Std. Dev. p 

Frag_coverage_Murcko 
Clinical 0.62 0.64 0.26 

<0.0001 
Reference 0.58 0.59 0.28 

NP-likeness 
Clinical -0.77 -0.9 0.74 

<0.0001 
Reference -0.92 -1 0.71 

 
Collectively, Figures 3a-d indicate that Clinical compounds possess greater ‘NP character’, based on 

the three measures used, than do Reference compounds.  Notably, for each of the NP metrics, there 

is relatively little change in their Reference compound annual values from 2008 onwards (shaded 
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green in Figures 3a-d).  For this reason, the post-2008 period was selected for further analysis by 

target class. 

 

Post-2008 target class NP properties 

 

The results in Figure 2, 3 and Table 1 take no account of the biological targets followed, which are 

known to have significant impact on the physical properties of their ligands.24,34  The role of each 

target class (n=17) on the NP profiles of post-2008 Clinical versus Reference compounds was 

examined in three ways: 

 

1. Comparisons of all Clinical (n=1212) versus all Reference (n=229569) compounds.  This takes no 

account of the widely differing numbers of reference compounds annotated to each target.  As 

an example, in the kinase target class, this approach compares 330 Clinical compounds with 

50370 Reference compounds. 

2. Unpaired comparisons of all Clinical compounds (n=1091) versus the median values for their 

targets that possess ≥ 100 Reference compounds (n=422).  This treats Reference compounds on 

an equal footing by target but does not completely account for Clinical compounds that have 

multiple targets.  In the kinase target class example, 329 Clinical compounds are compared with 

the median values for 122 single kinase targets having  ≥ 100 Reference compounds.22,24 

3. Paired comparisons of all Clinical compounds versus the corresponding median values for their 

targets that possess ≥ 100 Reference compounds (n=1091).24  While this results in certain target 

values being duplicated (especially kinases), if reflects the reality that some targets have been 

pursued more than others.  For those Clinical compounds with >1 target, medians of the targets’ 

median NP property values were used.  In the kinase target class example, 329 Clinical 

compounds are compared with the 329 median values for their annotated targets having  ≥ 100 

Reference compounds. 

 

It is apparent from the results of the paired analysis (i.e. 3 above), shown in Figure 4, that target 

class significantly influences all the NP properties and that, for the majority, Clinical compounds have 

higher NP property values than the corresponding Reference compounds.  In addition, the rank 

orders of target class [Clinical-Reference] differences are different for each NP metric in Figure 4, 

suggesting that the three measures are complementary estimates of NP character. 
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Figure 4.  Post-2008 paired Clinical versus target Reference compound analysis of NP metrics, 

by target class.  Clinical compounds in each target class are unique, and paired with their 

corresponding Reference compounds by target(s).  Target values are median values for all 

targets having ≥100 Reference compounds.  Target classes on the x-axis are shown with the 

numbers of clinical compound-target pairs.  a) %PNP; this is categorical measure, and the 

Clinical-Reference differences (in red) are the arithmetic differences.  b) 

Frag_coverage_Murcko.  c) NP-likeness.  For c) and d) the Clinical-Reference differences are 

the medians of the differences for each Clinical compound.  The black dotted line is where 

Clinical and Reference values are equal.  The rank orders of target class [Clinical-Reference] 

difference values differ according to the NP metric used.  The correlation r2 values (n=17) are: 

0.003 for % PNP vs Frag_coverage_Mucko; 0.181 for % PNP vs NP-likeness; and 0.187 for 

Frag_coverage_Murcko vs NP-like.  p Values were determined using the Wilcoxon signed 

rank test. 

 

The corresponding analyses by all compounds and by unpaired targets (i.e. 1) and 2) above) are 

qualitatively very similar to Figure 4 (Figure S1).  The collected % differences in the NP measures 

between Clinical and Reference compounds found by the three approaches (Table 2) show that 

increased NP properties in Clinical compounds versus Reference compounds consistently appear 

more frequently by target class than the opposite possibility.  The three NP measures show differing 

results by target classes, for example epigenetic and transporter display opposite trends on % PNP 

and NP-likeness.  In the case of Clinical transporter compounds, the NP-likeness values are increased 

by a group of 12 sodium/glucose cotransporter 2 (SGCL2) inhibitors (e.g. empagliflozin), which all 

possess a glucose part-structure (excluded as a NP fragment16).  Across target classes, there is clear 
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variability in PNP content, with protein kinases and transferases being the most PNP-rich. Most 

kinase inhibitors bind competitively to the adenosine triphosphate (ATP) site, mimicking the 

adenosine heterocycle’s hydrogen bond donor and/or acceptor interactions with the ‘hinge’ kinase 

domain.  With transferases, the target diversity is rather limited as it is dominated by compounds 

acting at the four isoforms of phosphoinositol-3-kinase (PI3Kα, β γ and δ). 

