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Highlights

- The predicted retention index for polyethylene glycol was used as a molecular descriptor

- Reliability and reproducibility of QSRR studies were discussed

- Three pyridinium-based ionic liquids were considered as GC stationary phases

- Retention index data sets for further QSRR studies were created and published

- CHERESHNYA is software for QSRR studies in GC

Abstract

Ionic liquids, i.e., organic salts with a low melting point, can be used as gas chromatographic

liquid stationary phases. These stationary phases have some advantages such as peculiar selectivity,

high  polarity,  and  thermostability.  Many  previous  works  are  devoted  to  such  stationary  phases.

However, there are still no large enough retention data sets of structurally diverse compounds for them.

Consequently,  there  are  very  few  works  devoted  to  quantitative  structure-retention  relationships

(QSRR) for ionic liquid-based stationary phases.  This work  is  aimed to close this gap. Three ionic

liquids with substituted pyridinium cations are considered. We provide large enough data sets (123 -

158 compounds) that can be used in further works devoted to QSRR and related methods. We provide a

QSRR study using this data set and demonstrate the following. The retention index for a polyethylene

glycol stationary phase (denoted as RIPEG), predicted using another model, can be used as a molecular

descriptor. The use of this descriptor significantly improves the accuracy of the QSRR model. Both

deep learning-based and linear models were considered for RIPEG  prediction. The ability to predict the
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retention indices for ionic liquid-based stationary phases with high accuracy is demonstrated. Particular

attention is paid to the  reproducibility and reliability of the QSRR study. It was demonstrated that

adding/removing several compounds, small  perturbations of the data set can considerably affect the

results such as descriptor importance and model accuracy. These facts have to be considered in order to

avoid misleading conclusions. For the QSRR research, we developed a software tool with a graphical

user interface,  which we called CHERESHNYA. It  is  intended to select  molecular  descriptors and

construct linear equations connecting molecular descriptors with gas chromatographic retention indices

for  any  stationary  phase.  The  software  allows  the  user to  generate  several  hundred  molecular

descriptors  (one-dimensional  and  two-dimensional).  Among  them,  predicted  retention  indices  for

popular stationary phases such as polydimethylsiloxane and polyethylene glycol are used as molecular

descriptors. Various methods for selecting (and assessing the  importance of)  molecular descriptors

have been implemented, in particular the Boruta algorithm, partial least squares, genetic algorithms,

L1-regularized regression (LASSO) and others. The software is free, open-source and available online.

Keywords Gas chromatography, quantitative structure-retention relationships, molecular descriptors,

stationary phases, pyridinium-based ionic liquids.

1. Introduction

Ionic liquids (IL),  i.e.,  organic salts  with  a melting point below or about room temperature

(< 100  °C), have been widely used in analytical chemistry in last decades [1-2].  IL are stable, non-

volatile, and liquid in a wide temperature range. Some IL form stable thin films. This makes it possible

[2-5]  to  use  them as  liquid  stationary  phases  (SP) for  gas  chromatography (GC).  In  this  case,  IL

demonstrate high polarity simultaneously with excellent thermal stability [3]. IL are widely used for the

separation  of  various  mixtures  [5-8].  The  selectivity  and  retention  behavior  of  various  IL  were

reviewed by Yao et al. [4]. Various IL are used as gas chromatographic SP: for instance, derivatives of

imidazolium, phosphonium, pyridinium, and guanidinium can be employed [9, 10]. The structures of

various  IL-based  SP  are  reviewed  in  Ref. [4,  9].  Several  types  of  IL-based  GC  columns  are

commercially distributed by Supelco (owned by Merck Group). These columns are used for various

separations [9, 11].

For the use in gas chromatography – mass spectrometry (GC-MS), SP should be particularly

thermostable and non-volatile in order to provide low background noise. For less volatile, heavy, and
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polar analytes, the SP have to be stable at higher temperatures. In Ref. [12], it was demonstrated that

some  imidazolium-based  IL  can  be  used  for  GC-MS  at temperatures  up  to  300  °C  and have

background noise considerably lower than polyethylene glycol-based SP (PEG) and comparable with

the non-polar HP-5ms SP. 

Methods  that  predict  chromatographic  retention  using  the  analyte  structure  as  an  input  are

usually referred to as quantitative structure-retention relationships (QSRR) [13]. One of the application

areas of this method is the non-target GC-MS analysis using a mass spectral library search [14-15] for

rejection  of  false  candidates.  QSRR can  be  considered  as  a  method  that  provides  an  insight  into

chromatographic separation [16]. When predicting a retention index (RI) based on some molecular

descriptors (i.e.,  numerical values that characterize the structure of  a molecule), the contribution of

particular molecular descriptors (MD) and a set of selected MD can provide valuable information about

the nature of separation, and the model is considered as an interpretable one [16-20]. Almost all work

on  QSRR  for  GC is  limited  to  the  most  typical  and  well-characterized  polymeric  SP.  In  liquid

chromatography  conditions,  more  factors  influence  retention  and  the  use  of  QSRR  to  study  the

separation mechanism is even more common [21-23]. QSSR are also used as a convenient task in order

to develop and demonstrate chemometric, statistical, and machine learning methods.

Many hundreds of MD are available  by the means of commercial and open-source software

[24].  Various  types  of  MD and their  use in  QSRR in GC-MS are reviewed in Ref.  [25].  Diverse

machine learning methods (such as support vector machines [20, 25-26], gradient boosting [27], neural

networks [20, 25-26]) are used for QSRR. But the most often used are the linear regression methods

[25]. Various feature selection approaches can be used in quantitative structure-property research (in

particular in QSRR) [24, 28]. Feature selection is especially important when an interpretable model

with chemical meaning is required.

Despite the existence of a large number of QSRR studies, most of them use small data sets (less

than 1000 compounds) and usually do not answer whether the obtained results will be reproducible if

the  data  set  is  slightly  changed.  For  example,  in  Ref.  [17],  the  authors  make  some  qualitative

conclusions about retention based on a set of MD chosen using sequential selection. The authors do not

study whether the MD selection procedure is reproducible and whether the same MD set will be chosen

if the data set is slightly distorted. If a method is unstable to insignificant changes in the data set and

random factors, it may lead to misleading conclusions.
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Any QSRR study requires a large enough data set of retention values (retention time (RT) or RI)

of  diverse  compounds,  and  the  diversity  of  data  sets  affects  the  results  [17].  To  the  best  of  our

knowledge, such data sets are not available for IL-based SP. For each of SP, the data about the retention

are available for a very small number of compounds. Usually these are data about test mixtures for

determination of polarity or solvent parameters, or data about several very similar compounds. To the

best of our knowledge, there are very few works about the RI prediction and QSRR for IL-based SP,

and all of them are focused on one specific  class of chemical compounds.  In Ref. [29], QSRR for

polychlorinated biphenyls and IL-based SP are considered. There are also some works [30-31] that

predict the chromatographic properties of IL based on their structure, rather than predict the retention

for a given IL based on the structure of the analyte. We focus on the latter task: to predict the retention

of diverse compounds on a given IL-based SP. 

