
Reaction Rebalancing: A Novel1

Approach to Curating Reaction2

Databases3

Tieu-Long Phan1,2*†, Klaus Weinbauer1,3†, Thomas Gärtner3,4
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Abstract32

Purpose: Reaction databases are a key resource for a wide variety of applica-33

tions in computational chemistry and biochemistry, including Computer-aided34

Synthesis Planning (CASP) and the large-scale analysis of metabolic networks.35

The full potential of these resources can only be realized if datasets are accurate36

and complete. Missing co-reactants and co-products, i.e., unbalanced reactions,37

however, are the rule rather than the exception. The curation and correction of38

such incomplete entries is thus an urgent need.39

Methods: The SynRBL framework addresses this issue with a dual-strategy: a40

rule-based method for non-carbon compounds, using atomic symbols and counts41

for prediction, alongside a Maximum Common Subgraph (MCS)-based technique42

for carbon compounds, aimed at aligning reactants and products to infer missing43

entities.44

Results: The rule-based method exceeded 99% accuracy, while MCS-based45

accuracy varied from 81.19% to 99.33%, depending on reaction properties. Fur-46

thermore, an applicability domain and a machine learning scoring function were47

devised to quantify prediction confidence. The overall efficacy of this framework48

was delineated through its success rate and accuracy metrics, which spanned from49

89.83% to 99.75% and 90.85% to 99.05%, respectively.50

Conclusion: The SynRBL framework offers a novel solution for recalibrating51

chemical reactions, significantly enhancing reaction completeness. With rigorous52

validation, it achieved groundbreaking accuracy in reaction rebalancing. This sets53

the stage for future improvement in particular of atom-atom mapping techniques54

as well as of downstream tasks such as automated synthesis planning.55

Keywords: reaction databases, unbalanced reactions, data curation, SynRBL, rules,56

maximum-common-subgraph57

1 Introduction58

Large-scale reaction databases such as the United States Patent and Trademark59

Office (USPTO) database [1] and the commercial database Reaxys [2] cataloge mil-60

lions of chemical reactions and serve to enable data-driven approaches in chemistry.61

Reaxys, hosting over 55 million manually curated reactions, has become a cornerstone62

for deploying deep-learning neural networks in retrosynthesis [3, 4, 5, 6, 7], robotic63

chemistry [8], and the determination of optimal reaction conditions [9].64

USPTO is the largest public collection of chemical reactions, comprising more than 365

million entries mined from approximately 9 million US patents covering 1976 to 2016.66

Its impact on cheminformatics and synthetic chemistry is significant, and as a public67

resource, it has particular impact in methods development. It plays a pivotal role in the68

advancement of reaction database analysis [10], forward [11, 12, 13] and backward [14]69

synthesis prediction, and yield prediction [15, 16]. The database has been instrumental70
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also in reaction classification [17, 18], atom-to-atom mapping [19, 20], and synthesis71

rule clustering [21].72

Despite the rapid advancements of databases, data quality remains a significant73

issue in particular for machine learning applications in chemistry [22]. A particularly74

serious problem is that omission of co-reactants or co-products. For example, less than75

12% of the single step reactions in Reaxys analyzed to study the exploration history76

of chemical space [23] were balanced. This problem has multiple roots, including his-77

torical and procedural practices. These deficiencies are attributed to the limitations78

of text mining, which struggles with the variability of publication formats [24], and to79

errors introduced during manual data curation [25].80

Many data-driven applications therefore attempt to ignore the fact that many or81

most reactions are unbalanced and operate directly on such imperfect reaction data.82

This is in particular the case of atom-atom mapping methods. RXNMapper [20] and83

GraphormerMapper [26] apply machine learning for reaction mapping and atom embed-84

ding improvements, respectively, without directly addressing reaction imbalances.85

Jaworski’s rule-based atom-atom-mapper [19], on the other hand, uses graph-theoretic86

considerations that introduce small molecules to achieve stoichiometric balance before87

atom correspondences are inferred. GraphormerMapper was reported to show enhanced88

performance on the Golden dataset of manually mapped and curated reactions [27].89

Its efficacy on unbalanced reactions remains undocumented.90

Several tools dedicated to balacing reactions have become available. CGRTools91

offers a rule-based method for rebalancing reactions by adding small molecules, which92

however has limited success in achieving perfect balance [28]. A hybrid workflow93

[29] combines ChemBalancer’s heuristic methods and ChemMLM’s machine learning to94

enhance molecule prediction. While ChemBalancer focuses on reaction completion,95

lacking precise accuracy metrics, ChemMLM shows promise with small molecules but96

struggles with complex structures [29].97

The SynRBL framework for rebalancing reactions, which we introduce here, com-98

bines two methods: a rule-based approach for missing non-carbon compounds, i.e.99

compounds without carbon atoms like H2O or HCl, and a graph-theoretic approach100

for missing carbon structures. The rule-based method uses atomic symbols and counts101

to determine if reactions are balanced, decomposing molecules into ions to minimize102

redundancy and employing a search strategy that leverages a rule library to identify103

missing molecules.104

For carbon compounds, we consider a maximum common subgraph (MCS) prob-105

lem. This family of combinatorial optimization problems plays an important role in106

structural comparisons in chemistry and biology [30]. It underlies similarity searches107

vital to the preliminary phases of drug discovery, offering metrics for molecular struc-108

ture similarity based on MCS dimensions, in alignment with the principle of similar109

properties [31, 32]. Beyond similarity assessment, MCS analysis is integral to cluster-110

ing processes [33, 34, 35], the identification of matched molecular pairs [36], reaction111

mapping [37, 38], and the alignment of molecules [39]. MCS problems come in two112

flavors, both of which are NP-hard [40]. These two flavors are the maximum common113

induced subgraph (MCIS), which focuses on atom count, and the maximum common114

edge subgraph (MCES), which focuses on edge count. They give notable differences115
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in the analyses of dissimilar molecules [41]. Our MCS-based approach targets carbon116

compound gaps and reactions beyond the rule-based method’s scope by aligning reac-117

tants and products to pinpoint and merge non-aligned segments, generating missing118

compounds. An iterative technique proceeding by overlapping molecules one at a time119

and isolating non-overlapping regions for efficient alignment in subsequent rounds is120

introduced to reduce computational costs.121

2 Method122

2.1 Notation and Preliminaries123

Every chemical reaction r can be written in the form124 ∑
i

s−irX
(q−ir)
i →

∑
j

s+jrX
(q+jr)

j (1)

where s−ir ≥ 0 and s+jr ≥ 0 are the stochiometric coefficients of compounds Xi and Xj125

appearing as a reactant and as product, respectively. The superscripts (q−ir) and (q+jr)126

indicate the charge of the compounds Xi and Xj among the reactants and products,127

respectively. A molecule does not appear as a reactant or product if its stoichiometric128

coefficient vanishes, i.e., if s−ir = 0 and s+jr = 0, respectively. Since we consider only a129

single fixed reaction in the following, we drop the index r from here on.130

Every compound Xi has a well-defined composition expressed by its sum formula.131