 

Table 2.    Summary of Clinical vs Reference compound normalized NP property trends by target class. 

Target class 

% Differences between Clinical and Reference Compoundsa 

% PNP Frag_coverage_murcko NP-like 

All cmpds 
Tgt ≥100 

unpaired 

Tgt ≥100 

paired 
All cmpds 

Tgt ≥100 

unpaired 

Tgt ≥100 

paired 
All cmpds 

Tgt ≥100 

unpaired 

Tgt ≥100 

paired 

Other 30 80 91 18 32 5.3 15 29* 7.3 

Hydrolase 107 90 90 16 5.9 2.0 4.4 9.0 -22 

Nuclear receptor 28 88 48 22 34* 10 -9.2 0.6 -3.5 

Oxidoreductase 73 52 42 19* 21 20* 4.9 -1.1 13 

Epigenetic 45 76 25 0.2 6.2 -13 -16 -33 -25 

Protease 69 100 24 20* 26* 11* 47* 11 11 

Other enzyme 34 25 24 18* 21 13* 37* 26* 37* 

Phosphodiesterase 3.8 -1.0 22 13 23 14 -5.8 -7.1 -8.0 

Other ion channel -31 23 16 -13 4.8 7.1 15* 12* 13* 

Peptidic GPCR 14 15 15 -3.5 1.6 2.6 14 20 18 

Membrane receptor 25 61 7.3 16 45 17 0.0 13 23 

Kinase 13 2.4 4.7 3.1* 0.0 1.2 6.9* 2.9 4.3* 

Other GPCR -6.5 28 -0.8 -2.5 2.4 6.3 0.9 -9.3 -1.0 

Ligand-gated ion channel 22 -2.1 -2.1 15* 1.5 10 12 0.0 7.3 

Aminergic GPCR -4.5 -2.0 -4.6 -1.6 2.0 1.5 7.1 -6.1 0.0 

Transferase -2.4 40 -18 10 11* 18* 29* 14 23* 

Transporter -42 -29 -29 -12 -7.1 -5.0 97* 100 10* 

All 21 21 10 9.2* 9.3* 5.6* 10* 6.2* 6.8* 

 

 
a Shown are the colour coded % differences between Clinical and Reference compound 

median NP properties, found using 1) all compounds, and Clinical compounds either 2) 

unpaired or 3) paired to targets containing ≥ 100 Reference compounds (see Results 

Clin >10% higher than Ref

Clin >0 – 10% higher than Ref

Ref >10% higher than Clin

Ref >0 – 10% higher than Clin
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section).   The % values shown are equal to [(Clinical÷Reference)-1)]x100 for % PNP and 

Frag_coverage_Murcko, and because all values are negative, [-(Clinical÷Reference)+1)]x100 

for NP-likeness.  The Table is ranked by the paired % PNP score.  The colour coding 

provides a qualitative guide to Clinical or Reference compound preference. * p <0.05 

(Wilcoxon signed rank tests). 

 

Unsurprisingly, G-protein coupled receptors (GPCRs) and protein kinases dominate the data set, 

making up ~25% each of the total numbers of Clinical and Reference compounds.  GPCRs are divided 

into three sub-classes, aminergic, peptidic and other, based on their endogenous agonists.  It is clear 

from Table 2 that the kinases show only relatively minor NP enrichment in Clinical compounds, and 

the aminergic GPCRs virtually none.  Clinical compounds acting at peptidic GPCRs in contrast have 

qualitatively higher % PNP and NP-likeness than their Reference compounds.  Overall, there is no 

obvious link between the Clinical NP preferences of target classes and the numbers of Clinical 

compounds therein. 