The majority of previous works devoted to  RI prediction consider polydimethylsiloxane, 5%-

phenyl-methylpolysiloxane or PEG. For these SP, very large data sets are available. This fact allows for

the development of accurate and versatile prediction models [26] and then use the predicted (for these

common SP) RI as MD in models developed for other SP. In this work, we investigate whether the

predicted RI for PEG is applicable as MD for prediction of RI for IL-based SP.

Since there are still no large and diverse enough data sets and QSRR studies for such SP, this

work is aimed to fill this gap by constructing a moderately large structurally diverse retention data set

of compounds of various classes for IL-based SP and providing the QSRR study using this data set.

Experimental RT and RI were acquired for three promising monocationic and dicationic IL-based SP

containing  polysubstituted pyridinium cations.  This  work is  also aimed to  pay special  attention  to

reliability and reproducibility of the QSRR study. We tested whether small distortions of data sets, such

as  randomly  removing  several  compounds  or  adding  minor  noise  to  the  values,  could  affect  the

conclusions of the QSRR study.  

2. Materials and Methods 

2.1. Chemicals

A collection of 181 organic compounds of diverse chemical  nature  was used: aromatic  and

aliphatic alcohols, aldehydes, ketones, heterocycles, and various halogenated compounds. A full list of

compounds is provided in Supplementary Material, section S1, and all experimental  RT and  RI are

provided in  the  online  repository  https://doi.org/10.6084/m9.figshare.16885009.  Most  of  the
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compounds were purchased from Sigma-Aldrich and several from other vendors.  The purity  of  each

compound  and  the  correctness of the structure were checked by GC-MS (electron ionization) using

matching  of  observed spectra with  spectra  from a  mass  spectral  database  and  matching of  RI on

standard polar and non-polar SP with reference ones (when available). The NIST 17 database was used

for this purpose.  A standard mixture of n-alkanes C7-C40 (1000 μg/ml of each component in hexane,

Sigma-Aldrich) was used for determination of n-alkanes RI. Acetonitrile (UHPLC-Supergradient PAI-

ACS, Panreac) was used to dissolve standard compounds.

2.2. Analysis conditions

1  μl of liquid analytes was dissolved in 0.9 ml of acetonitrile. 1.5 mg of solid analytes was

dissolved  in  1  ml  of  acetonitrile.  Analyses  were  carried  out  using  Shimadzu  GCMS-TQ8040

(Shimadzu). We mixed up to 10 compounds in one solution (partial concentrations are given above),

and  in  those cases  where the  peak  annotation  was  not  absolutely  unambiguous,  we  remeasured

solutions of individual compounds. We measured all  compounds using three columns with IL (see

below), as well as HP-5 (30 m, 0.32 mm×0.25 μm, Agilent) and SH-Stabilwax (30 m, 0.25 mm×0.1

μm, Shimadzu) columns. The numbers in brackets denote the length, inner diameter of the column, and

thickness of the SP layer, respectively. Measurements were made for standard polar and non-polar SP

in order to obtain spectra for comparison, as well as to verify that the observed RI match the reference

ones. 0.5 μl of the liquid solution was injected to the GC-MS instrument; in order to measure n-alkane

RI, a mixture of n-alkanes was added to the sample solution.

GC-MS analyses were carried out under the following conditions. Temperatures of injector and

ion  source:  250 °C  and  200 °C, respectively;  carrier  gas:  He;  flow  control  mode:  constant  linear

velocity; flow rate: 0.6 ml/min; injection split  ratio: 1:50. Oven temperatures were programmed as

follows: the temperature was raised from 50 °C to 240 °C at 8 °C/min rate and then was kept constant

during 15 min. The mass spectrometer was operated in electron ionization (EI) mode at 70 eV, scan

rate: 1666 units/s, mass range: 44–500 m/z. 

2.3. Capillary columns coated with ionic liquids 

Three IL-based GC columns were used: Bis4MPyC6 (30 m, 0.22 mm×0.2 μm), Bis2MPyC9 (25

m, 0.22 mm×0.2 μm), Hex4MPy (18 m, 0.22 mm×0.2 μm). The structures of IL used in these columns

are shown in Fig. 1. IL were prepared according to the procedure from Ref. [32]. Cations (in the form
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of  bromide)  were prepared  by heating  a mixture  of  corresponding  methylpyridine  and  bromo-  or

dibromoalkane at 120 °C during 2-6 hours. IL were prepared by the reaction of  previously produced

bromide with lithium bis(trifluoromethanesulfonyl)imide.  The columns were prepared by the static

high pressure technique [33] at a constant temperature of 210 °C using tert-butanol as a solvent. The

column preparation procedure is described in Ref. [34].

Fig. 1. Structures of the considered IL used as SP. Numbers denote the McReynolds polarity values of
SP.

2.4. QSRR modeling and retention index prediction

2.4.1. Prediction of retention indices for PEG

The predicted based on the molecule structure RI for PEG was used as the MD for further

prediction of RI for IL-based SP (see Fig. 2A). So, this is a supplementary task for this work. We used

two methods for prediction of RI for PEG. The first one is the use of a quite accurate deep learning

model, previously described in our previous works [26]. In this case, a multimodal ensemble of two

deep neural networks was used. The neural networks were trained using the NIST 17 database. The

models use SMILES string representations of models, various MD, and molecular fingerprints used as

an input representation of molecules. The models were described in the previous work [26] and used in

the unchanged form. The newly developed and described in this work CHERESHNYA software calls

our previous software [35, 36] for prediction of RI for the DB-WAX column. This predicted RI value is

further referred as the RI_PEG_DL descriptor.
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Fig. 2. Graphic illustration of the topics investigated in this work: A – use of predicted for polymeric
SP RI as  MD for  prediction  of  RI  for  IL-based  SP;  B –  reproducibility  of  MD selection  and its
importance for the use of QSRR for the SP description; C, D – comparison of common cross-validation
with the approach used in this work.

The second approach is  a  linear  model  for  prediction of RI on PEG. The following set  of

features  was used:  243 2D MD and 84 functional  groups counters  generated using the  Chemistry

Development Kit, version 2.7.1 (CDK) [37]; 208 2D MD of various types and 42 MQN (so-called

Molecular  Quantum  Numbers  [38])  generated  using  the  RDKit  library,  version  2023.09.4;  4860

Klekota-Roth  substructure  counters  (Klekota-Roth  counting  fingerprint  [39]).  The  first  subset  of

features (functional groups counters and CDK descriptors) was the same as used in our previous work

[26]. All MD were scaled to the range [0; 1]:

Dnew=(D−Dmin) /(Dmax−Dmin) ,

where Dnew, D, Dmin, Dmax – scaled, unscaled, minimal and maximal values of a MD.