We write nai for the number of atoms of type a in compound i. The equilibrium of132

chemical reactions, grounded in the Law of Conservation of Mass by Antoine Lavoisier133

[42], stipulates that all reactions r are balanced in the sense that the total number n−
ar134

of atoms of type a in the reactants equals the total number n+
ar of atoms of type a in135

the products, i.e.,136

n−
a :=

∑
i

nais
−
i =

∑
i

nais
+
i =: n+

a (2)

Similarly, the Law of Conservation of Charge ensures the constancy of total charge,137

crucial in redox and ionic reactions, i.e., it ensures that for every reaction138

q− :=
∑
i

s−i q
−
i =

∑
i

s+i q
+
i =: q+ (3)

In organic chemistry, carbon balancing (expressed as n−
C = n+

C), is essential for tracking139

carbon atoms in bond formations or cleavages, highlighting the significance of carbon140

atom accounting [43]. Balancing carbons is in practice more challenging because the141

imbalance is usually much larger compared to the atoms found in functional groups142

because larger organic molecules are not represented in the reaction data.143

The task of reaction balancing can be expressed as follows. If a reaction is unbal-144

anced, i.e., if n−
a ̸= n+

a for one or more atom types a, find a set of reactants {X(q−k )

k }145

and a set of products {X(q+l )

l } with non-zero stoichiometric coefficients t−k and t+l such146
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that147

n−
a +

∑
k

nakt
−
k =

∑
l

nalt
+
l + n+

a (4)

holds for all atom types a and, likewise, the charges satisfy148

q− +
∑
k

t−k q
−
k =

∑
l

t+l q
+
l + q+ (5)

The practical complication is that (i) the set of possible compounds that may appear149

as additional reactants or products is too large for brute force enumeration, and (ii)150

even if this were possible, not all choices that formally might solve the problem are151

chemically plausible. To simplify the notation further, we can treat the charge as an152

additional formal “atom type” that may take on both positive and negative integer153

values, corresponding to positive and negative charges, respectively. This amounts to154

considering free electrons e– as a special compound. Moreover, we write n−
q and n+

q155

instead of q− and q+ for the net charge in the following. Note that by convention a156

free electron e– corresponds to a charge of −1. In the remainder of this section, we157

describe two alternative strategies for rebalancing chemical reactions.158

2.2 Rule-based Method159

2.2.1 Representation of Molecules and Reactions160

It is common well-known issue that entries in reaction databases often omit one ore161

more simple compounds such as H2O, NH3, and HCl.162

To rebalance such incompete reaction data, we developed a specialized rule library163

to systematically incorporate these missing elements utilizing the cheminformatics164

library RDKit 2023.9.4 [44]. To facilitate computations, we represent the sum formula165

of molecules as a dictionary.166

D := {C1 : n1, C2 : n2, . . . , Cℓ : nℓ, Q : nQ}

Here, each Ca, 1 ≤ a ≤ l, is an atomic symbol, i.e., H, O, or N, and na ∈ N is the167

number of atoms of type Ca in the compound under consideration. We use the special168

symbol Q to denote charge associated with the molecule. Recall that nQ ∈ Z can be169

positive, negative, or zero.170

The rule-based strategy is applied only to reactions that are carbon-balanced. The171

reason is that in organic reactions, the structure of the carbon backbone plays a key172

role, and thus, sum formulas are much less likely to be sufficient to completely describe173

the missing molecules. We also optimized our approach by considering the standard174

representation of ions in chemical equations, such as OH– and H+, instead of NaOH175

or HCl. To achieve this, we restructured our rule library to focus on elementary ions,176

enabling us to interpret compounds such as HCl in terms of their constituent ions, H+
177

and Cl– . This refinement led to a more efficient and compact rule library, as depicted178

in Table S3.179

We denote by D− and D+ the composition dictionaries of the sum of the molecular180

formulae of reactants and products, respectively. That is, D− has entries of the form181
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Ca : n−
a , and D+ has entries Ca : n+

a . The discrepancy between D− and D+ is182

conveniently represented by two dictionaries ∆+ with entries Ca : n+
a − n−

a provided183

n+
a > n−

a , and ∆− with entries Ca : n−
a −n+

a provided n+
a < n−

a . Thus ∆+ accounts for184

the atoms only present in the products and ∆− accounts for the atoms only present185

in the reactants.186

Based on the difference dictionaries ∆± we distinguish four cases:187

- balanced if ∆+ = ∆− = ∅,188

- reactant-dominated if ∆− ̸= ∅ and ∆+ = ∅,189

- product-dominated if ∆+ ̸= ∅ and ∆− = ∅,190

- both-sides if both ∆− ̸= ∅ and ∆+ ̸= ∅.191

If only one of ∆− and ∆+ has a non-charge entry, then the charge difference is192

accounted for in the same dictionary, while the other one is left empty. This is always193

possible since charges may be positive or negative. Instances of the both-sides case,194

i.e., instances with missing atoms in both reactants and products are not considered195

further here. They require a more sophisticated approach and are relegated to the196

MCS-based method in our current implementation.197

Reactant-dominated and product-dominated cases are handled in the same man-198

ner. In the following, we denote by ∆ the single non-empty difference dictionary.199

For example, the database entry200

CH3COOH + C2H5OH −−→ CH3COOC2H5

yields the dictionaries D− = {C : 4,H : 10,O : 3} and D+ = {C : 4,H : 8,O : 2} for201

the reactants and product, respectively, and thus ∆− = {O : 1,H : 2}.202

2.2.2 Molecular Imputation203

For ease of presentation we assume ∆ = ∆−, i.e., atoms are missing on the product204

side only. Otherwise, the role of reactants and products is interchanged.205

We consider a set R of rules that explain (part of) the dictionary ∆ in terms of206

molecules Xk that are added to the product side. Our goal is to find a sequence of rule207

applications which stepwise reduce the difference dictionary ∆ and collect a multiset208

S of molecules. Each r ∈ R is of the form r̂ ⇝ Xr, where r̂ is a dictionary and Xr is209

a corresponding molecule. The application of a rule changes ∆ accordingly. Since our210

rules make use of simple ions, we allow arbitrary changes of charges. The rule211

{O : 1,H : 1,Q : −1}⇝ OH−

applies to dictionary ∆ = {O : 1,H : 2} by adding OH– to the products and updating212

the dictionary to ∆ = {H : 1,Q : 1}. The resulting reaction is still unbalanced and213

reactant-dominated, hence another rule may apply.214

If we reach ∆ = ∅, then adding S to the products balances the reaction. In practice,215

this can be achieved by the basic DFS search [45] outlined in Alg. 1. A call to DFS(∆,216

R, ∅) either returns all (multi)sets of compounds S that balances the reaction and217

leaves an empty dictionary ∆, or it terminates without output. By ∆ ⊖ r̂ we denote218

the dictionary ∆ after being modified by the application of a rule r.219
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Algorithm 1 DFS-like rule application