 

Post-2008 NP properties versus physicochemical properties 

 

The NP results by target class were benchmarked by comparison with corresponding physical 

property trends.  The results recapitulate the main conclusions of our earlier study using fewer 

Clinical compounds.24  The most statistically significant and consistent differences between Clinical 

and Reference compounds by target class were carboaromatic ring count (lower in Clinical 

compounds), the fraction of carbon sp3 atoms (Fsp3) and the number of stereocenters (both 

increased in Clinical compounds).  Shown in Figure 5 are the Fsp3 and carboaromatic ring results, 

together with the normalised spatial score (nSPS),35 a measure of complexity that takes 

stereocenters and other topological features into account.  Comparing Figures 4 and 5 indicate that 

the NP measures by target class are qualitatively similar to these physical properties as indicators of 

differences between Clinical versus Reference compounds. 
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Figure 5.  Benchmarked physical properties using the paired Clinical compound and 

Reference compounds by target set for comparison with the NP analysis in Figure 4. p Values 

are from Wilcoxon signed rank tests. 

 

Fsp3 and stereocenter count are known to be greater in NP and naturally-inspired drugs, and 

aromatic ring count lower, versus synthetic drugs.36,37  However, the [Clinical-Reference] differences 

for the NP properties of all clinical compounds (n=1091) are not significantly correlated with the 

corresponding values for these three properties, or for a range of other physicochemical properties 

(Table S.1).  Similarly weak correlations are also seen using the target class data (n=17, not shown).  

This is further evidence that the three NP metrics can considered as independent measures of 

Clinical compound quality. 

 

Table 3.  Properties of post-2008 Clinical PNPs and NonPNPs. 

Property* 
PNP (n=666) NonPNP (n=368) Mean PNP versus Mean NonPNP 

Mean, Median (Std. Dev.) Difference % Relative difference 

NP fragments 3.17, 3 (1.01) 1.22, 1, (0.80) 2.05 159% 

Frag_coverage_Murcko 0.74, 0.75 (0.18) 0.38, 0.38 (0.24) 0.36 93% 

NP-like -0.89, -0.97 (0.65) -0.70, -0.85 (0.72) -0.19 -27% 

Carboaromatic rings 1.35, 1 (0.89) 1.71, 2 (0.86) -0.36 -21% 

Heteroaromatic rings 1.86, 2 (1.01) 0.73, 1 (0.72) 1.13 155% 

Aromatic N atoms 2.80, 3 (1.72) 1.13, 1 (1.32) 1.67 149% 

Carboaliphatic rings 0.47, 0 (0.85) 0.24, 0 (0.77) 0.23 97% 

Heteroaliphatic rings 1.06, 1 (1.02) 0.66, 1 (0.77) 0.40 60% 

Rotatable bonds 5.80, 5 (2.74) 6.93, 6 (3.79) -1.13 -16% 

H-bond acceptors 6.79, 7 (2.17) 5.36, 5 (2.19) 1.46 27% 

PSA 98.7, 95.3 (34.6) 87.8, 88.4 (35.6) 10.9 12% 

Mol. Wt, ALogP, cx_LogD, H-bond donors, 
stereocenters, Fsp3, pChEMBL, LE, LLE, QED 

-10% to 10% 
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*Values shown are for properties that differ between PNPs and NonPNPs by >10%.  ** % 

Relative difference = [(PNP/NonPNP)-1]x100 and for NP-like, [-(PNP/NonPNP)+1]x100. p < 

0.0001 in each case, by t-tests assuming unequal variance. 

 

Consistent with their defined make-up, PNPs contain on average two more NP fragments than 

NonPNPs (illustrated for post-2008 Clinical compounds in Table 3; see Table S.2 for a full summary of 

the physical properties examined).  Accordingly, PNPs and NonPNPs have  markedly different ring 

counts, both aromatic and aliphatic.  The number of heteroaromatic rings and aromatic nitrogen 

atoms are more than doubled in PNPs versus NonPNPs, while there are fewer carboaromatic rings in 

PNPs (Table 3).  Aliphatic ring counts are also significantly increased in PNPs versus NonPNPs.  

