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Abstract 

One use of CO2 as a starting material in organic transformations is in the synthesis of cyclic 

carbonates and polycarbonates. Due to the low reactivity of CO2, this transformation must be 

carried out in the presence of an efficient catalyst. Although several catalytic systems have been 

developed in the last decade, reducing the CO2 pressure at which the reaction is carried out 

remains one of the main challenges of the process. In this context, in the present work, we 

describe the catalytic activity of mixed metal oxides (MMOs) in the synthesis of cyclic carbonates 

from CO2 (1 atm) and epoxides at 70 °C. The use of these materials as catalysts represents a 

great advantage since they are highly stable and economical and can be reused in several 

reaction cycles. 
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Introduction 

Capturing and recycling of CO2 are among the most important chemical and 

engineering challenges facing humankind.1 CO2 as a starting material is a 

thermodynamically and chemically stable molecule under standard conditions. However, 

these materials can react with other chemical feedstocks under certain reaction 

conditions (pressure, temperature, catalysis, etc.) to produce value-added commodity 

chemicals.2 Thus, CO2 is an ideal C1 building block for organic synthesis because it is 

inexpensive and abundant and can be considered a waste product.3 

 

One of those value-added products obtained from CO2 is cyclic carbonates, which can be 

used industrially as a polar aprotic solvent,4 as an electrolyte for lithium-ion batteries,5 

and as intermediates in the manufacture of fine chemicals6 and polymers.7 Cyclic 

carbonates are mostly produced by the cycloaddition of CO2 to epoxides in the presence 

of a wide range of catalysts,8 including hydrogen-bond catalysts,9 ionic liquids,10 

quaternary ammonium salt,11 organic polymers,12 MOFs,13 porous materials,14 layered 

double hydroxide (LDH)15 and metal-based catalysts.16 

 

Considering that the use of mild reaction conditions remains the principal challenge, 

we propose the use of mixed metal oxides (MMOs) as catalysts in cycloaddition reactions, with 

the objective of being able to carry out the catalytic process under atmospheric CO2 pressure 

and moderate temperature.17 

 

Scheme 1. Synthesis of cyclic carbonate 

 

MMOs are materials18 that can be obtained by calcination at 500-600 °C from the 

corresponding LDH,19 which is a brucite-type octahedral layer with the general formula 

[M2+
1-xM3+

x(OH)2]x+[An-x/nˑmH2O]x-, where the excess positive charge, originating from the 

M2+ to M3+ substitution, is compensated for by carbonate anions in the interlayer space. 

This structure is transformed into an MMO through dehydration, dihydroxylation and 
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decarbonization of the interlayer component, giving rise to a compact structure where 

the oxide ions form a coordination sphere around the metal ions.20 From the point of 

view of catalysis, they are very efficient materials due to their porosity, relatively large 

specific surface area, reactive sites, and high thermal stability.21 While the use of MMOs 

as catalysts in the synthesis of cyclic carbonates from CO2 has been limited to the use of 

Mg-Al mixed metal oxides (100 °C and pressure 5 atm),22 the use of other metals in MMOs 

has not been explored to date. 

 

Results and Discussion 

Material synthesis 

The MMOs used in the present study were obtained by calcination of the 

corresponding LDH, which in turn were synthesized by the co-precipitation technique and 

microwave-hydrothermal crystallization. The structures of the DLHs were confirmed by 

X-ray diffraction. Figure 1a shows the diffractograms for LDH M2+/M3+ (Mg2+, Co2+, Ni2+, 

Zn2+, Fe2+, Al3+ and Cr3+), in which LDH exhibited M2+/M3+ reflections associated with the 

layered double hydroxide crystal structure. Planes can be observed at (0 0 3), (0 0 6), (0 

1 2), (0 1 5), (0 1 8), (1 1 0) and (1 1 3). These values are the same as those described in 

the literature for these materials.23 Then, the LDH was calcined at 550 °C for 6 hours, and 

the respective MMOs with a periclase-like structure were obtained. The plane reflections 

observed in the diffractograms at (1 1 1), (2 0 2) and (2 2 0) are typical of MMOs (Fig. 