1: function DFS(∆, R, S)
2: if ∆ = ∅ then
3: Yield S
4: else
5: for each rule (r̂ ⇝ Xr) ∈ R applicable to ∆ do
6: ∆′ ← ∆⊖ r̂ S′ ← S ∪ {Xr}
7: DFS(∆′, R, S′)
8: end for
9: end if

10: end function

The DFS algorithm yields all balancing solutions. These are passed on to the post-220

processing step (2.2.3). The list R of rules is applied in a fixed order that ensures221

that pattern size, defined as the number atoms in r̂, is non-increasing. Thus, the222

search can be restricted to check only patterns with a valid length. One could use223

the fact that the dictionary obtained by the successful application of several rules is224

independent of the order in which these rules a applied. Keep track of the rule r that225

was applied before DFS(∆,R, S) was called it therefore suffices to disregard in the226

next recursion step all rules that appear before r in R. Moreover, one could abandon a227

recursion step if its path length exceeds the best previously found solution. The latter228

modification however limits the scope of post-processing rules intended to remove229

chemically implausible solutions. Since simple DFS is already comparably fast and the230

search tree is usually quite shallow, such optimization are currently not implemented.231

Continuing the example, after the first match, we may apply the rule {H : 1,Q :232

1} ⇝ H+, which leaves the dictionary ∆ empty. The DFS function first gives S =233

{OH−,H+} and we arrive a the (chemically correct) balanced reaction234

CH3COOH + C2H5OH −−→ CH3COOC2H5 + OH− + H+.

In general, there will be multiple solutions. Thus, continuing the DFS after it yields235

the first result turns it into an exhaustive search. The advantage of listing all solutions236

is that they can be evaluated, and an optimal solution can be identified. Here, we use237

the minimal number of rules as an optimization criterion. This favors matches of large238

partial dictionaries. When multiple solutions exhibit an equivalent minimal count of239

rules ascertained through the DFS algorithm, precedence is accorded to the solution240

that encompasses an ion in the set S.241

2.2.3 Post-processing242

In some cases, the balancing of a reaction using DFS(∆, R, ∅) yields a formally243

correct solution that is chemically implausible. More precisely, S may contain one or244

more molecules that are at least unlikely to be the true reactants or products. In245

some cases, it is possible to find a more plausible rebalancing. Oxygen and halogens246

are typically formed via potent oxidizing agents. Hydrogen, on the other hand, is247
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usually produced in reactions with alkali metals (e.g., lithium, sodium, potassium)248

or hydride compounds. Whether this is the case can be checked after DFS(∆, R, ∅)249

has successfully balanced the reaction. Currently, SynRBL considers only three post-250

processing rules:251

(i) If a free halogen appears as a product, we assume that the solution is invalid and252

reject the completion.253

(ii) If oxygen O appears as a product, we add H2 as a missing reactant and replace254

O by H2O on the product side.255

(iii) If hydrogen H2 appears on the product side and there is neither an alkali metal256

nor a hydride among the reactant, we add O to the reactants and replace H2 by257

H2O on the product side.258

The software is designed in a manner that makes it straightforward to extend this rule259

set.260

2.2.4 Redox Reaction Refinement261

Consider the reduction reaction involving the transformation of acetic acid into262

ethanol: CH3COOH −−→ C2H5OH. The rule-based methodology aptly addressed this263

reaction by introducing two moles of hydrogen H2 to the reactant side and one mole264

of water (H2O) to the product side, thereby yielding the stoichiometric equation:265

CH3COOH + 2 H2 −−→ C2H5OH + H2O

It is essential to acknowledge that the depicted reaction is not viable due to the insuffi-266

cient reactivity of molecular hydrogen (H2) for the reduction of acetic acid. Typically,267

this reaction necessitates a suitable reducing agent, such as lithium aluminum hydride268

(LiAlH4). However, identifying and substituting the appropriate reducing agents can269

be problematic. Some chemists use a convention to simplify chemical notations where270

the reducing agent is represented as [H] without specifying the exact compound. Fol-271

lowing this convention, we have updated the notation from molecular hydrogen (H2)272

to two single hydrogen atoms (H). This new representation indicates the presence of a273

reducing agent distinct from elemental hydrogen. Likewise, the depiction of molecular274

oxygen as O2 has been revised to two single oxygen atoms (O), symbolizing its role275

as an oxidizing agent.276

2.3 MCS-based method277

2.3.1 Determination of Missing Carbon Compounds278

Carbon-unbalanced reactions cannot be meaningfully handled at the level of sum279

formulas. Instead, it is necessary to make use of the structures of reactant and product280

molecules. To this end, we represent both the reactants and the products of a reaction281

as graphs whose connected components are the molecules. In these graphs, vertices282

are labeled by atom types and edges correspond to chemical bonds, annotated by283

their bond type. Since reactions with carbon atoms missing on the reactant side are284

treated in the same way as reactions with missing carbon on the product side, we fix285

the notation as follows:286
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O P O

O

O P O

O

Br

Br

Reactants

Products

Fig. 1: In this example two fragments (shown in red) remain unmatched: Br with a
single bond as cut, and an ethyl group also with a single bond. The cut edges of the
fragments are show as dashed red lines. A merge rule insert a single bond (dashed
green) connecting the end-points of the cut edges.

Let X and Y be the graphs with the larger and smaller number of carbons, respec-287

tively. Moreover, we write X = {X1, X2, . . . , Xk} for the set of connected components288

of X. Assuming that all missing carbons belong to one connected compound Y∗ miss-289

ing on the Y -side of the reaction, we can conclude that Y∗ is in essence a part of some290

Xi. In order to identify this part, we compute, for each Xi ∈ X , a maximum con-291

nected common subgraph Mi = MCS(Xi, Y ). There are several choices for the exact292

definition of the function MCS( . ), which we will discuss in more detail below. For293

the moment we only require that the subgraph Mi is connected and that MCS( . )294

defines an injective map of the vertex set V (Mi) into V (Xi) and V (Y ) where each295

vertex in V (Y ) is only mapped once. We can therefore identify the vertices of Mi296

with a subset of the vertices of Xi and, by a slight abuse of notation, simply write297

V (Mi) ⊆ V (Xi). This, in turn, specifies a (bipartite) matching between vertices of Xi298

and Y that correspond to the same vertex of Mi. In chemical terms, this matching is a299

partial atom-atom map between Xi any Y and thus also between X and Y . To charac-300

terize the part of Xi that does not match Y in more detail, we consider the subgraph301

Ai := Xi[V (Xi) \ V (Mi)] of Xi induced by the unmatched vertices. Moreover, let Bi302

be the edge cut between V (Ai) and V (Mi) in Xi. In chemical terms, Bi denotes the303

bonds that separate Mi and Ai and thus were broken (or formed) by the reaction. A304

vertex in Ai is said to be a boundary vertex if it is incident to a cut edge e ∈ Bi.305

Denote by A := {(Ai, Bi)|Xi ∈ X} the set of auxiliary graphs together with their306

separating edge cuts. We shall refer to these as fragments. By construction, A contains307

the relevant information on the mission compounds because the union
⋃

i V (Ai) is the308

set of missing atoms, and the Bi are bonds on Xi that are broken in order to obtain309

Y . The task at hand, therefore, is to “recombine” the (Ai, Bi) in a way that recovers310

the missing compound(s) Y∗. To this end, we again pursue a rule-based approach. We311

consider two types of rules:312
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Reactants O

O

Products O

O =⇒

Rule-based

O

O

+ H2O

Expand Rule Merge Rule

OH

O

+
HO

Fig. 2: Graph alignment and imputation of missing parts (red). The absence of the
second reactant is solved by applying an expand rule before merging the fragments
with an appropriate merge rule.