Additionally, PNPs have one additional H-bond acceptor and one fewer rotatable bond versus 

NonPNPs.  Notably, Fsp3 and numbers of stereocenters, which differ between Clinical and Reference 

compounds, are not different between PNPs and NonPNPs (Table S.2).  This observation reinforces 

the independence of PNP fraction from these physical properties in distinguishing Clinical from 

Reference compounds. 

 

All Clinical compounds (n=3173), contain 937 ring systems (using ring systems from DataWarrior’s 

scaffold calculator38).  New ring systems added per decade account for approximately 30% of all ring 

systems present, in agreement with a recent analysis.39  However Clinical PNPs add more new ring 

systems than do Clinical NonPNPs, and the proportion of new ring systems is increasing over time in 

PNPs, but not NonPNPs (Figure S2).  PNP ring system novelty versus NonPNPs is consistent with their 

higher aliphatic and heteroaromatic ring counts (Table 3). 

 

NP fragments and fragment pair combinations present in Clinical and Reference compounds 

 

Counts of all NP fragments, fragment pair combinations, and PNP fragment pair combinations 

occurring in the post-2008 Clinical and Reference compounds are summarised in Table 4.  The 

fragment pair combinations can have more than one of each fragment type present.  Of the 1673 

individual fragments in the NP library, it is notable that only 176 (10.6%) are used in Clinical 

compounds, and a further 296 (17.7%) are unique to Reference compounds (Table 4).  However, the 

176 Clinical fragments comprise 97.8% of the total fragment coverage seen in Reference 

compounds.  For the much higher numbers of fragment pair combinations, there is lower coverage 

by Clinical compounds (e.g. 72.8% for all fragment pairs and 63.1% for all fragment pair PNP 

combinations, Table 4) and Reference-only fragment pairs outnumber Clinical fragment pairs by 
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upto 10-fold across major target classes (e.g. GPCRs, Table 4).  Reference singleton counts are 

dominant in both classes of fragment pairs. 

 

Table 4.  Total fragment counts in Clinical and Reference compounds for the post-2008 set.  

Group 
Major 
Target 
class* 

n Clinical (% 
occurrence in 

Reference) 

n 
Clinical 

only 

n Clinical 
singletons 

n Reference 
only (% 

occurrence) 

n Reference 
singletons 

Fragments 

All 176 (97.8%) 2 53 296 (2.1%) 61 

GPCR 86 (93.5%) 1 26 197 (6.5%) 26 

Kinase 85 (96.8%) 1 26 178 (3.2%) 42 

Other 146 (95.4%) 1 46 277 (4.6%) 55 

Fragment pair 
combinations 

All 1074 (72.8%) 53 571 6372 (27.2%) 1855 

GPCR 318 (49.2%) 12 214 3542 (50.8%) 918 

Kinase 487 (66.7%) 14 276 2796 (33.3%) 839 

Other 669 (59.9%) 50 410 5093 (40.1%) 1566 

Fragment pair 
PNP 

combinations 

All 842 (63.1%) 67 534 5748 (36.9%) 1745 

GPCR 223 (39.0%) 21 169 2583 (61.0%) 802 

Kinase 363 (58.2%) 24 243 2447 (41.8%) 774 

Other 462 (45.9%) 47 324 4111 (54.1%) 1365 

* Clinical and Reference compound counts: All, 1163 and 218773; GPCR, 284 and 59632; 

Kinase, 330 and 50370; Other, 574 and 115851. 

 

The occurrence of the most common fragments and fragment combinations seen in all post-2008 

Clinical compounds was compared to that seen in the Reference compounds.  The 58 most common 

fragments, occurring ≥8 times in Clinical compounds (Figure 6), account for 90.5% of the total 

Clinical fragment occurrence.  Of the 58 fragments, 15 (26%) occur significantly more frequently in  

Clinical versus Reference compounds (by odds ratio, p <0.05), and 4 (7%) are significantly increased 

in Reference compounds (Figure 6).  The 30 most common Clinical fragment pair combinations 

(Figure 7a), occurring ≥14 times, account for 22% of the total Clinical fragment occurrence and 10 of 

these (33%) are significantly more abundant clinically.  Similar Clinical preferences are seen for the 

31 most common PNP combinations, occurring ≥8 times and accounting for 22% of the total Clinical 

occurrence (Figure 7b).  It is apparent from Figures 6 and 7 that the pyrrolidine and cyclopropyl rings 

feature prominently, individually and in combination with other fragments, as having higher 

abundance in Clinical over Reference compounds. 
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Figure 6.  The 58 most abundant post-2008 Clinical NP fragments (≥ 8 occurrences, 90.5% of total 

