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ABSTRACT: Herein, we demonstrate 1) that Lewis base heteroatom coordination to diaryliodonium salts is not required for light-driven 
radical generation and 2) radicals generated by this route can be captured by transition-metals for coupling reactions. These results are the first 
step toward developing new aryl radical coupling reactions without exogenous photocatalysts. 

Hypervalent iodine molecules have a rich history in organic 
synthesis as mild, non-toxic reagents, and oxidants.1 Specifically, cat-
ionic diaryl-containing I(III) (Ar2I) salts  function as arylation rea-
gents.2 The attractiveness of these Ar2I salts result from their robust 
preparatory methods,3 exceptional bench stability,4 and broad func-
tional group (FG) tolerance. Aside from ground state arylation reac-
tions,5 excited state photoredox reactions employing Ar2I salts as aryl 
radical precursors have emerged as powerful tools for selective ary-
lation under mild conditions.6 

Alternatively, reactions induced by light, but without a photo-
catalyst (PC), are of particular interest for future sustainability.7 In 
general, PC-free photolysis of Ar2I salts historically required UV 
light.8 However, visible light induced PC-free radical generation re-
ported by Chatani and coworkers demonstrated that N-methylpyr-
role solutions of Ar2I salts furnish aryl radicals that arylate the pyrrole 
C2–H bond (Figure 1a).9 Karchava et al.12 and Lakhdar et al.10 sepa-
rately showed that neutral PR3 Lewis bases (LBs) were more effi-
cient activators of Ar2I salts than pyrrole and underwent P-arylation 
by irradiation with purple or blue LEDs (b). In these approaches, 
aryl radical generation and recombination occurs rapidly within the 
solvent cage to yield arylation of the activator molecule.11 Murarka 
et al. overcame this limitation by discovering a PC-free, light-driven 
3-component system to activate Ar2I salts (c).12 Critical for photoac-
tivity in most of these investigations is the formation of a ground 
state electron-donor-acceptor (EDA) complex between the activa-
tor(s) heteroatom and the Ar2I salt, which is the intermediary spe-
cies responsible for absorbing photons.   

 
Figure 1. Known excited-state PC-free activations and reactions of Ar2I salts (a-c). 

Herein, we present strong evidence suggesting against a ground 
state heteroatom→I coordination-based EDA adduct to achieve PC-
free aryl radical generation using Ar2I salts. To support this assertion, 
a series of stoichiometric reactions, kinetic rate measurements, and 
NMR experiments demonstrate the importance of LB conjugation 
and electronics rather than the basicity of any Lewis basic 

coordinating heteroatoms. Lastly, since literature precedents have 
focused on trapping aryl radicals using organic molecules like al-
kenes (e.g., Meerwein arylation)13 or heteroarenes,12 we demon-
strated that our PC-free aryl radical generation strategy can be inter-
faced with Pd-catalyzed C–H activation processes to achieve site-se-
lective arylation of C–H bonds. Altogether, our results show that this 
PC-free, light-driven radical generation strategy is operationally sim-
ple and can be leveraged to create new organometallic arylation re-
actions using Ar2I salts without expensive PCs. 
Lewis bases as Ar2I activators. We started by surveying a range of 
Lewis basic molecules to ascertain their ability for aryl radical gener-
ation from diphenyliodonium salt 2a ([Ph2I][OTf]) under purple 
LED irradiation. To quantify Ph● generation, we leveraged B2Pin2 
(BPin = 4,4,5,5-tetramethyl-1,3-dioxaborolane), which is a com-
monly employed aryl radical trap,14 to furnish Ph-BPin 3. In the ab-
sence of any LB activator, 3 was generated in 13 ± 2% yield after 4 
hours. As such, additives providing yields >20% are considered ben-
eficial and those giving yields <20% are classified as inactive (Figure 
2). 