Merge rules encode conditions for the insertion of edges between two boundary ver-313

tices, u ∈ V (Ai) and v ∈ V (Aj) located in distinct fragments, see Fig. 1. These rules314

depend on the specific boundary configuration, i.e., the chemical context of the two315

boundary atoms u and v. The application of a merge rule not only inserts a bond316

(labeled edge) between u and v, but also removes the respective cut edges incident to317

u and v from Bi and Bj , respectively. Thus only one merge rule is applied for each318

boundary. The boundaries are then considered resolved in the chemical domain. More-319

over, open boundaries on the same compound are never merged with each other. Hence,320

this step always needs at least two compounds. If only one is available, expand rules321

are applied first to add the missing second fragment. A collection of merge rules is pro-322

vided as configuration file and can easily be extended or modified in SynBRL. Table S1323

in the supplementary lists the currently implemented merge rules. The alignment and324

imputation on a simple example are depicted in Fig. 1.325

Expand rules are used to add nodes to the molecular graph based on the boundary326

configuration of unmatched fragments. More precisely, they can add fragments with327

boundaries to A depending on what is needed for unresolvable cut edges. This is in328

particular the case ifA comprises only a single fragment (A,B). The idea of the expand329

rules is to add additional atoms such that cut edges that do not have a counterpart in330

another fragment are “saturated”. Technically, however, an expand rule only adds the331

required atom, and the actual bond is then formed by a merge rule. Expand rules are332

also specified in a configuration file. Table S2 in the supplementary lists the currently333

implemented merge rules.334

Each application of a merge step reduces the number of cut edges in the fragment335

set A. Repeated rule application either terminates prematurely with no further appli-336

cable rule, or it succeeds replacing all cut-edges, thus resulting in a graph Z without337

remaining boundary vertices. By construction, the reaction X → Y ∪ Z is now car-338

bon balanced. It is not balanced in general. Note that the expand steps have added339

additional non-carbon atoms.340

In practice, most carbon unbalanced reactions are missing a structure at the341

product side of the reaction. Hence, the methodology focuses on reactant-dominant342
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Fig. 3: Example of the ambiguity of the MCS. The product has two distinct isomor-
phisms in the reactant. The first example has one resulting fragment, and the second
has three fragments. Dotted lines indicate the broken bonds.

reactions. In principle, it can be applied to product-dominant reactions as well. How-343

ever, imputing a missing reactant is more challenging than finding a missing product.344

A single reaction equation can often contain multiple reaction steps, leading to mul-345

tiple equally correct intermediate compounds that could be added to the reactants to346

form a balanced reaction. Since these cases are of minor practical relevance, we have347

no attempted to formulate specific rules for product-dominant reactions.348

Fig. 2 shows a simple de-esterification as an example. Here, only one missing frag-349

ment is detected. Because the carbon-oxygen bond is part of an ester group, an expand350

rule adds the missing oxygen atom to the reaction. In the second step, a merge rule351

connects this oxygen with a single bond to the open boundary on the identified frag-352

ment, creating the missing acetic acid. The resulting reactions is carbon balanced but353

unbalanced overall. The rule-based method described in Section 2.2 is now applicable354

to add the missing water molecule to the reactants.355

2.3.2 Computing Maximum Common Molecular Subgraphs356

Maximum common subgraph (MCS)problems come in different variants. Both the357

maximum common induced subgraph (MCIS) problem and the maximum common358

edge subgraph (MCES) problem, as well as their restrictions to connected common359

subgraphs, are NP-hard [40]. Nevertheless they can be solved efficiently for small pairs,360

and thus also for molecules. However, none of the variants of combinatorial optimiza-361

tion problem is guaranteed to identify the “chemically correct” common subgraph,362

i.e., the one that correctly identifies all bonds that change during a chemical reaction.363

While the size of an MCS is uniquely defined, neither the common subgraph nor364

its embedding is unique in general. In the example in Fig. 3 the subgraph isomorphism365

for the red subgraph is not unique. This is a well-known issue for the construction366

of atom-atom-mapping tools. These ambiguities are not easily resolved because the367

combinatorial MCS problems operate on graphs rather than a more detailed model of368

the molecules that encompasses also e.g. hybridization or partial charges.369
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In order to improve over the application of any one particular problem variant370

or algorithm, SynRBL resorts to the heuristics implemented in RDKit [44] and com-371

putes several alternative variants: MCISis addressed using the Fragment Matching and372

Compound Similarity (FMCS) [46], while the Rascal algorithm [47], as implemented373

in the RDKit library, is used to solve the MCES problem. Moreover, an ensemble374

method that amalgamates outcomes from five distinct configurations, detailed in375

Table 1 is used. Each of these specifies additional constraints on the matches allowed376

in the corresponding MCIS or MCES variant. Both the RingMatchesRingOnly and377

the CompleteRingsOnly ensure that atoms in rings match atoms in rings only. In378

graph-theoretical terms this corresponds to singling out the vertices in non-trivial 2-379

connected components. With the latter option, rings must be matched completely. In380

addition, bond order (treated as edge label) can be used as a constraint to prohibit381

the matching on single and double bonds.382

Table 1: MCS Configuration

Configuration 1 2 3 4 5

RingMatchesRingOnly True True False False -
CompleteRingsOnly True True False False -
Ignore Bond Order True False True False -
Algorithm FMCS FMCS FMCS FMCS RASCAL

In order to deal with alternative embeddings of the MCS, we enumerate all maximal383

solutions of MCS(Xi, Y ) and identify the solutions that minimize the number of frag-384

ments resulting from the removal of the common subgraph. In the example in Fig. 3,385

one isomorphism corresponds to the disruption of the amide bond CO–N, thereby386

producing one additional fragment. The alternative embedding of the same common387

subgraph implies breaking bonds containing the amine bond CH3 –N, resulting in388

three additional fragments. Hence, we choose the former embedding.389

In order to keep the computational costs low, we do not compute MCS(X,Y )390

directly, but instead use an iterative approach that successively aligns the components391

Xi ∈ X and removes the matched vertices from Y . More precisely, for each Xi ∈ X we392

compute MCS(Xi, Y
(i−1))) and construct Y (i) by removing all matched vertices from393

Y (i−1). To do this efficiently, we sort X in order of decreasing number of vertices in the394

connected components. As part of each evaluation of MCS(Xi, Y
(i−1))) we also keep395

track of the cut edges between the matched and unmatched vertices, i.e., the broken396

bonds, which in particular allows us to compute the (Ai, Bi) from the iterative MCS397

approach.398

2.4 Interaction of the two Methods399

The rule-based method offers efficient solutions for non-carbon compounds, whereas400

the MCS-based approach focuses on subgraphs to find missing carbon structures.401

Identifying the optimal common subgraph is computationally intensive, making the402

MCS-based method less suitable for non-carbon compounds. Consequently, applying403

the two methods complementarily, each to their respective optimal scenarios, enhances404
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Reaction

n−
C = n+

C

Category?