Clinical NP fragment count).  Shown for each fragment are: count (% clinical fragments) (top); odds 

ratio vs reference compounds (lower left); p value (lower right; NS = not significant, p >0.05).  Clinical 

abundance increased (15, 26%): green, p <0.01; blue, p = 0.01-0.05). Clinical abundance decreased 

(4, 7%): red (pink, p <0.05).  Canonical tautomers shown, as generated by RDKit. 
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Figure 7. a)  The 30 most abundant fragment pair combinations all Clinical compounds (≥14 

Occurrences, 21.6% of all fragment pair occurrences).  b)  31 Most abundant fragment 

combinations in all PNP Clinical compounds (≥8 occurrences, 22.0% of all PNP fragment pair 

occurrences).  Shown are fragment pairs, count (%), odds ratio for Clinical vs Reference 

compounds and p value.  Connectivity definitions (see ref. 16) between fragments in b) are: cm, 

connection monopodal (single bond connections); fb, bridge fused connections, 3-5 fused 

atoms;  fe, fused edge connections, 2 fused atoms.  Clinical abundance increased: green (p 

<0.01), blue (p< 0.01-0.05). Canonical tautomers shown, as generated by RDKit. 

 

a) b)
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PNP trends over time in selected targets 

 

The overall increase in PNP Clinical compounds (Figure 2a, b) is evident in heavily pursued targets 

that have seen long-term production of Clinical compounds.  For the epidermal growth factor 

receptor-1 (EGFR-1) kinase (Figure 8), the invention of the 45 Clinical compounds found in ChEMBL 

has spanned 30 years.  The first drug to the market, gefinitib, is not a PNP but contains 2 NP 

fragments, one of which, 4-anilinopyrimidine, provided inspiration for further development of the 

class, leading to approved PNPs such as lapatinib, followed later by brigatinib and osimertinib, which 

both contain a 2-anilinopyrimidine NP fragment (Figure 8).  PNPs have been the dominant class of 

EGFR Clinical compounds since 2005, with their occurrence exceeding that seen in Reference 

compounds (Figure 8).  Vascular endothelial growth factor receptor 2 (VEGF-2) kinase, with 54 

Clinical candidates over 26 years, shows a similar increase In PNP Clinical compounds over time 

(Figure S3). 

 

 

Figure 8.  Development of EGFR1 (erbB1) Antagonists. Colour filled NP fragments show 

molecules classified as pseudo-natural products (PNP).  In all, 26 of 44 Clinical compounds 

since 1995 are PNPs (59%) and 2899 of 5480 Reference compounds are PNPs (53%); odds 

ratio = 1.29 (p >0.05)).  Since 2005, 22 of 29 Clinical compounds are PNPs (76%) and 1499 

3193 Reference compounds are PNPs (47%); odds ratio = 3.65 (p=0.0036). 

 

Unsurprisingly, amongst targets having multiple Clinical compounds, exploitation of the first 

molecules discovered is common practice, leading to subsequent molecules that often share 
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NonPNP; 2 NP frags 
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PNP; 3 NP frags
Frag_coverage_Murcko = 0.87

NP-likeness = -1.34

BRIGATINIB 2009
PNP; 4 NP frags

Frag_coverage_Murcko = 1
NP-likeness = -0.90

OSIMERITINIB 2013
(L858R, T790M mutant)

PNP; 2 NP frags
Frag_coverage_Murcko = 1

NP-likeness = -0.83 1st Publication date 
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comparable pharmacophoric features, a tendency that can also lead to promulgation of the same 

PNP_Status.  An example is the neurokinin-1 (NK-1) receptor, a peptidic GPCR, which provided 16 

Clinical compounds in the ChEMBL database (with five marketed, including two prodrugs) disclosed 

between 1992 and 2007.  All NK-1 antagonists that reached Phase 3, and all discovered after 2002, 

are classified NPL or PNP (Figure 9).  Following aprepitant in 1995, all subsequent NK-1 antagonists 

employ a common 3,5-difluoromethylphenyl group and an additional phenyl ring.  Aprepitant and 

netupitant bind to NK-1 in a similar mode,40 except for the pendant heterocycles that are part of 

their PNP motifs (triazolone and piperazine respectively, Figure 9).  However, both compounds are 

biologically comparable since they induce an identical intra-helical H-bonding network in the NK-1 

structure, which might explain the advantageous insurmountable antagonism they exhibit.40 The NK-

1 receptor stands out as a target where PNP occurrence in Clinical compounds (10/16, 63%) 

significantly exceeds than seen in Reference compounds (470/2158, 22%), with an odds ratio of 5.99 

(p = 0.0006). 