The NIST 2017 library was used as the training set. Preprocessing of the library is described in

our  previous  work  [26],  and unsupported  compounds  were  excluded as  described  there.  For  each

compound, the median value of all values for PEG was used. The compounds that were also measured

on  IL-based  SP were  excluded  from this  data  set.  Features  with  zero  variation  (constant  for  all

molecules), features that are linearly dependent on other features, and features that are not supported

for some molecules were excluded. As a result, a data set containing 9408 compounds (1698 features
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for each compound) was constructed. This data set was randomly split into training (80%), validation

(10%), and test (10%) data sets. The validation set was used for hyperparameters tuning.

The linear model was constructed using support vector regression with a linear kernel.  The

LibLinear library (version 2.43) was used with the following hyperparameters:  C = 0.086;  p = 1.44;

solver type: L2-regularized L1-loss SVR (dual problem). The final model and additional information

are provided in  Supplementary material,  section S2. The predicted value is  further  referred as  the

RI_PEG_LM descriptor. The mean and median square absolute errors for this model were 53.3 and

31.3, respectively, it is comparable with the neural network-based models from Ref. [26].

2.4.2. Molecular descriptor selection for QSRR modeling

A total of 208 MD generated with the RDKit library were used, MQN descriptors were not

included. Since the data sets in this case are small and our purpose is a simple and interpretable model,

we  limited  ourselves  to  the  RDKit  descriptors,  as  well  as  RI_PEG_LM  and  RI_PEG_DL.  We

considered 6 methods for selection of MD for QSRR models. The overview and designations of these

methods are given in Table 1.

Table 1. Methods of MD selection considered in this work.

Designation Method of molecular descriptor selection

SEQ_ADD Sequential addition

LASSO L1-regularized linear regression with the value of l1 constant equal to 1.0 

BORUTA Boruta algorithm based on random forest (500 trees), 80 rounds of Boruta algorithm

GA Genetic algorithm (80 generations)

PLS_VIP Partial least squares (20 components) with variable importance in projection

SEQ_REM Sequential removal of molecular descriptors using random forest for assigning the 
importance scores

In the SEQ_ADD method, at the first stage, the most correlated with the target RI values MD is

selected.  Then for each of MD that have not yet been selected, the ordinary least squares (OLS) model

is built and the MD for which the f-factor (goodness of fit) is the largest is selected. In this method, the

f-factor was calculated using the following equation:

F=
(TSS−RSS)∗(N mol−Ndesc)

RSS∗(N desc−1)
,

where TSS – total sum of squares, RSS – residual sum of squares,  Nmol and Ndesc are numbers of

molecules and MD, respectively.  

In the LASSO method, the following term is added to the sum of the squares of deviations:
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L=l2∗∑
i

|ai| ,

where ai  – coefficients of the linear model. Such loss function forces some of MD to be almost zero,

and MD with coefficients more than 0.1 are selected (all MD were scaled to the range [0; 1] when this

threshold value is applied). We use the implementation of L1-regularized regression from the Smile

package [40] (version 2.6.0).

The  Boruta  algorithm is  based  on  other  algorithms  that  can  provide  importance  scores  of

features. In addition to real features, the same number of “fake” features is added. Fake features are

made from real ones by random shuffle of rows. A feature is considered “important” if its importance

score is better than the best “fake” feature. The final importance is the number of repeats in which this

feature was considered as important. Feature importance scores provided by random forest are based on

the decrease of the impurity measure when the corresponding variable is used. For the Boruta algorithm

[41], we use our own implementation of the algorithm. We use implementations of random forest from

the Smile package [40] (version 2.6.0) with default hyperparameters for initial importance score of

features. 80 rounds of the Boruta algorithm were used.

 For the GA method, we use the implementation of the genetic algorithm from the Scikit-learn

python package (sklearn-genetic, version 0.6.0). The GeneticSelectionCV function with cv = 5 is used,

OLS linear regression is used as a regression estimator, and the coefficient of determination (R2) is used

as an error measure. For the PLS_VIP method [42], we use the implementation of PLS from the Scikit-

learn python package [43] (version 1.4.0). In sequential removing (SEQ_REM), at each stage of the

algorithm, the random forest model is built and 10 MD with the least values of importance are removed

until the required number of MD are remained. In the last step, less than 10 MD are removed if the total

number of MD to be removed cannot be divided by 10.

  For  SEQ_REM, we also consider  MD preselection  when MD with  a  Pearson correlation

coefficient r > 0.8 are removed. Before training the models, all MD were scaled to the range [0; 1] and

the RI values were divided by 1000. This is necessary to avoid too large coefficients and incorrect

operation of the framework. The coefficient values given in this work are given without taking into

account scaling (for actual values), unless otherwise indicated. The above-mentioned Smile package is

used for OLS and the building of final linear equations.

In order to characterize the accuracy, the mean absolute error (MAE), median absolute error

(MdAE),  root  mean square  error  (RMSE) were computed,  10-fold cross-validation  is  used,  unless

otherwise specified.  For the comparison purpose,  the “black box” models created using previously
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published software [26] are considered. A detailed description of  this software and machine learning

models is given in our previous work [26]. To evaluate the accuracy of the models, we also used 10-

fold cross-validation (the “CV” command line option of the above-mentioned software).

2.5. Evaluation of the molecular descriptor selection reproducibility

 In  previous  works,  QSRR  were  often  used  not  for  practical  prediction  of  RI,  but  for

characterization of SP in order to draw some conclusions about the nature of retention mechanisms [16]

(see Fig. 2B). However, it is not usually tested whether the selection of MD is reproducible with small

changes to the data set. If the conclusions characterize the SP in general, then these conclusions should

not be altered if the data set (that plays the role of a probe) is slightly changed: for example, several

molecules are removed. Thus, the procedure of MD selection was repeated many times and each time

1-25 molecules were removed from the data set. Each time, for most MD selection methods, the set of

selected MD was different and conclusions were made taking this change into account. In most cases

(unless otherwise specified), 200 repeats are performed and resulting average values of accuracy and

importance scores are given.

Also, the accuracy of the model (and of the method in general) depends on the set of selected

features. Typically, in QSRR works, a set of MD is selected only once [17-22] and then the accuracy of

the model is carefully investigated (see Fig. 2C) using cross-validation or one-leave-out approaches.

But since MD selection is a stochastic procedure, such a careful statistical evaluation of the accuracy is

not very meaningful because it is built on the basis of a stochastic procedure that was made only once.

In this work, we apply the modified procedure and after each alteration of the training set we repeat the

MD selection (see Fig. 2D). This approach allows for the evaluation of accuracy of the approach in

general,  rather  than  the  accuracy  of  one  randomly  selected  MD  set.  The  evaluation  of  the

reproducibility is made for all three IL, but the detailed results are shown only for Bis4MPyC6, unless

otherwise  specified.  The  corresponding  data  set  contains  123  compounds  of  various  classes.  All

conclusions regarding the comparison of the MD selection methods in terms of reproducibility and

accuracy are the same for any of the considered IL.