Rule-based method

Balanced? MCS-based method

Result Rule-based method

Yes

No

Bothside

Reactant or Product

Balance

Yes

No

Fig. 4: Simplified overview of the functional process in SynRBL. The rule-based method
is applied if the reaction is carbon-balanced but otherwise unbalanced in either the
reactant or the product side. The MCS-based method is used if both sides are unbal-
anced, the rule-based method fails, or the reaction has a carbon imbalance in the first
place. The output is either the balanced reaction if the method is successful or the
unmodified input in case SynRBL can not find a solution.

overall efficiency: the rule-based approach for non-carbon compounds and the MCS-405

based method for situations where subgraph analysis is advantageous. The overall406

framework is summarized in Fig. 4. Reactions identified as bothside have a non-carbon407

imbalance on the reactant and product side. These cases are not solvable by the408

rule-based method and are hence subject to the MCS-based method. Both methods409

utilize functions from RDKit [44]. Either for parsing reaction SMILES or handling the410

molecular graph representation in the MCS-based method.411

Just like the rule-based method, the MCS-based method can only solve some imbal-412

ances. More precisely, the approach depends on the identification of the chemically413

correct MCS. The method outlined above, in particular, cannot handle rearrange-414

ment reactions or ring-formations. We shall return to this point in more detail, see415

Section 3.2 below. The MCS-based method also tends to fail if too many compounds416

or boundaries are found, the number of boundaries does not match, or the reaction is417

not carbon balanced afterwards, e.g., because not all carbon atoms in Y are covered418
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by MCS matches. On the other hand, if a solution is found, the confidence is high that419

the result is in fact correct.420

2.5 Datasets and Benchmarking421

SynRBL is not trained on any specific dataset but leverages basic chemical knowledge422

to inform its rule set. In order to assess its performance we use three widely used423

public data collections: (i) an open-access tailored for CASP that incorporates the424

Golden dataset [27], (ii) Jaworski’s dataset [19], and (iii) the USPTO 50k collection [5].425

The latter contains more than 50,000 reactions. We extracted a representative sub-426

set comprising only unbalanced reactions and selected validation datasets based on427

three different strategies, resulting in the following three datasets. The USPTO Ran-428

dom Class dataset (Urnd) was chosen utilizing a stratified sampling method across ten429

varied chemical reaction classes. Additionally, the USPTO Different dataset (Udiff)430

was selected employing a similar stratified strategy, albeit with ∆, the difference in431

the dictionaries representing reactants and products, to ensure a comprehensive rep-432

resentation of the diversity in molecular formulas between reactants and products.433

The USPTO Unbalance Class (Uunb) was selected by randomly choosing from reac-434

tions classified as solved or unsolved by the rule-based method. This selection provides435

insights into carbon and non-carbon imbalances within the chosen reaction classes. To436

ensure reproducibility, the random seed was set to a fixed value (seed value = 42) for437

all random selection processes. The datasets are summarized in Table 2.438

Table 2: Composition of validation datasets in different categories

Dataset Reactions Cunb Balance Unbalance

Golden 1851 729 209 913
Jaworski 637 116 302 219
Urnd 803 328 0 475
Udiff 1589 355 0 1234
Uunb 540 257 0 283

Total 5420 1785 511 3124

In order to benchmark SynRBL we evaluated (1) success of the algorithm, defined as439

the fraction of (unbalanced) instances for which SynRBL proposed a balanced reaction,440

and (2) accuracy, the fraction of proposed solutions for the rebalancing problem that441

are (chemically) correct.442

2.6 Estimating Prediction Confidence443

The results for the five datasets mentioned in Table 2 were checked manually by444

TLP, the first author, an experienced chemist. We reviewed all reactions to determine445

their chemical validity, typically focusing on whether the reaction center or bond446

changes were valid. The results presented in Section 3 provide a good indicator of how447

many of the imputations should be correct. However, validating individual outcomes448

necessitates the expertise of a domain specialist. Predicting a confidence for results449
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from the MCS-based method can be used to filter out potentially wrong imputations450

and increase the accuracy of the method. We observed that the accuracy strongly451

depends on the complexity of the reaction center, for example on the number of bonds452

involved in the reaction. We therefore developed a machine learning model using the453

XGBoost algorithm [48] (version 2.0.3) to predict a confidence value for our imputations454

based on the reaction properties illustrated in Table 3. This model was trained on455

80% of the 2275 reactions from the five datasets that are subject to the MCS-based456

method, and the remaining 20% (455) of reactions are used for testing.457

Table 3: Features for analysis.

Features Description

total carbons The total count of carbon atoms present in the reactions.
total bonds The aggregate number of chemical bonds in the reactions.
total rings The total count of ring structures within the reactions.
fragment count The total number of distinct fragments or molecules present in the reactions.
carbon difference The discrepancy in the number of carbon atoms between reactants and prod-

ucts.
num boundary The count of boundary atom (reaction center) identified by MCS-based

method.
Bond Changes The maximum count of bonds formed in products or broken in reactants, a

feature that requires manual extraction.
bond change merge The net change in the number of bonds between reactants and products post-

MCS process.
ring change merge The net change in the number of rings between reactants and products post-

MCS process.

To optimize the performance of the model in light of the imbalanced dataset,458

where the number of correct and incorrect solutions varies significantly, we employ459

the SMOTETomek algorithm [49] from imblearn 0.12.0 [50]. This technique combines460

the Synthetic Minority Over-sampling Technique (SMOTE) with Tomek links to461

effectively balance the dataset, thereby enhancing the predictive accuracy of our462

model.463

3 Results and Discussion464

3.1 Rule-based Method465

The rule-based approach of Section 2.2 is applicable on the reactions with missing466

compounds among either the reactants or the products, with the stipulation that the467

carbon must be balanced. This method yields a good success rate ranging from 89.60%468

to 99.69% on our five benchmarking sets. It reaches a rather remarkable accuracy level469

of up to 99.91% on the successful instances. These results are summarized in Fig. 6A470

below.471

Analysis of Incorrect Predictions472

A careful inspection of invalid imputations revealed some systematic problems associ-473

ated with specific datasets. Applied to data derived from the USPTO database (Urnd,474
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A

B

D

C

Fig. 5: Examples for incorrect imputations with the rule-based method. Original
database entries are shown in black, imputed compounds in red. (A) An erroneous
reaction from USPTO, with ∆ = {O : 1,Q : 0}, representing a sequence of dehydration
and reduction reactions. (B) A correctly rebalanced reaction from Jaworski dataset
that remains uncertain due to the presence of Hydrogen on the product side. (C)
False imputation in Jaworski dataset where the product is mistakenly standardized as
RMgH instead of RMg+. (D) An error in the rebalanced reaction in Golden dataset,
due to HNO2 being incorrectly identified instead of HNO3 on the reactant side.