 

 

Figure 9.  Development of Clinical NK-1 antagonists.  Colour filled NP fragments show 

molecules classified as pseudo-natural products (PNP) or NP-like (NPL); PNP occurrence in 

Clinical compounds (10/16, 63%) significantly exceeds that seen in Reference compounds 

(470/2158, 22%), with an odds ratio of 5.99 (p = 0.0006). 

 

The peroxisome proliferator-activated receptor (PPAR) subtypes, where PPARα and/or PPARγ 

agonists have been pursued for diabetes, are examples of targets that have been less responsive to 
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application of NP fragments.  From 1990 to 2007, PNP occurrence in Clinical compounds active at 

the PPARγ subtype, (3/23, 14%) is similar to that seen in the corresponding Reference compounds 

(786/3564, 22%).  Ten PPARγ Clinical compounds since 1990 have reached Phase 3, with two, 

saroglitizar and lobeglitazone, marketed in India and South Korea respectively (Figure 10).  These 

molecules are clearly follow-ons from marketed thiazolidinones discovered before 1990, such as 

rosiglitazone and troglitazone (Figure 10), which suffered from cardiovascular safety issues typically 

encountered in this class. 

 

 

 

Figure 10.  Development of Phase 3 and Phase 4 Clinical PPAR agonists, where NP 

fragments have been infrequently used.  Colour filled NP fragments show molecules 

classified as pseudo-natural products (PNP).  Saroglitazar (approved in India) is reported 

as Phase 3 in ChEMBL and lobeglitazone (approved in South Korea) was not present in 

ChEMBL Clinical compounds.  PNP occurrence in all Clinical compounds active at the 

PPARγ subtype is 3/23 (14%) and for Reference compounds 786/3564 (22%). 
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Summary and Discussion 

 

We have used three measures of natural product (NP) character to assess compounds reaching the 

Clinic (phases 1-4), as well as Reference compounds acting at the same biological targets.  While 

calculated NP-likeness27 is in overall decline in drug discovery and in Clinical compounds, the results 

show that the ‘NP signal’ remains strong because of widespread exploitation of a relatively small 

pool of NP fragments.  Notably, pseudo-natural products (PNPs), which contain NP fragments but 

are inaccessible by Nature’s known biosynthetic pathways, have been increasing progressively over 

time and make up 67% of Clinical compounds first disclosed since 2010.  Inevitably the growth of 

PNPs in Clinical molecules cannot continue at the rate observed and a levelling off will occur; the 

2021 year data (Figure 3a) may indicate this is underway.  The overall decline in NP-likeness of 

Clinical compounds can be attributable mainly to an increase in aromatic ring count together with a 

decrease in oxygen atom count.4, 36  PNPs have introduced more ring system novelty to the clinic 

versus NonPNPs (Figure S2) while having lower16 NP-likeness (Table 3). 

 

In support of a ‘natural selection’ process occurring in successful drug discovery, the results (Figures 

3, 4, Table 2) show that since 2008, Clinical compounds have increased NP property values versus 

target-matched Reference compounds.  Overall in this period, PNPs are 54% more likely to be found 

in Clinical versus Reference compounds.  On the other hand, not all target classes show a NP signal, 

there is less evidence for a NP property clinical increase prior to 2008, and Clinical and Reference 

compounds have the same relative abundance in the NPL (NP-like) class in all time frames (Figure 3).  

What has caused the overall separation of PNP abundance in Clinical and Reference compounds 

published after 2008?   Developments in the late 1990s to early 2000s such as the maturity of 

compound screening collection enhancements and multiparameter lead optimisation, may be 

contributory factors.  In the same time frame, the increased attention paid to physical property 

control is an additional factor: higher Fsp3 and complexity, with lower carboaromatic ring count are 

evident in Clinical compounds versus Reference compounds (Figure 5) and these trends are 

consistent with increased NP character. 