 
Figure 2. Different Lewis base additives demonstrate different abilities to furnish 
borylation products from 2a. GC yields are calibrated vs. mesitylene as internal stand-
ard. 
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By these metrics, DG7,9-10,17-20 were ineffective. In contrast, we 
rated the best activators as those providing 3 in >40% yield (DG1-4,11-

15). Lastly, moderate activators gave 3 in 20-39% yield (DG5-6,8,16), 
which is still sufficient to observe useful arylation reactivity. The clas-
sification of bulky DG3 and DG15 as good additives is unexpected 
since they are likely too sterically encumbered to coordinate the Ph2I 
fragment. This result supports the conclusion that LB heteroatom→I 
coordination may not be a critical element enabling photoactivity in 
our system and non-covalent effects might be involved. 
Impact of activator electronic properties. DG1-19 in Figure 2 con-
sist of two components: a Lewis basic heteroatom and a proximal 
aryl ring. We set out to determine which component plays a greater 
role in governing the activator’s ability using borylation as a model 
reaction. We first confirmed that radical capture by B2Pin2 is not sub-
ject to concentration effects by showing a zero-order rate depend-
ence of 3 formation on the [B2Pin2] (SI Figure S20). Thus, reaction 
rates are governed by the aryl radical generation step. Using a range 
of electronically diverse 2-arylpyridines (1a-j) as activators, we mon-
itored the initial rate of borylation by gas chromatography (Figure 
3). The background rate of 3 formation in the absence of any activa-
tor was 9.89 x 10-5 M.min-1, which is identical to the reaction rate in 
the presence of ineffective pyridine.9  

Interrogating the impact of the activator C2-aryl ring on Ph-
BPin formation, mesomeric FG incorporations (1d-f) led to higher 
borylation rates than inductive FGs (1a-c). Surprisingly, a bulky 
phenyl group at the ortho position of the flanking ring (4b) led to 
notably faster formation of 3 than any other pyridine derivative sur-
veyed here. Like mesomeric groups, extended conjugation impacts 
the energetics of the activator’s aromatic π-system, which is a strat-
egy to impact photophysical properities.15 In line with this phenom-
enon, using conjugated and bulky DG3 as activator led to krel = 97 
(Figure S34). Further supporting our hypothesis that LB coordina-
tion to Ar2I may not be critical, the most coordinating derivative 1h 
gave slower reaction rates than less basic 1i-j, which is opposite the 
expected outcome if an association step is required. 
Mechanistic insights. We began by gathering support that aryl rad-
icals are formed under our conditions in two ways (Figure 4). First, 
borylation reactions in the presence of 2,2,6,6-tetramethyl-piperi-
dine-N-oxide (TEMPO) show severely diminished yields relative to 
reactions without TEMPO (16% versus 60% yield, respectively). 

 
Figure 3. Relative rates of aryl radical borylation using 2-arylpyridines depend on pyr-
idine electronics. All krel are reported as relative to the rate of borylation with no ad-
ditive. 

Secondly, to address arguments regarding potential B2Pin2 non-in-
nocence in promoting aryl radical generation,16 we tested our radical 
generation strategy using 1,1-diphenylethylene as the radical trap, 
which led to 30% 1,1,2-triphenylethylene (TPE) yield by GC. Like 
borylation reactions, alkene arylation in the presence of TEMPO 
was diminished (18% TPE yield), further supporting a radical mech-
anism. 

 
Figure 4. TEMPO inhibition and alternative radical trapping reagents using equimolar 
mixtures of 1b and 2a support a radical mechanism.  

 In the works of Chatani,9 Karchava,10a-c and Lakhdar,10d,10e asso-
ciation of the activator to the Ar2I iodine atom was a critical factor 
enabling photoactivity. Sanford and coworkers previously demon-
strated that 2-arylpyridines bind to iodonium salts with Keq > 100 in 
AcOH solvent.5c In contrast, we do not observe evidence of any 
room temperature association between DG3 or 1b and 2a as deter-
mined from lack of changes in i) solution colors (Figure 5a), ii) UV-
Vis spectra (b), and iii) 1H NMR spectra. To further probe whether 
a heteroatom-centered EDA complex forms and dissociates faster 
than the NMR time scale, we collected variable temperature (VT) 
1H NMR spectra for combinations of DG3 and 2a from -50 to +50 
oC in CD3OD (c). Importantly, MeOH as solvent in 2a borylation 
reactions was comparable to reactions performed in MeCN (SI Fig-
ure S18). At each temperature surveyed, no notable changes were 
observed in the relevant DG3 C-H chemical shifts.10e Thus, on the 
basis of these data, we can conclude that LB heteroatom coordina-
tion to 2a is not a critical intermediate preceding radical generation.  