Udiff, Uunb) the rule base method produced uncertain predictions associated when475

{O : 1,Q : 0} being on the reactant side during rule application. Consider, for exam-476

ple the conversion of ethanol to ethane in Fig. 5A, which is usually performed by477

dehydration and subsequent hydrogenation or by application of hydroiodic acid HI.478

In the Jaworski dataset, two reactions were flagged as uncertain or invalid. The479

first instance involved the presence of hydrogen in the product without alkali met-480

als or hydrides. This anomaly was traced back to a precursor reaction involving a481

bromine radical Br · , from which the the generation of a hydrogen radical H · is incor-482

rectly inferred. Instead of separate radicals, the formation of hydrogen bromide HBr483

is expected, see Fig. 5B. Further scrutiny revealed inaccuracies e.g. in Grignard Reac-484

tions, where the product was incorrectly identified as RMgH instead of RMg+. This485

error could be attributed to the standardized procedures of the original database,486

which led to the improper imputation of hydrogen on the reactant side. The appro-487

priate correction would be the addition of H+ to the reactant side and RMg+ to the488

product side, Fig. 5C.489

In the Golden dataset we found 22 reactions with ambiguous status due to invalid490

reactants. Notably, the formation of nitrobenzene from benzene (id 481, Fig. 5D),491

erroneously specified nitrous acid HNO2 instead of nitric acid HNO3 as the reagent.492
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Fig. 6: Validation results for the rule-based method (A), the entire framework (B),
MCS-based method (C), and the MCS-based method with an applied confidence
threshold of 50% (D). Comparing (C) and (D) shows the tradeoff in success rate for
higher accuracy when thresholding the predicted confidence. Because validation was
only done on data that was not used in training (20% of the data), (D) has noticeably
larger uncertainty margins.

The invalid reactions are enumerated in a dedicated supplementary file. A recurrent493

pattern observed in these reactions is that the rule-based method infers a singular494

oxygen O to be added to the reactant side.495

Overall, however, the rule-based method rarely produces chemically incorrect or496

questionable imputations, at least when reactants and products are chemically accu-497

rate. The presence of isolated O or H in the prediction, on the other hand, appears to498

serve as an indicator for errors in the database entry.499

The rule-based approach is challenging with respect to computational cost if500

the compounds contain a larger number of carbon atoms and, in particular, if the501
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number of carbon isomers becomes large. We also note that the method has diffi-502

culties with carbon-imbalaneced compounds in general. For example, in the reaction503

CH3COOC2H5 −−→ CH3COOH, a naive solution might suggest adding ethylene C2H4504

to balance the product side. The correct solutions, however, is to add water H2O to the505

reactants and ethanol C2H5OH to the products. Since such examples are abundant,506

we do not apply the rule-based method to carbon-imbalanced reactions.507

3.2 MCS-based Method508

The MCS-based method succeeds in 81% (Golden dataset) to 100% (Urnd of the test509

cases, see Fig. 6C and Supplementary Table S4. Fig. 7 depicts some reactions that510

were successfully balanced by the MCS-based method. It showcases the application of511

a list of different expand and merge rules. In contrast to the rule-based approach, the512

prediction accuracy on successful cases is not fully satisfactory on all test sets. While513

the predictions are close to perfect on the USPTO-based datasets, and about 95% for514

the Jaworski’s data, only about 80% are achieved on the Golden set. The differences515

in success rates between the datasets can be attributed primarily to differences in516

the frequency of reactions that cannot be balanced by the MCS-based approach, in517

particular rearrangement reactions, ring-formations, or complex reactions with many518

compounds.519

Analysis of Incorrect Predictions520

Incorrect predictions arise in particular for complex reactions, and especially with521

multi-step reactions. Fig. 8 illustrated examples of a ring-forming reaction and a rear-522

rangement reaction where the MCS-based approach fails to identify a valid solution.523

The structure highlighted as the MCS search result, particularly in Fig. 8B, exhibits524

four boundaries, indicating an erroneous outcome from the MCS-based method.525

Such reactions, not amendable by this method, are left unbalanced and represent a526

limitation of our approach in its current form.527

In order to better understand other factors contributing to incorrect predictions,528

we investigated the influence of different features on the accuracy—see also Section 2.6.529

Not surprisingly, the accuracy decreases with indicators for the “complexity” of the530

reaction, particularly with the inferred number of broken/formed bonds, the total531

number of substances in the reaction, and the number of boundaries. A similar trend is532

found for the number of different bonds and cycles after graph merging. In contrast, the533

performance does not depend systematically on the carbon imbalance |n+
C − n−

C |. The534

total number of compounds in a reaction exceeds 6 only in some entries in the Golden535

dataset since it also reports catalysts and solvents. This suggests that the performance536

declines with more fragments due to potential substance-matching misalignments. In537

some cases, no boundaries were detected in the MCS step. The lack of accuracy in538

the absence of a boundary strongly suggests to exit without success if no boundary is539

found, since the result is almost always wrong anyway. The details of this exploratory540

data analysis are summarized in Supplementary Fig. S2.541

In order to understand the factors influencing accuracy in more detail we performed542

a feature importance study summarized in Fig. 9A. The feature importance is the543

average gain, i. e. the relative contribution of each feature for a given prediction over544
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A

B

C

E

D

Fig. 7: Some examples of reactions solved by the MCS-based method showcasing
different merge and expand rules. Data base entries are shown in black, imputed
compounds in red. (A) Append compounds without forming a bond. (B) Append and
merge I on Ether break. (C) Append and merge O on Ether break. (D) Append and
merge O on Amide break. (E) Create new double bond with P. The double bond
between O1 and P in the reactant is changed to a single bond in the product and the
oxygen O2 from the oxan-4-one creates a double bond with P.

A

B

Fig. 8: Two examples that are not solvable by the MCS-based method. The MCS is
not meaningful for these types of reactions. (A) Example for an unsolvable oxidation
and rearrangement reaction. (B) Example for an unsolvable ring forming reaction.
Bold lines indicate the identified MCS.
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Fig. 9: Feature importance analysis provides a detailed visualization of various factors
influencing the precision of the MCS-based method.