 

Fourteen of the seventeen target classes show NP Clinical enhancement to varying degrees, 

including proteases, nuclear receptors and oxidoreductases (Table 2).  In contrast, aminergic G-

protein coupled receptors (GPCRs), display no Clinical compound NP enhancement, while other 

GPCRs and protein kinases have only marginal Clinical NP enhancement across the categories in 

Table 2.  Can the diminished Clinical NP enhancements in these major classes (45% of post-2008 

Clinical compounds) be explained?  One possible factor at play might be the historically long-

established and highly exemplified options for the essential pharmacophores seen in both aminergic 
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GPCR and kinase competitive inhibitors.  The majority of kinase inhibitors are competitive with ATP, 

and kinase drug fragments have been reported41 to cover a very small fraction of possible hinge-

binder42 space.  Kinase inhibitors frequently bind to multiple other kinases43 and existing kinase 

inhibitor libraries are commonly used to identify new kinase leads by focussed screening.44,45  

Competitive aminergic GPCR antagonists have historically typically contained a common aromatic 

ring and a basic group,46 as found in endogenous agonists (e.g. dopamine, serotonin, histamine, 

noradrenaline), and can employ similar ligand-protein interactions within each receptor sub-class.47   

Targets amongst the protease, oxidoreductase and nuclear receptor (including nuclear hormone 

receptors and transcription factors) families, which all show Clinical compound NP enhancement, are 

more diverse in their substrate requirements. 

 

Much current drug discovery uses known structures as starting points,2,3 and exploiting biologically 

proven or ‘privileged’ structures is a prominent strategy used in developing screening collections.  

‘Recycling’ of knowledge is clearly a major factor influencing the NP profiles of Clinical candidates, as 

shown by the target examples (Figures 8-10).  Most striking is the fact that as few as 176 NP 

fragments account for, on average, 63% of the heavy (non-H) atoms in the Murcko scaffold 

structures of Clinical compounds disclosed since 2008.  Further, just 58 NP fragments (Figure 6) 

cover 90.5% of all Clinical compound NP fragment space.  We therefore extend the questions 

already raised regarding the necessity for novel ring systems in drugs39,48 to ask if application of NP 

fragments is a preferred strategy for success, instead of hunting for diversity amongst the vast 

numbers of less-used and virtual non-NP ring systems and scaffolds.49,50 

 

The rapid growth in Clinical PNPs has probably occurred largely unknowingly because the PNP 

concept, disclosed in 2020,12 is too new to have had significant impact on Clinical compound design.  

The observed PNP and NP fragment density increases may have mostly occurred intuitively, rather 

than by ‘NP design’, because the most frequently used NP fragments (Figure 6) are all very well-

known to, and commonly employed by, medicinal chemists.  One example of the application of an 

NP moiety in lead optimisation is the use of R-(+)-carvone in the discovery of the JAK kinase inhibitor 

tofacitinib,51 itself a PNP. 

 

The observed Clinical NP fragment preferences in the data set (Figures 6 and 7) are intriguing and 

suggest specific fragments and combinations that could take priority in compound design.  An 

important point is that any specific NP fragments contained in Clinical compounds which were 

generally introduced at late stages in the lead optimisation processes, could appear ‘enhanced’ in 

Clinical versus comparative Reference compounds.  An example is oxetane, a relatively new entry to 

the repertoire52 which is enriched in Clinical compounds (Figure 6, 8th entry in 5th row).  This effect 
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would be less likely to be seen for NP fragments present in starting hit structures.  Quantifying the 

impact of these aspects is not practicable in the current dataset.  The narrowing of successful design 

options using specific NP fragments, which occurs as lead optimisation progresses, is consistent with 

a ‘natural selection’ hypothesis. 