After  removing  a  given number  of  molecules  and  before  the  MD selection  procedure,  a

preliminary reduction of the  MD set is done. The  MD that were constant for all molecules or that

coincided with other MD up to a linear dependence were removed. The resulting MD set (before the

selection procedure) contained  110 -  120 MD (the exact number depends on the exact data set and

changes with random removing of molecules).

10

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

https://doi.org/10.26434/chemrxiv-2024-16sxs ORCID: https://orcid.org/0000-0003-0978-7666 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-16sxs
https://orcid.org/0000-0003-0978-7666
https://creativecommons.org/licenses/by/4.0/


3. Results and discussion

3.1. Data set for QSRR

Retention data (n-alkane RI and RT) were acquired for 178 compounds (at least for one of the

columns with IL) for three columns with IL-based SP. These compounds include 108 aromatic and 70

aliphatic  compounds.  Among these  molecules, 37 are  ethers,  49 are  phenols,  13 are  aldehydes  or

ketones,  and  129  molecules  have  a  hydroxyl  group attached  to  an  aliphatic  atom.  All  considered

molecules contain carbon, hydrogen, and oxygen. Some of these compounds contain other elements:

26 contain fluorine, 35 contain chlorine, 13 contain bromine, 3 contain iodine, 5 contain nitrogen, and

only one contains sulfur. In the final data set for each column, we included only compounds with an n-

alkane RI of less than 3500. 

During the acquisition of data  for the final data sets, all data for each column were measured

within 5 days using an autosampler.  RT were extracted from chromatograms using GCMSsolution

GCMS Postrun Analysis (version 4.50) software. The  RT was recorded at the top of the peak. The

fraction of compounds (randomly selected) was remeasured after ~15 days after the end of the first

acquisition in order to estimate the reproducibility and measurement  error. The mean deviations (the

average of deviations for multiple compounds) between the results of the first and later measurements

are  0.066,  0.026,  and  0.030  min.  for  the  Bis4MPyC6,  Bis2MPyC9,  and  Hex4MPy  columns,

respectively. The mean percentage deviations are 0.53%, 0.44%, and 0.67% for these three columns,

respectively. The Bis4MPyC6 column is the longest and the most polar, so the absolute values of the

RT are the largest for this column. Due to  this, the absolute mean deviation is the largest, while the

relative deviation is not. 

We also studied whether there was a significant dependence of the RT on the injected volume.

No significant  dependence was observed:  for 5 compounds,  the  RT was the same for  each of  the

compounds  for  an injected volume  within  the  range  0.1  –  1  µl.  The  deviation  for  successive

measurements was not more than 0.01 min. In addition, there is almost no difference whether there was

one or multiple different compounds in the solution. Errors of the  RI measurement  are less than 10

units  for  almost  all  compounds.  Compounds with  RI more than 3500 were not  included due to  a

possible high error in the RI estimation: in this area, peaks of n-alkanes tend to be broad and located

closely to each other. The use of RI systems other than those based on n-alkanes can be the scope of

further research.  The data set containing RT and RI can be downloaded from the Figshare repository

https://doi.org/10.6084/m9.figshare.16885009.
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3.2. Reproducibility of a QSRR study when data set changes

3.2.1.  Stepwise selection with ordinary least squares

The first method of the feature selection employed in this work was “greedy” stepwise selection

(SEQ_ADD).  MD were  added one  by  one.  At  each step,  the  MD that  allows  achieving the  most

significant linear regression is selected. The MD selection procedure was repeated 200 times, 10 MD

were selected every time. Every time, 25 randomly selected molecules were excluded from the initial

data set. Almost every time the set of selected MD was different. If we compare a random pair of MD

sets obtained in different runs, then on average ~5.3 out of 10 MD will be the same. In Fig. 3A, the

probability to be selected is shown for different MD. Only one MD (fr_benzene, number of benzene

rings) is selected in all 200 repeats. This value – the probability of being selected – allows comparing

the importance of the MD in a reliable way, while the selection of the MD only once does not allow

making any conclusions. The confidence intervals are shown in Fig. 3A for p = 0.95, N = 200.

Fig. 3. Importance of various MD for prediction of RI for Bis4MPyC6 SP (all available compounds)
estimated with various methods: A – SEQ_ADD; B – LASSO; C – BORUTA; D – GA; E – PLS_VIP;
F – SEQ_REM. The ordinate axis denotes the average importance score for 200 repeats, and the error
bars show the confidence interval  (p = 0.95,  N = 200);  the exact  meaning of importance score is
different for various methods and is described in Section 3.2.1.
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Table 2.  Cross-validation accuracy of RI prediction for Bis4MPyC6 (all available compounds).

Confidence intervals (p = 0.95, N = 200) are shown, the MD selection procedure was performed 200

times with exclusion of 25 random compounds from the data set. 

Method RMSE MAE MdAE

SEQ_ADD 140.2 ± 1.5 102.5 ± 1.3 72.9 ± 1.5

LASSO* 142.3 ± 2.0 102.9 ± 1.6 69.4 ± 1.7

BORUTA 230.4 ± 2.6 179.4 ± 2.1 147.8 ± 2.8

GA 147.5 ± 1.9 107.6 ± 1.5 76.5 ± 1.7

PLS_VIP 280.8 ± 4.1 224.7 ± 3.0 190.4 ± 2.9

SEQ_REM 211.1 ± 2.8 161.9 ± 2.7 126.8 ± 3.6
*For all methods except LASSO, the accuracy of OLS regression that uses selected MD is shown; for

LASSO, the accuracy of LASSO regression itself is shown instead.

The prediction accuracy of this approach is demonstrated in Table 2. Confidence intervals of the

accuracy measures are also shown. Standard deviations for various error measures are in the range of 9

– 11 units. Such relatively large values of standard deviation show that the comparison of accuracy of

prediction methods must be done very carefully, the accuracy varies with random modification of the

data set. However, in many works it was done based only on one cross-validation experiment [19, 26].

The more molecules we remove from the data set each time we train, the less reproducible the

set of selected MD is. Such a dependence is shown in Fig. 4A. The dependence of the average number

of the MD selected in both experiments for all pairs of experiments is shown. Even if we remove only

one molecule, the MD selection will not be reproducible. In addition, a typical dependence of accuracy

on the number of MD is shown in Fig. 4B. The average of 200 repeats is shown, confidence intervals

are too narrow to be shown. It  can be seen that  the prediction error  (as  expected)  decreases  with

increasing number of MD, but with a further increase in the number it decreases very slowly. Based on

this, we decided to select 10 MD.
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Fig. 4. A – dependence of the average size of the intersection between sets of selected MD for all pairs
of repeats with an altered data set on the number of molecules randomly excluded from the data set
during each repeat (1 – without preliminary removal of highly correlated  MD; 2 – with preliminary
removal of MD with the Pearson correlation coefficient r > 0.8 with any other MD);  B – dependence
of cross-validation accuracy on the number of MD.