1b).24 

 

 

 

Fig. 1. X-ray diffraction patterns of a) LDH and b) MMO 

 

The adsorption of N2 (the BET method) was used to quantify the surface area and pore 

size of the materials (Table 1). The LDH samples exhibited lower porosity and a greater 

surface area than did the MMO samples. 

 

 

a) b) 

https://doi.org/10.26434/chemrxiv-2024-86w74 ORCID: https://orcid.org/0000-0002-5204-772X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-86w74
https://orcid.org/0000-0002-5204-772X
https://creativecommons.org/licenses/by/4.0/


5 
 

Table 1. Nitrogen adsorption–desorption analysis parameters of the materials 

Entry Material 

Parameters 

SBET 

(m2·g-1) 

Pore volume 

(cm3·g)- 

Pore size (Å) 

 LDH    

1 Ni/Cr 97 0.28 36.6 

2 Ni/Fe 60 0.3 196 

3 Zn/Al 55 0.52 186 

4 Ni/Al 70 0.19 92 

5 Mg/Cr 96 0.22 77 

6 Mg/Al 105 0.53 150 

 MMO    

7 NiCrO 39 0.41 420 

8 NiFeO 121 0.41 134 

9 ZnAlO 34 0.25 149 

10 NiAlO 154 0.75 150 

11 MgCrO 290 0.916 55 

12 MgAlO 222 0.74 177 

 

 

Catalytic activity 

To establish the optimal reaction conditions, we first focused on studying the effect of 

the solvent and halide salt on the reaction yield and in the absence of MMOs. Thus, the 

reaction of CO2 with styrene oxide 1a to give the corresponding cyclic carbonate 2a was 

investigated. Tetrabutylammonium iodide (TBAI) and potassium iodide were used as the halide 

salts at concentrations of 10 and 100 mol%, respectively, and ethanol and acetonitrile were used 

as the solvents. Better yields were obtained with ethanol (Table 2, entries 2-5) than with 

acetonitrile (Table 2, entries 7 and 8). With no halide salt present, the reaction did not proceed 

with either solvent (Table 2, entries 1 and 6). With ethanol as the solvent and 10 mol% TBAI or 

KI, cyclic carbonates were obtained in good yields (Table 2, entries 2 and 4). The yield decreased 

when the reaction was carried out in acetonitrile and 10 mol% TBAI or KI (Table 2, entries 7 and 

8). The maximum yield is achieved when the reaction is carried out with one equivalent 

of halide salt (Table 2, entries 3 and 5). The use of TBAI or KI is decisive for the opening of the 

epoxide and the formation of halohydrin anion, which is a key intermediate in the catalytic 

process as previously demonstrated.25 The complete kinetics of the reactions are shown in 

the SI. 

The next step of this work was to study the effect of LDH and MMO as catalysts in the 

catalytic process. As shown in Table 3, the highest yields were obtained when the 

reactions were carried out in the presence of KI. In contrast, the yields decrease notably 

in the absence of KI for both materials. In comparative terms, between LDH and MMO, 

we observed that the calcined materials were more efficient during the catalytic process, 

as indicated by the difference in MMO MgCrO and NiAlO, for which 93% and 90% 

conversion, respectively, were achieved after 24 hours of reaction (Table 3, entries 5 and 

4). Figure 2 shows the reaction kinetics of the process catalysed by MgCrO and NiAlO. In 

both cases, the maximum yield is reached after 24 h of reaction. 
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Table 2. Reaction conditions investigated for the synthesis of cyclic carbonates 

 

Entry Solvent Halide 
Halide salt 

loading/mol% 

Conversion 

%a 

1 EtOH - - 1 

62 

75 

68 

76 

0 

8 

25 

2 EtOH TBAI 10 

3 EtOH TBAI 100 

4 EtOH KI 10 

5 EtOH KI 100 

6 MeCN - - 

7 MeCN TBAI 10 

8 MeCN KI 10 
aConversions relative to the epoxide starting material calculated by GC relative to the biphenyl 

internal standard. 