.

all targets. In line with the exploratory analysis described above, we observed that545

the total number of carbons, bonds, rings, and the difference in carbon content within546

the reaction does not significantly influence the performance of SynRBL. Surprisingly,547

the disparity in the bond count after graph merging emerged as the most impact548

factor, surpassing even the number of bond changes in predictive power. In order to549

investigate the interplay between the most informative factors, we also considered the550

co-occurances of the number of different bonds after merging, the number of different551

rings after merging, the count of boundaries detected, and total number of compounds,552

see Fig. S3.553

Taken together, this analysis establishes parameters for which we can expect reli-554

able rebalancing results: bond changes after merging should not exceed three; ring555

changes should be fewer than two; reaction not involve more than four molecules, and556

only one or two boundaries should be detected.557

As a more quantitative approach, we devised a scoring function that summarizes558

the feature analysis and allows to estimate the confidence level of our predictions,559

see Section 2.6. The performance of our model is detailed in Supplemental Fig. S4,560

showcasing strong predictive capabilities with an F1-score (micro) of 0.92, an AUC of561

0.94, and an AP of 0.81. Using a confidence threshold of 50%, leads to the expected562

increase in accuracy of the MCS-based predictions for both Jaworski’s dataset and the563

Golden dataset, at a moderate decline in success rate, see Fig. 6D. This observation564

underscores the robustness of the method in enhancing prediction reliability through565

the strategic application of a confidence threshold.566
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3.3 Performance of the Combination of Rule-base and567

MCS-base Components568

The interplay of the rule-based and MCS-based methods described in Section 2.4569

results in a satisfactory performance of the SynRBL framework. Fig. 6C shows that570

the tool reaches success rates between 89.8% (Golden) and 100% (Urnd) at accu-571

racies between 90.8% (Golden) to 99.4% (Urnd). More detailed values are listed in572

Supplementary Table S4. The significantly lower performance metrics observed within573

the Golden dataset can be attributed to the inherent complexity of the its reactions,574

which also include the presence of solvents and catalysts. These elements introduced575

additional variables into the molecular alignment process, thus posing significant chal-576

lenges to the predictive capabilities of this framework. In addition, we evaluated the577

computational efficiency of our methods, observing an average processing time of 46578

seconds per 1000 reactions on an average workstation where one-third of the reactions579

were solved by MCS. In our comparative analysis, our method surpassed the current580

state-of-the-art, ChemMLM [29], demonstrating superior performance in both success581

rate and accuracy. The reported outcomes for ChemMLM showed a success rate fluctu-582

ating between 4.1% to 42.7% on the USPTO dataset. In contrast, SynRBL demonstrates583

a remarkable success rate of 99% or higher on the same dataset. Moreover, while the584

accuracy of ChemMLM varied widely (from 100% for shorter SMILES strings to a mere585

8.2% for larger molecules). SynRBL’s accuracy remains robust, largely unaffected by586

molecular size, and consistently exceeds 98% across the USPTO dataset.587

4 Conclusion588

In this contribution, we investigated the SynRBL framework as an innovative approach589

for the rebalance of incomplete reaction entries in chemical databases. SynRBL590

combines a rule-based approach for carbon-balanced reactions and the MCS-based591

workflow for carbon-unbalanced reactions. The latter combines variants of the MCIS592

and MCES problem to increase the fraction of instances in which chemically correct593

subgraph embedding is found. For the MCS-based component, moreover, a trained594

feature-based machine learning model was used to estimate the prediction confi-595

dence. SynRBL was rigorously evaluated based on five meticulously curated validation596

datasets, encompassing a subset of the Golden dataset, the Jaworski dataset, and597

three variants of the USPTO 50k database. Overall, the framework achieves unprece-598

dented accuracy, exceeding 99% on the subset of database entries that it can process599

successfully. These cover more than 90% of the unbalanced reactions in the datasets600

used for evaluation. As a by-product of the rule-based analysis, we observed that the601

signature O : 1, Q : 0 referring to a single oxygen is as a strong indication for an error602

in database entry.603

The current implementation of SynRBL is limited to product-dominated or604

reactant-dominant reaction entries. Moreover, it does not cover certain types of605

carbon-unbalanced reactions, in particular cyclizations and other complex rearrange-606

ment reactions that are difficult for the MCS-based branch of the framework. The607

SynRBL software is designed, however, to facilitate future extensions of the rule sets as608

well as of the MCS strategies. SynRBL is not based on a machine learning approach.609
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Instead, it makes use of “textbook-level” knowledge of chemical reactions in combi-610

nation with conceptually simple optimization problems. While it does not cover all611

situations and hence leaves a few percent of the database entries unbalanced, this612

approach has the advantage of being independent of specific training data and thus613

of biases inherent in specific data sources. We observed that it indeed yields robust614

results for datasets with very different chemical content.615

Reaction rebalancing with SynRBL can provide much larger and more diverse sets616

of stoichiometrically balanced reactions as a basis for a wide variety of data-driven617

tasks in cheminformatics. In particular, we expect that better atom-atom-maps can618

be obtained from such balanced data since the mappers are freed from the need619

to solve the reaction balancing problem simultaneously. We expect beneficial effects620

also on learning approaches, e.g. in forward prediction, retrosynthesis planning, and,621

notably, the elucidation of reaction mechanisms. Finally, representations of reaction622

mechanisms in the form of graph transformation rules [51] could be employed as an623

orthogonal validation strategy, particularly on data sources where named reactions are624

annotated in the metadata.625
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Supplementary Information801

Comparison of the MCS Variants802
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Fig. S1: Benchmarking analysis of MCS search configuration. (A) represents the
reference molecules. (B-F) illustrate the MCS results from various configurations. (G)
demonstrates the comparative analysis among different configurations and an ensemble
method.

As described in the main text, the MCS problem was solved in several different803

versions (“configurations”), none of which is guaranteed to always identify the chem-804

ically correct common subgraph. We benchmarked the different variants and found805

that they are at least in part complementary. As depicted in Fig. S1, spanning panels806

A through F, three distinct cases of MCS were identified, where configurations 1 to 4807

were MCIS, while configuration 5 was MCES. Notably, the MCES approach demon-808

strated a capability to expedite the resolution of the NP-hard subgraph isomorphism809
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problem more efficiently than its MCIS counterpart. However, its performance effi-810

cacy was suboptimal, a trend observable in Fig. S1G. This discrepancy is likely due811

to the significant role of bond modifications in chemical reactions, highlighting the812

dependence of the MCES search on bond-defined substructures. Remarkably, Config-813

uration 3 achieved superior performance, disregarding bond order and complete rings,814

excluding comparisons with ensemble methods.815

These finds emphasize the well-known fact that any particular variant of the816

graph-theoretical MCS problem does not always identify the chemically correct atom817

correspondences between molecular graphs. The combination of multiple variations, as818

implemented in the ensemble method, can achieve at least a moderate improvement,819

Figure S1G. However, given the additional computational cost of computing multiple820