One reason why MD selection may not be reproducible is that many MD are highly correlated.

In Fig. 5, a heatmap given that shows the Pearson correlation coefficient r between some MD for this

data set. It can be seen that MD, which at first glance are almost unrelated to each other, are often

correlated. For  example,  the  number  of  methoxy  groups  (fr_methoxy)  and  a  topological  MD

characterizing the contribution of polar atoms to the total surface of the molecule (VSA_EState9) are

strongly correlated. For each pair of correlated MD, we can arbitrarily remove one of the two. But if we

do this, then our qualitative conclusions based on the set of MD may also change depending on which

of them we remove. However, we considered such a reduction of the MD set. We removed from the

original set all MD having r > 0.8 with any of the others. There were 49.9 ± 2.0 MD left (confidence

interval,  p = 0.95,  N = 200). With this approach to preselection of the MD, we conducted the same

experiments in order to evaluate the reproducibility.
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Fig. 5. Heatmap showing the Pearson correlation coefficient for pairs of MD for Bis4MPyC6 SP  (all
available compounds). 

In  Fig.  4A,  the  results  of  such  an  experiment  are  also  shown.  All  MD having  a  Pearson

correlation coefficient r > 0.8 with any of the remaining ones were removed from the set. A total of 200

repetitions  of  MD  selection  were  made  using  a  stepwise  method.  In  this  case,  for  each  pair  of

repetitions,  on  average  ~6.8  MD  coincide  instead  of  ~5.3  (25  randomly  selected  molecules  are

excluded each time). Reproducibility was slightly improved, as expected, but this approach includes a

virtually random removal of half of the MD (from a pair of correlated ones, we randomly choose which

one to remove). We do this in a reproducible way (for the same pair of correlated MD, the same MD is

removed each time).  However,  the reproducibility is  still  not very good and it  is  clear that  as the

number of molecules removed from the data set increases, the reproducibility also decreases. Thus, the

problem of the selected MD set not being reproducible across the data set changes cannot be explained

solely by the presence of highly correlated MD.

Thus,  we can draw the following conclusion.  The stepwise algorithm for selecting MD for

linear  regression  is  not  reproducible  when  small  changes  in  the  data  set  are  made,  and  no

“physicochemical”  conclusions  can  be  drawn from the  set  of  once  selected  MD.  Unfortunately,  a

number of previous works [17, 20] made such conclusions. 
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3.2.2.  L1-regularized regression (LASSO)

The LASSO regression (L1-regularized linear regression) is an accurate linear regression and

(simultaneously) a MD selection method.  When a weighted sum of absolute values of coefficients is

added  to  the  loss  function,  the  minimization  of  the  loss  function  leads  to  zeroing  of  most  of

coefficients. We consider a MD to be selected if its coefficient (for scaled to the [0; 1] range value of

the MD) is positive and above the threshold value of 0.1. In Fig. 6, the dependence of the accuracy and

number of selected MD on  l1 constant is shown. Smaller values of  l1 result into better accuracy and

larger number of important MD. At values l1 < 1.0, the accuracy decreases very slowly with decrease of

l1, and l1 = 1.0 was used for further investigation.

Fig.  6. Dependence  of  cross-validation  accuracy  and  number  of  MD  (N)  with  non-zero  (>0.1)
coefficient on l1 value in L1-regularized regression (LASSO).

Unlike other MD selection algorithms, the values of accuracy given in Table 2 are given not for

the OLS method with 10 MD, but for the LASSO method with l1 = 1.0 itself. The use of MD selected

by LASSO in OLS results in very poor accuracy as expected. It can be seen that the accuracy achieved

with LASSO is about the same compared with the stepwise algorithm, but in this case much more MD

are used (22.5 ± 1.3 on average). 

In Fig. 3B, the average values of coefficients (for scaled to the [0; 1] range value of the MD) in

LASSO regressions for various MD are shown. 200 repeats were performed, excluding 25 molecules
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from the data set each time. It should be noted that the coefficient values are given for MD scaled to the

range [0; 1] rather than for initial values. This allows performing a fair comparison of the importance.

It  can  be  clearly  seen  that  the  following  MD:  LabuteASA,  BCUT2D_MRHI are  the  most

important (for Bis4MPyC6) and play the largest role. The 5 most important MD and their order can be

established reliable. The average number of MD selected in both runs for all pairs of repeats is ~16.0.

In general,  the LASSO method provides linear regressions of similar  accuracy as for the stepwise

algorithm, and the selection and importance scores are somewhat more reproducible. 

3.2.3.  Other molecular descriptor selection algorithms

The  next  considered  algorithm  of  the  MD  selection  is  the  Boruta  algorithm  [42].  The

reproducibility of the MD selection is quite high in this case. We performed 200 repeats with random

exclusions of 25 molecules from the data set and each time we performed 80 rounds of the Boruta

algorithm.  For  Bis4MPyC6,  there  are  11  MD  (SMR_VSA7,  LabuteASA,  ExactMolWt,

BCUT2D_MRHI,  FractionCSP3,  VSA_EState6,  HeavyAtomMolWt,  BertzCT,  SlogP_VSA6,  Ipc,

fr_benzene) that are considered as important in all repeats and in all rounds of the Boruta algorithm.

Other MD are sometimes considered as important and sometimes not. The results are shown in Fig. 3C.

The average (over 200 repeats) number of rounds of the Boruta algorithm, in each of which the MD is

considered as important, is shown. The confidence intervals (N = 200, p = 0.95) are shown. However,

the accuracy of the OLS linear regression built using MD selected using the Boruta algorithm is very

low (see Table 2), much worse than with step-by-step selection. Consequently, this algorithm is not

suitable  for  constructing linear  QSRR, although it  allows evaluating the importance of  the MD in

reproducible way.

The genetic algorithm, as well as the stepwise algorithm, selects MD based on the accuracy of

the OLS regression built on this set of MD, while the PLS-VIP and Boruta algorithms select according

to criteria that have nothing to do with the accuracy of the OLS regression. Therefore, just as in the

case of a step-by-step algorithm, one can expect that the accuracy of the OLS regression built on these

MD will be quite high. Indeed, Table 2 shows that the genetic algorithm allows obtaining relatively

accurate linear equations. If we compare random pairs of MD sets obtained in different runs, then on

average only ~2.2 out of 10 MD are the same for GA. The accuracy of final linear equations for GA is

close to that for SEQ_ADD, while the reproducibility of MD selection is significantly worse compared
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with SEQ_ADD, LASSO and BORUTA methods at least with the used number of generations. Same as

for the SEQ_ADD algorithm, the probability to be selected in each repeat is shown in Fig. 3D.