 

Table 3. Synthesis of cyclic carbonate 2a in presence of LDH or MMO 

 

Entry LDH 

2a 

conversion %a MMO 

2a 

conversion %a 

No KI KIb No KI KIb 

1 Ni/Cr 20 78 NiCrO 35 86 

2 Ni/Fe 3 75 NiFeO 14 80 

3 Zn/Al 8 76 ZnAlO 16 82 

4 Ni/Al 42 79 NiAlO 51 90 

5 Mg/Cr 53 81 MgCrO 61 93 

6 Mg/Al 5 69 MgAlO 5 82 
aConversions relative to the epoxide starting material calculated by GC relative to the biphenyl 

internal standard. b 10% mmol. 
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Fig. 2. Reaction kinetics to obtain 2a in the presence of MgCrO and NiAlO 

Table 4. Scope of the MMO-catalysed cycloaddition reaction 

 

Entry MMO 

Cyclic carbonate and yields (%)a 

    

1 NiCrO 85 82 84 85 

2 NiFeO 80 78 75 76 

3 ZnAlO 85 81 80 82 

4 NiAlO 88 91 90 90 

5 MgCrO 92 90 91 93 

6 MgAlO 82 80 78 80 
aYields of the isolated product after chromatographic purification 

 

With these results in hand, we focused on studying the reaction trend with other 

epoxides. Table 4 shows the results of the CO2 cycloaddition reactions to the epoxides 

corresponding to obtain cyclic carbonates 2b-2d. The six different MMOs were evaluated, 

confirming that MgCrO and NiAlO are the best catalysts for achieving high yields (Table 

4). 

Scheme 2 shows a proposed mechanism for the cycloaddition reaction using ethanol as the 

solvent and MMO and KI as catalysts. The reaction begins with the activation of CO2 by MMO to 

give rise to the formation of intermediate A. In parallel, ethanol acts as a Brønsted acid, leading 

to the activation of the epoxide via intermediate B. Then, opening the ring at B by nucleophilic 

attack on the less sterically hindered carbon using IK produces C.25,26 The alkylcarbonate D is 

formed after a reaction between B and C. Finally, the intermediate D is the direct precursor of 

cyclic carbonate 2a. 
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Scheme 2. Proposed mechanism for the cycloaddition of CO2 to epoxides using MMO and KI as 

catalysts and ethanol as the solvent. 

 

Reuse of the Cu-Al mixed oxide 

To evaluate the recyclability of MgCrO, two reactivation processes were applied to the 

material. In the first one, after separating the material from the reaction mixture, the 

material was dried at 100 °C for 24 h. The second process included calcination at 500 °C 

for 5 h in an O2 atmosphere. After the first reuse, we observed that the catalyst that was 

reactivated at a high temperature (500 °C) retained its activity, so the reactions still 

proceeded in high yield (90%). MgCrO can be recycled at least three times without 

significant losses in catalytic activity (Fig. 3). This result contrasts with that observed 

when the MMO was only dry at 100 °C, where the yield decreased significantly as a 

consequence of the loss of catalytic activity of MgCrO. This significant difference is 

probably due to the presence of organic material at the catalytic sites, which is eliminated 

after calcination at 500 °C to recover the catalytic properties of the MMO (Fig. 3, red 

column, yield 87%). 

 

 

Fig. 3. Reuse of Cu-Al mixed oxide after reactions 1, 2a and 3a. 
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Conclusions 

In conclusion, our experimental investigation of the reaction of CO2 with epoxides to give the 

corresponding cyclic carbonate showed that mixed metal oxides can be efficient catalysts in the 

overall process. We demonstrated that MgCrO and NiAlO were the most active MMOs and that 

the presence of KI or TBAI as catalysts and ethanol as the solvent were decisive for achieving 

high yields of cycloaddition under atmospheric pressure at 70 °C. 
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