 

There is a significant pool of under-used NP fragments, and an immense number of novel NP 

fragment combinations are available to exploit to create NP-biased screening libraries and building 

blocks for use in lead optimisation.  The design principles for PNP molecules have been laid out12-14, 

16, 18, 19 and are ready for exploitation by medicinal chemists.  PNPs provide greater ring system 

novelty in the clinic and predictably distinctive physicochemical properties, especially increased 

nitrogenous aromatic rings,  versus NonPNPs.  However, it is our experience that recognising a PNP 

structure and knowing those NP fragment combinations that are non-biosynthetic, are often not 

intuitive or straightforward.  Applying the available PNP algorithm17 in advance of synthesis is a 

necessary step.  In designing new PNPs, synthetic challenges are likely to arise – the investment 

required needs to be balanced against the accumulating evidence supporting their biological 

relevance, clinical dominance and untapped potential.  However, we note that nowadays thousands 

of PNPs have become available from commercial sources, such that PNP libraries can readily be 

established without extensive synthesis efforts.17  Further extension to consider additional NP ring 

systems and acyclic frameworks29,30 is also possible. 

 

A limitation to this study surrounds the inevitably incomplete nature of freely available Reference 

compound datasets.  To help corroborate our results, we encourage owners of complete drug 

discovery project databases to examine the NP properties of optimised leads and candidate drugs 

versus others synthesised, an approach that does not require disclosure of proprietary structures in 

publication.53  Similarly, higher NP character of identified hits versus compound screening 

collections, if seen, could help shed light on the presence of ‘dark’ chemical matter.54  Nevertheless, 

we believe that the results showing Clinical NP enrichment based on published compound data are 

sufficiently positive to warrant a greater focus on the application of NP properties and fragments in 

compound design.   

 

Conclusions 

 

By analysing data published in journals, extracted from ChEMBL version 32,22 we provide evidence 

that the natural product (NP) properties of a set of >1000 Clinical compounds published since 2008 

are increased versus corresponding time and target-matched Reference compounds.  The magnitude 

of the NP enhancement seen varies by target class, with positive a signal in seen in the majority.  
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Kinases and aminergic GPCRs, highly explored target classes with a long history and limited 

endogenous ligand diversity, show weak or no NP enhancement.  The increase in Clinical compound 

NP properties results from the use of just 176 NP fragments, which together make up, on average, 

63% of the heavy atoms in post-2008 Clinical compound core scaffolds.  Clinical pseudo-natural 

products (PNPs), where two or more NP fragments are combined in ways not achievable in Nature, 

have been rapidly increasing over time and comprise 67% of post-2010 Clinical compounds.  The 

overall results are supportive of the occurrence of ‘natural selection’ being associated with many 

successful drug discovery campaigns.  It has been proposed that NP-likeness assists drug distribution 

by membrane transporters21 and we further speculate that employing NP fragments may result in 

less attrition due to toxicity, a major cause of preclinical failure.55   

 

There is huge untapped potential in further exploitation of currently used and unused NP fragments, 

especially in fragment combinations and design of PNPs, without the need to resort to chemically 

diverse ring systems and scaffolds.  To exploit these opportunities, it is vital that ‘NP awareness’ is 

added to the repertoire of medicinal chemists.  Sir James Black, discoverer of propranolol and 

cimetidine, famously stated that “the most fruitful basis for the discovery of a new drug is to start 

with an old drug.”56  In the genomic era, the Black principle holds ever true, as medicinal chemists, 

knowingly or unknowingly, are repeatedly using a small group of established NP fragments to 

discover clinical candidates.  We concur with the sentiment that “the local chemical space of a 

natural product can prove superior to the natural product itself.”57  Adding NP fragment-based 

parameterisation to enhance machine learning models and influence generative chemistry is 

recommended. 

 

NP structural motifs are provided pre-designed by Nature, constructed for biological purposes as a 

result of 4 billion years of evolution.  In short, applying Nature’s building blocks - Natural Intelligence 

- to drug design can enhance the opportunities now offered by Artificial Intelligence. 

 

Supporting information 

 

Figures S1 – S3.  NP metric Clinical versus Reference compounds by target class using unpaired data 

for all compounds and targets with ≥100 reference compounds; ring system novelty in PNPs and 

NonPNPs over time in clinical compounds; development of VEGF inhibiors. 

Tables S1 – S2.  Cross correlation of NP measures versus other properties for post-2008 Clinical 

compounds; physical properties of post-2008 Clinical compounds by PNP_Status. 

Excel spreadsheet S1.  NP fragment list; post-2008 Clinical compound-target pairs; post-2008 

Reference compounds by target; statistical data for Figures.  
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