The last two considered  algorithms were PLS_VIP and SEQ_REM. The average  importance

scores  estimated  using  these  methods  are  shown in  Fig.  3E  and Fig.  3F,  respectively.  In  case  of

SEQ_REM, the importance score is estimated using a random forest method based on the decrease of

the impurity measure when the corresponding variable is used.  As well as the Boruta method, both

these methods are reproducible in order to estimate importance of MD but cannot be used for the MD

selection for OLS linear regression. The accuracy of PLS regression itself was not investigated in this

work.

3.2.4.  Comparison of sets of molecular descriptors selected by different algorithms

Different algorithms select different MD sets. We compared MD sets selected by BORUTA,

SEQ_ADD and LASSO methods. In case of SEQ_ADD and LASSO we selected 10 most important

MD, in case of BORUTA we selected 11 MD, since each of them is considered as important at all

iterations of the Boruta algorithm. The Venn diagram for the resulting MD sets is shown in Fig. 7A.

Only one MD (BCUT2D_MRHI) is considered as important in all cases for Bis4MPyC6. A total of 4

MD (BCUT2D_MRHI, fr_benzene, LabuteASA, VSA_EState6) are considered as important by at least

2 algorithms simultaneously. The fact that different methods select different sets of MD, and the results

of each algorithm are not completely reproducible with minor changes in the data set, shows that in

order  to  draw any  “physicochemical”  conclusions  from such  a  study,  it  is  necessary  to  carefully

consider  issues  of  reproducibility.  Otherwise,  one  can  draw  conclusions  based  on  a  random

(statistically insignificant) result.
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Fig. 7. Venn diagram of MD selected by various MD selection methods for various data sets and SP: A
– Bis4MPyC6, including compounds for which RI are not available for other SP; B – Bis4MPyC6; C –
Bis2MPyC9;  D  –  Hex4MPy;  E  –  polyethylene  glycol;  F  –  5%-phenylpolydimethylsiloxane.  All
diagrams B-F are acquired for the identical set of compounds.  

3.3.  QSRR study for different stationary phases

The data sets acquired for three SP are slightly different, because some compounds are not

eluted at reasonable temperatures on some SP, compounds with RI > 3500 are not included in the

considered data set (low accuracy of the RI determination in these cases) and due to other reasons. The

information about the overlap of these data sets is provided in Supplementary material, Fig. S3. In the

previous sections, we demonstrated that even a small difference in a data set severely affects the set of

selected  MD  and  their  importance.  Therefore,  the  comparison  of  the  sets  of  selected  MD  was
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performed using the “intersection” data set. For each compound from this data set, RI is available for

all three IL, as well as for 5%-phenyl-methylpolysiloxane (also denoted as DB-5 for conciseness, after

the common column with such SP)  and for polyethylene glycol (43 compounds). It should be noted

that such incorrect comparison was made in previous works. For example, in Ref. [17] (Journal of

Chromatography A), the authors built QSRR for 4 SP having significantly different data sets (different

in dozens of compounds). The authors selected MD using a sequential algorithm and commented on the

chemical nature of the separation based on the selected MD set.

In Fig. 8, importance values of MD determined using SEQ_ADD and LASSO methods for five

SP are shown. In order to create these plots, 200 repeats were performed with one randomly excluded

molecule. The number of excluded molecules was decreased because a much smaller data set is used.

Three IL (Bis4MPyC6, Bis2MPyC9, Hex4MPy) and two polymeric SP: polyethylene glycol and 5%-

phenyl-methylpolysiloxane were considered. MD selected for Bis4MPyC6 and Bis2MPyC9 are very

similar to each other. This is consistent with the fact that these IL are very close in their chemical

nature.  However,  Bis4MPyC6 is  more  polar,  consequently  the  RI  values  are  higher  (the  data  set

consisted of polar molecules) and the absolute values of the coefficients in the LASSO regression

before MD are higher. Thus, the PEOE_VSA7 descriptor characterizes the accessible surface of atoms

which Gasteiger charge is in the range [-0.05; 0]. Such charges typically have aromatic carbon and

other  atoms  in  moderately  polar  groups,  while  aliphatic  carbons  are  hidden  by  positive-charged

hydrogens. The BCUT2D_LOGPLOW is the lowest eigenvalue of a matrix which diagonal elements

contain contributions of atoms to LogP (factor of lipophilicity)  and non-diagonal elements contain

information about the connectivity between the corresponding atoms. Both MD are topological and

related to the polarity  of the molecule,  and the average coefficients  before them increase with the

polarity  of  the  molecule.  It  should  be  noted  that  the  most  influential  according  to  different  MD

selection  methods  fr_benzene  (the  number  of  benzene  rings)  and  PEOE_VSA7  are  not  strongly

correlated: the Pearson correlation coefficient is ~0.5 for the considered data set. The topological chi1

descriptor [44] is higher for linear molecules and lower for branched ones and characterizes the shape

of the molecule. 
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Fig.  8. MD selected by SEQ_ADD (top row) and LASSO (bottom row) methods for  five SP. All
diagrams  are  made for  the  identical  set  of  compounds.  The  probability  p to  be  selected  in  the
SEQ_ADD procedure and the average coefficient  C in L1-regularized linear regression are shown.
Error bars show the confidence interval (p = 0.95,  N = 200).  5%-phenylpolydimethylsiloxane SP is
denoted as DB-5. 

The third IL (Hex4MPy) considerably differs from the first two (Bis4MPyC6 and Bis2MPyC9)

in structure, and the set of selected MD also significantly differs. Thus, despite all the above notes that

the MD selection is not reproducible when the data set is changed, it is possible to compare SP using

QSRR.  Polymeric  SP are  even  more  different  compared  with  IL-based  SP.  For  Bis4MPyC6  and

Bis2MPyC9, the fr_benzene descriptor was selected with a very high probability by the SEQ_ADD

method, it is the MD that is the most correlated with RI. For Hex4MPy, it is much less significant

according to the same method. The tendency continues with less polar PEG. As for siloxane, it is absent

in the top 10. As expected, the polar and aromatic Bis4MPyC6 and Bis2MPyC9 are the most sensitive

to aromatic systems.

The difference between the results obtained with different MD selection and MD importance

estimation  methods  is  much  greater  than  the  difference  between  SP.  Fig.  7B-7F  show  the  Venn

diagrams for sets of MD selected using the SEQ_ADD, BORUTA, and LASSO methods. In the case of

SEQ_ADD and LASSO we selected 10 the most important MD, in the case of BORUTA we selected
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more than 10 MD, because each of them is considered as an important at all iterations of the Boruta

algorithm.  