MCS solutions, Configuration 3 appears to be best pragmatic choice given its perfor-821

mance and reduced computational requirements. This observation that the ensemble822

approach improved chemical correctness, albeit slightly, however, can serve as a natural823

starting point for the development of an improved combinatorial atom-atom-mapping824

method.825
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Additional Figures and Tables826

Table S1: Merge Rules; FG: Functional Group

Cond. u Cond. v Action u Action v Bond

O
FG: Carbonyl

P
Pattern: P=O

- change bond
P=O to P-O

double

O
FG: Carbonyl

P
Pattern: !P=O

- - double

O
FG: Enol, Alcohol, Phenol

P - - single

S X - - no bond
N,O,X N,O,X - - no bond

* * - - single

Table S2: Expand Rules; FG: Functional Group; cut edge: u - v

Cond. u Cond. v FG Expand

C O Ether I
C S Thioether I
C O Ester O
C S Thioester O
C N Amide O

Mg, Zn, Si, B * * O
O !O, !N * O
N !O, !N * O
C C * O

3
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Fig. S2: Exploratory data analysis of MCS-based method performance. (A) Accu-
racy fluctuates slightly and declines when carbon imbalance exceeds seven. (B) The
method performs best with less than four substances. (C) Accuracy drops with over
five bond changes, indicating difficulty with rearrangement reactions. (D) Post-MCS
bond differences between reactants and products show a decreasing trend similar to
bond changes, with optimal performance below three. (E) Ring differences between
reactants and products post-MCS show a minor decreasing trend with an increasing
number of ring differences. (F) The detection of boundary atoms or reaction centers
by MCS is crucial; the method fails without boundary atom detection and underper-
forms when the number exceeds two.
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Fig. S3: Contour plots illustrate the confidence region formed by pairs of features.
The warm colors in the contour plot represent regions of high confidence, indicat-
ing areas where our method demonstrates high accuracy. Conversely, the cool colors
denote regions of lower confidence, reflecting areas where our method’s accuracy is
comparatively lower.
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6

https://doi.org/10.26434/chemrxiv-2024-hltm9 ORCID: https://orcid.org/0000-0002-3532-2064 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-hltm9
https://orcid.org/0000-0002-3532-2064
https://creativecommons.org/licenses/by/4.0/


Table S3: Library of substitution rules r̂ ⇝ Xr for Section 2.2.2

Xr r̂
Formula SMILES Composition

O [O] {O: 1, Q: 0}
Cl2 ClCl {Cl: 2, Q: 0}
N−

3 [N-]=[N+]=[N-] {N: 3, Q: -1}
H [H] {H: 1, Q: 0}
F2 FF {F: 2, Q: 0}
Cl2 ClCl {Cl: 2, Q: 0}
Br2 BrBr {Br: 2, Q: 0}
I2 II {I: 2, Q: 0}
H+ [H+] {H: 1, Q: 1}
Na+ [Na+] {Na: 1, Q: 1}
Li+ [Li+] {Li: 1, Q: 1}
K+ [K+] {K: 1, Q: 1}
Ca2+ [Ca+2] {Ca: 1, Q: 2}
Mg2+ [Mg+2] {Mg: 1, Q: 2}
Ba2+ [Ba+2] {Ba: 1, Q: 2}
Al3+ [Al+3] {Al: 1, Q: 3}
Zn2+ [Zn+2] {Zn: 1, Q: 2}
Cu2+ [Cu+2] {Cu: 1, Q: 2}
Cu+ [Cu+] {Cu: 1, Q: 1}
F− [F-] {F: 1, Q: -1}
Cl− [Cl-] {Cl: 1, Q: -1}
Br− [Br-] {Br: 1, Q: -1}
I− [I-] {I: 1, Q: -1}
N2 N#N {N: 2, Q: 0}
O2 O=O {O: 2, Q: 0}
S2− [S-2] {S: 1, Q: -2}
H3N N {N: 1, H: 3, Q: 0}
H2O O {O: 1, H: 2, Q: 0}
H2O2 OO {O: 2, H: 2, Q: 0}
H4N+ [NH4+] {N: 1, H: 4, Q: 1}
OH− [OH-] {O: 1, H: 1, Q: -1}
NH3 N {N: 1, H: 3, Q: 0}
NO−

2 O=N[O-] {N: 1, O: 2, Q: -1}
NO−

3 [N+](=O)([O-])[O-] {N: 1, O: 3, Q: -1}
NH−

2 [NH2-] {N: 1, H: 2, Q: -1}
SO2−

4 [O-]S(=O)(=O)[O-] {S: 1, O: 4, Q: -2}
PO3−

4 [O-]P(=O)([O-])[O-] {P: 1, O: 4, Q: -3}
SO2−

3 [O-]S(=O)[O-] {S: 1, O: 3, Q: -2}
IO−

3 [O-]I(=O)=O {I: 1, O: 3, Q: -1}
H3NO NO {N: 1, O: 1, H: 3, Q: 0}
H4NO+ [NH3+]O {N: 1, O: 1, H: 4, Q: 1}
B(OH)3 B(O)(O)O {B: 1, O: 3, H: 3, Q: 0}
H3BO2 B(O)(O) {B: 1, O: 2, H: 3, Q: 0}
CO2 C=O {C: 1, O: 2, Q: 0}
SOCl2 O=S(Cl)Cl {S: 1, O: 1, Cl: 2, Q: 0}
H4N2O2S NS(N)(=O)=O {N: 2, S: 1, O: 2, H: 4, Q: 0}
HClO3S O=S(=O)(O)Cl {S: 1, O: 3, Cl: 1, H: 1, Q: 0}
B(OH)2Cl B(O)(O)Cl {B: 1, O: 2, H: 2, Cl: 1, Q: 0}
B(OH)2Br B(O)(O)Br {B: 1, O: 2, H: 2, Br: 1, Q: 0}
B(OH)2I B(O)(O)I {B: 1, O: 2, H: 2, I: 1, Q: 0}
H2ClNO2S NS(=O)(=O)Cl {N: 1, S: 1, O: 2, Cl: 1, H: 2, Q: 0}
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Table S4: Comprehensive Performance Metrics of the SynRBL

Dataset Jaworski Golden Uunb Urnd Udiff

Total number reactions 637 1851 540 803 1589
Number of unbalance reactions 335 1642 540 803 1589
Number of rule solved reactions 181 754 240 324 1134
Rule success rate (%) 89.6 93.55 97.96 99.69 96.1
Number of rule accurate reactions 179 752 239 322 1133
Rule accuracy (%) 98.9 99.73 99.58 99.38 99.91
Number of MCS solved reactions 127 721 298 479 451
MCS success rate (%) 82.47 81.19 99.33 100 99.12
Number of MCS accurate reactions 121 588 289 476 437
MCS accuracy (%) 95.28 81.55 96.98 99.37 96.9
All solved reactions 308 1475 538 803 1585
All success rate (%) 91.94 89.83 99.63 100 99.75
All accurate reactions 300 1340 528 798 1570
All accuracy (%) 97.40 90.85 98.14 99.38 99.05
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