In further support of this assertion, our measured arene boryla-
tion rates using 2-phenylpyridine derivatives (1b, 1g-j) in Figure 3 
display a non-linear correlation between pKaH and borylation rate 
(d). This observed non-linearity can only be rationalized if any ad-
ducts formed within the mixture do not contain a heteroatom→I co-
valent interaction as part of the aryl radical generation event. 
Radical capture by a Pd. While our ability to perform aryl radical 
borylation will set the stage for the development of other PC-free ar-
ylation processes of organic molecules, we were determined to inter-
face our radical generation approach with Pd-catalyzed C–H aryla-
tion. Sanford et al. leveraged aryl radicals derived from Ar2I salts and 
an Ir-based fluorophore to perform Pd-catalyzed C–H arylation at 
room temperature6g without using explosive17 diazonium salts.18 We 
set out to demonstrate that our protocol would enable analogous ar-
ylations of C(sp2)–H bonds without a PC. Importantly, control re-
actions without Pd or light failed to provide detectable concentra-
tions of arylated products. The full set of optimization and control 
experiments can be found in the supplementary information. 

Using 2-arylpyridines as both activator of 2a and substrate for 
Pd, we sought to correlate pyridine structure to overall arylation ca-
pability. We used GC-FID to determine approximate total arylation 
for a range of pyridine derivatives under the conditions depicted in 
Figure 6. When total arylation percentage was plotted versus the 
Hammett σ value for each FG, a clear correlation was revealed. Elec-
tron-richness at the presumed site of C–H arylation led to high ary-
lation percentages. 
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Figure 5. Mechanistic insights for the PC-free radical generation from Ar2I salts with LBs. (a) Photographs of mixtures of 1b or DG3 with 2a 
demonstrating no color changes. (b) Stacked UV-Vis spectra of 1a in the presence of increasing concentrations of 2a showing no appearance 
of EDA absorbance bands. (c) 1D VT 1H NMR spectra of a stoichiometric mixture of DG3 and 2a at -50 and +50 oC depicting no shift in the 
C2-H (circle), C4-H (triangle), or C10-H (square) resonances of DG3. (d) Plot of borylation rate vs. pKaH of the activator showing non-linear 
behavior. Note: pKaH values are of mono-substituted pyridines without the 2-phenyl group since the presence of this group is common to the 
depicted activators.

 

 
Figure 6. Visualization of approximate total arylation observed by GC-FID correlates 
to pyridine substrate electronic properties. *Presumed site of arylation shown only 
for Hammett value trend determination. Internal standard was mesitylene. aMultiple 
mono-arylation regioisomers observed. bPerformed on a 0.1 mmol scale. 

In contrast, decreasing FG donor ability (i.e., as Hammett parameter 
increases) results in little to no arylation. In general, FGs with σ val-
ues greater than 0.1 gave minimal quantities of arylated products. In-
terestingly, substrate 1e furnished 8% total Pd-catalyzed arylation 
despite demonstrating high rates of arene borylation in Figure 3. 
This example suggests observed limitations lie with the Pd-catalyzed 
process rather than aryl radical generation. 

During our experiments, only acetamide as the FG on 2-phe-
nylpyridine gave a second mono-arylation regioisomer, which we at-
tributed to arylation via the directing capability of the amide func-
tion. Since acetanilides are capable of furnishing borylation products 
by our light-driven approach (see DG5-6) and they have been previ-
ously used in C–H arylation reactions catalyzed by Pd,18c,19 we also 
showed that our light-driven strategy was applicable to Pd-catalyzed 
acetanilide arylation. After devising a new set of standard conditions, 
we found analogous trends for acetanilide directed C–H arylation as 
compared to pyridine substrates in Figure 6. A full accounting of 
these outcomes is presented in the SI. 
Conclusions. In contrast to literature precedent, we discovered that 
combinations of simple LBs with diaryliodonium salts do not form 
heteroatom-involved EDA adducts prior to PC-free aryl radical gen-
eration when irradiated with purple LEDs. This conclusion was 
drawn from ocular spectroscopy of colorless reaction mixtures, VT 
NMR, UV-Vis spectroscopy, and kinetic rate measurements. After 
demonstrating that a wide variety of LBs enable PC-free aryl radical 
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generation, we interfaced our radical generation strategy with Pd-
catalyzed C–H arylation to obtain biaryl products. Ongoing investi-
gations in our laboratory are focused on elucidating the mechanism 
by which radical generation occurs in this study and strategies to fur-
ther enhance reaction efficiency. 
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