Finally, we made the same comparison using the full versions of the data sets. The results are

shown in Supplementary material, Fig. S4. It can be clearly seen that the difference between different

versions of the data sets is much greater than between different SP using the same data sets. Thus, it

can be concluded that QSRR-based comparisons of SP should be made using exactly the same data sets

and should be made very carefully. Generally speaking, our results do not confirm the claims that the

QSRR with a diverse set of MD (including topological ones) is a truly informative method that allows

characterizing SP. In many cases (for example, in the work [17]) the reproducibility is not checked, the

data set is not equal for different SP and it can easily result in misleading conclusions.

Table  3  contains  information  about  the  accuracy  of  prediction  for  5  considered  SP

(“intersection” data set, one molecule was excluded in each repeat). It can be seen that SEQ_ADD

gives better accuracy compared with LASSO, despite the smaller number of MD (l1 = 1.0 is used).

BORUTA does  not  select  MD useful  in  OLS regression:  the  achieved  accuracy  is  not  high.  The

accuracy for IL is worse compared with the accuracy for polymeric SP. 

Table 3.  Cross-validation accuracy of RI prediction for different SP (equal set of compounds) for

SEQ_ADD, LASSO, and BORUTA descriptor selection methods. Confidence intervals (p = 0.95, N =

200) are shown, the MD selection procedure was performed 200 times with exclusion of one random

compound from the data set.

SEQ_ADD LASSO BORUTA

Stationary phase RMSE MdAE RMSE MdAE RMSE MdAE

Bis4MPyC6 107.6 ± 1.3 67.1 ± 1.5 123.2 ± 1.8 82.3 ± 1.8 256.2 ± 2.1 157.9 ± 3.2

Bis2MPyC9 73.4 ± 1.2 40.0 ± 0.9 93.8 ± 1.1 69.0 ± 1.2 172.5 ± 1.3 110.7 ± 2.1

Hex4MPy 100.0 ± 2.4 62.2 ± 1.7 110.9 ± 0.9 80.1 ± 1.7 205.7 ± 1.8 131.8 ± 1.4

PEG 68.4 ± 0.9 35.8 ± 1.0 84.0 ± 1.1 67.3 ± 1.4 134.9 ± 0.9 89.1 ± 1.5

DB-5 26.3 ± 0.3 16.6 ± 0.3 47.8 ± 0.4 25.3 ± 0.5 52.5 ± 0.5 27.3 ± 0.8
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3.4. Retention indices for polyethylene glycol as new molecular descriptors

By definition, a MD is a value that can be easily computed from the structure of a molecule and

that characterizes (“describes”) the structure of a molecule. If we have a model that predicts the RI for

a common  SP (e.g.,  polyethylene glycol) and was trained on a large data set (e.g., the NIST 17 RI

database) unrelated to the considered data, we can use the predicted RI as the new MD [26]. 

Table 4 shows the accuracy of predictions for three IL-based SP and various prediction models.

Table 5 shows examples of linear QSRR equations for RI prediction. It can be clearly seen that the use

of RI_PEG_LM and RI_PEG_DL descriptors improves the accuracy. The improvement of the accuracy

is highest for Hex4MPy and Bis2MPyC9 and lowest for Bis4MPyC6. This is consistent with the fact

that Bis4MPyC6 is the most polar and the most different from PEG. These MD are the most significant

or  are  among  the  most  significant  for  all  three  IL-based  SP and  for  all  MD selection  methods.

Examples of corresponding plots that show the MD importance values when these new MD are used

are shown in Fig.  9AB.  We did not use these MD together due to the same meaning and the strong

correlation. 

It should be noted that neither  RI_PEG_LM nor  RI_PEG_DL is enough to predict  RI on IL-

based SP alone without the use of other MD.  It means that the selectivity and the retention mechanism

for  IL-based  SP is considerably different from  such  on  polyethylene  glycol.  Fig.  9C shows  the

dependence of prediction accuracy on the number of MD when RI_PEG_LM or RI_PEG_DL is used

(SEQ_ADD MD selection method, 200 repeats). For both  MD in all repeats, these  MD are always

selected in the first iteration. It is clearly seen that the use of these MD alone does not allow achieving

reasonable accuracy and it works well together with other MD. 

Table 4 and Fig.  9D demonstrate that the accuracy of prediction when using the RI_PEG_DL

descriptor is better than when using the RI_PEG_LM descriptor. However, RI_PEG_DL is calculated

by a very complex “black box” deep learning model, and this model is not an interpretable model at all.

In contrast, RI_PEG_LM is calculated by an easily interpretable linear model based on understandable

MD.  Thus, when RI_PEG_LM is used as MD, the overall model for IL is a linear model based on MD.

Supplementary material,  section  S2 shows the linear model that was used in order to calculate the

RI_PEG_LM descriptor in explicit form.  It should also be noted that when this model was trained, the

training set did not contain the molecules that are contained in the data sets for IL-based SP.  This way

we ensured that there was no “data leak” and the molecules used for testing were not seen by the model

at any stage of training.
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Fig.  9. A –  probability  p to  be  selected  in  the  SEQ_ADD  procedure  for  various  MD  including
RI_PEG_LM  for  Bis4MPyC6  SP  (all  available  compounds);  B  –  average  coefficient  C in  L1-
regularized linear regression for various MD including RI_PEG_LM for Bis4MPyC6 SP (all available
compounds);  C  –  dependence  of  the  accuracy  (RMSE)  of  RI  prediction  for  Bis4MPyC6  SP (all
available compounds) on the number of MD for various sets of MD; D – accuracy (RMSE) of RI
prediction for various sets of MD (ordinary least squares) and accuracy of RI prediction using a model
developed using previously developed software [26]. Error bars show the confidence interval (p = 0.95,
N = 200, except for the bars related to the SVEKLA software, in this case N = 20).

Table 4. Cross-validation accuracy of RI prediction for different MD sets and SP. Confidence intervals

(p = 0.95, N = 200 for all cases except for the SVEKLA software) are shown. Each time, 25 molecules

were excluded except for the SVEKLA software. For SVEKLA, N = 20 and no random exclusion was

used.

Bis4MPyC6 Bis2MPyC9 Hex4MPy

Descriptor set RMSE MdAE RMSE MdAE RMSE MdAE

Only RDKit 140.3 ± 1.5 72.5 ± 1.5 159.1 ± 1.8 89.7 ± 1.7 172.2 ± 1.7 90.1 ± 1.5

With RI_PEG_LM 130.4 ± 1.4 61.4 ± 1.4 138.7 ± 1.5 66.6 ± 1.2 151.0 ± 1.4 70.0 ± 1.0

With RI_PEG_DL 92.8 ± 1.0 48.9 ± 1.1 108.6 ± 1.8 53.8 ± 1.0 100.1 ± 1.1 49.0 ± 0.9

SVEKLA software [26] 119.1 ± 2.4 51.3 ± 2.5 136.4 ± 2.8 51.0 ± 1.5 110.9 ± 1.0 55.4 ± 1.7
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Table  5. Examples  of  linear  equations  for  RI  prediction.  Full  data  sets  are  used  for  each SP,  25

molecules are randomly excluded from each data set. 

Descriptor set Stationary
phase

Equation

Only RDKit Bis4MPyC6 1272.6 - 129.2 * fr_para_hydroxylation + 774.4 * fr_benzene + 
11.8 * MolMR - 98.7 * VSA_EState8 - 11.2 * EState_VSA8 + 
19.6 * SMR_VSA6 + 19.1 * PEOE_VSA7 + 177.5 * Chi2n + 
130.8 * BCUT2D_MRHI - 97.5 * MaxAbsEStateIndex 

With RI_PEG_LM Bis4MPyC6 - 472.7 + 0.9299 * RI_PEG_LM - 240.1 * fr_aldehyde + 16.2 *  
VSA_EState7 - 8.7 * EState_VSA8 - 14.2 * EState_VSA2 + 21.8
* SlogP_VSA2 + 20.4 * SMR_VSA7 + 11.6 * PEOE_VSA7 + 
101.7 * BCUT2D_MRHI + 91.6 * MinAbsEStateIndex 

With RI_PEG_DL Bis4MPyC6 - 154.3 + 1.1221 * RI_PEG_DL + 31.6 * fr_unbrch_alkane - 
85.0 * fr_para_hydroxylation - 68.2 * MolLogP - 30.3 * 
VSA_EState5  - 7.4 * EState_VSA2 + 16.5 * SlogP_VSA2 + 
17.6 * SMR_VSA7 + 10.2 * PEOE_VSA7 + 3.4 * 
BCUT2D_MWHI 

With RI_PEG_DL Bis2MPyC9 - 129.4 + 1.0446 * RI_PEG_DL - 132.3 * fr_para_hydroxylation
+ 212.0 * fr_nitro_arom_nonortho - 17.2 * VSA_EState8 + 24.0 
*  VSA_EState6 + 19.9 * EState_VSA10 + 10.3 * TPSA - 16.1 * 
SlogP_VSA7 - 6.3 * SlogP_VSA3 - 591.6 * MaxPartialCharge 

With RI_PEG_DL Hex4MPy 2043.6 + 1.3862 * RI_PEG_DL - 160.9 * fr_aryl_methyl - 182.6
* fr_C_O_noCOO + 60.7 * VSA_EState4 + 31.4 * SMR_VSA1  
+ 5.7 * PEOE_VSA7 - 645.4 * BCUT2D_LOGPHI - 101.3 *  
BCUT2D_MWLOW - 122.2 * FpDensityMorgan1 - 1.4 *  
HeavyAtomMolWt 

3.5. Comparison with previously published software 

A complex two-stage method was recently developed [26] that allows using all benefits of deep

learning for RI prediction using training sets with ~100-200 compounds. The idea of this  software is

similar  to  the  considered  above:  deep learning models  predict,  using  a molecule  structure,  RI for

multiple common SP (siloxanes, polyethylene glycol), and then these predicted  RI are used as input

features for a new model for the given SP and data set. Together with these features (RI for a set of SP),

other  MD are also used. The difference with the approach considered in this work is that this set of

features is fed to a linear support vector regression model (with a non-linear kernel) with predefined

parameters without any MD preselection. This software (we call it SVEKLA) [26, 35] allows creating a
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machine learning model for any SP easily, but these models are not interpretable and use an excessive

set of features.

Table 4 demonstrates the accuracy achieved by SVEKLA software and the accuracy achieved

by linear regression. The accuracy achieved by SVEKLA software is approximately the same or even

worse compared with the use of linear equations with the RI_PEG_DL descriptor. But this model uses

much less features (and only one deep learning-based MD), is linear and is much more interpretable.

RI_PEG_LM  is  calculated  using  a  linear  model.  The  use  of  this  MD  is  the  most  simple  and

interpretable way to accurately predict RI for IL. A graphical comparison of the accuracy of several

different approaches is shown in Fig. 9D.

3.6. CHERESHNYA – interactive software for QSRR studies in gas chromatography

We  have  developed  the  interactive  software  for  QSRR  studies  in  GC  and  called  it

CHERESHNYA, the example of a screenshot is shown in Fig. 10.  This software allows the interactive

MD generation (2D MD supported by RDKit and CDK packages), MD selection, building of linear

(OLS) models for QSRR in GC. The newly developed RI_PEG_LM and RI_PEG_DL descriptors are

also supported, as well as similar MD for polydimethylsiloxane, 5%-phenyl-methylpolysiloxane, 94%-

dimethyl-6%-cyanopropyl-phenyl-polylsiloxane.  All  MD  selection  methods  listed  in  Table  1  and

described  in  section  2.4.2  are  implemented  in  this  software.  The  software  is  written  in  the  Java

programming language, Smile framework [40] is used. PLS-VIP and GA methods are implemented

using  Scikit-learn  package.  The  molecular  editor  JSME  [45]  is  integrated  into  the  software  for

interactive MD computation and RI prediction. The figures (heatmaps, bar plots) shown in this article

are generated using this software.  The reproducibility study can be automatically provided using it.  
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Fig. 10. Screenshot of the CHERESHNYA software (two copies of software run).

The software is free, open-source and available under the GNU General Public License (version

3.0), all components and dependencies are also free software. The prebuilt binaries are available for

Linux and Windows operating systems. The software can be downloaded from the repository:

https://github.com/mtshn/chereshnya

4. Conclusions

In this work, a data set of retention indices on three ionic liquid-based stationary phases was

acquired for a diverse set of molecules of various classes. This is the first such data set to be published.

This  data  set  can  be  used  in  further  QSRR studies  and as  a  benchmark in  works  about  machine

learning.  Using  this  data  set,  a  study  devoted  to  reproducibility  of  the  descriptor  selection  and

descriptor importance estimation was carried out. 

Methods  for  selecting  descriptors  for  constructing  linear  quantitative  structure-retention

relationships are not reproducible with respect to changes in the data set. Different selection methods

give different results. Conclusions about the retention mechanism and comparison of stationary phases

based on such quantitative relationships must be made with extreme caution. Some previous works did

not  carry  out  any  checks  on  the  reproducibility  of  the  selection  of  descriptors,  but  qualitative
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conclusions were drawn from the fact which descriptors were selected. Such conclusions are unreliable

and should be avoided.

The selectivity of the considered stationary phases significantly differs from the selectivity of

polyethylene  glycol.  The  retention  on  ionic  liquids  cannot  be  directly  computed  using  only  the

retention index on polyethylene glycol. However, the retention index on polyethylene glycol predicted

using a machine learning model (trained on other, non-overlapping data) is a very good descriptor for

predicting retention indices on ionic liquids. Sufficiently accurate linear models for retention index

prediction were developed for these stationary phases.

The  interactive  software  with  a  graphical  user  interface  for  QSRR  studies  in  gas

chromatography that includes calculation of various descriptors, descriptor selection and other tasks

was developed. This software is free, open-source and can be downloaded from the above-mentioned

Github repository.
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