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Abstract. Because homogeneous ice nucleation is important for atmospheric science, special assays have been developed

to monitor ultra-pure nanoscale water droplets for nucleation as the temperature is gradually lowered to deeply supercooled

conditions. To analyze the experimental data and predict droplet freezing, we develop model that accounts for the cooling

rate and the distribution of droplet sizes. We use the model to analyze two sets of experimental homogeneous nucleation data

with carefully controlled cooling rates and droplet sizes. Rate expressions based on classical nucleation theory describes both5

experiments well and with rate parameters in approximate agreement with theoretical predictions based on the thermodynamics

of water. We further demonstrate that a failure to account for dispersion in droplet volumes reduces the apparent barriers for ice

nucleation. We provide an open source code to estimate nucleation parameters from drop-freezing assays, and another code to

account for dispersion of droplet volumes and predict the outcome of drop-freezing experiments. We also present a sensitivity

analysis to find the effect of temperature uncertainty on the measured nucleation spectrum. Our framework may be directly10

useful in accounting for droplet polydispersity and cooling rates for ice nucleation in clouds. Although our analysis pertains

to homogeneous nucleation, we note that similar strategies may be applied to heterogeneous ice nucleation on minerals and

organic particles with variable surface areas and nucleation sites.

Copyright statement.

1 Introduction15

The thermodynamics and kinetics of ice formation from water are important for atmospheric science (Koop et al. (2000); Möh-

ler et al. (2007); DeMott et al. (2010); Knopf and Alpert (2023)), preservation of biologically active substances (John Morris

et al. (2012); Zachariassen and Kristiansen (2000)), and storage of food products (Goff (1997); Li and Sun (2002)). Nucle-

ation, the first step in ice formation, heralds the onset of important subsequent changes: rapid growth of ice domains (Shultz

(2018); Barrett et al. (2019); Sibley et al. (2021)), the release of latent heat (Riechers et al. (2013); Dobbie and Jonas (2001)),20

and freeze concentration of impurities (Deck et al. (2022); Deville (2017); Stoll et al. (2021)). A quantitative understanding
*These authors contributed equally to this work
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of these processes requires models that accurately predict ice nucleation kinetics. In most applications, the primary source of

nuclei is heterogeneous nucleation on various surfaces and impurities at mild supercooling (Alpert and Knopf (2016); Zhang

and Maeda (2022); Stan et al. (2009); Kubota (2019)). However, homogeneous nucleation of ice occurs at deep supercool-

ing for highly pure water droplets in the atmosphere (Koop et al. (2000); Knopf and Alpert (2023)) and in certain laboratory25

experiments (Murray et al. (2010); Atkinson et al. (2016); Shardt et al. (2022); Riechers et al. (2013); Laksmono et al. (2015)).

Special assays have been developed to study ice nucleation kinetics by monitoring hundreds of small supercooled water

droplets (Laval et al. (2009); Shardt et al. (2022); Ando et al. (2018); Tarn et al. (2020)). These experiments provide an

independent realization of the nucleation time and/or temperature for each droplet (Tarn et al. (2020); Shardt et al. (2022)).

Typically, the kinetics are studied via induction times in isothermal conditions (constant supercooling) (Alpert and Knopf30

(2016); Herbert et al. (2014); Knopf et al. (2020)) or via the spectrum of nucleation temperatures at constant cooling rate

(Zhang and Maeda (2022); Ando et al. (2018); Shardt et al. (2022); Murray et al. (2010)). These two types of experiments have

important similarities and differences.

For droplets subjected to a constant supercooling, the induction time is exponentially distributed. Several analyses have

modeled the exponential decay to understand how nucleation rates depend on supercooling (Alpert and Knopf (2016); Herbert35

et al. (2014); Knopf et al. (2020)). In experiments where the supercooling is gradually increased, the distribution of nucleation

times is more complicated (Murray et al. (2010); Riechers et al. (2013)). Typically, no nucleation events occur until the tem-

perature drops below some critical temperature, and then the nucleation times/temperatures all occur within a focused range

(Murray et al. (2010); Riechers et al. (2013); Shardt et al. (2022)). To motivate new elements of our model, we briefly discuss

the capabilities and gaps in existing models for analyzing the experiments with steadily cooled droplets.40

Analyses of drop-freezing experiments can be grouped according to two distinguishing criteria. The first distinction pertains

to the models used for interpreting the nucleation rate. Kubota used empirical nucleation rate models (Kubota (2019)), while

others have used theoretically motivated rate expressions (often based on classical nucleation theory) (Ickes et al. (2017);

Murray et al. (2010); Riechers et al. (2013)). Empirical rate models can provide excellent fits to the nucleation rate data, and

successful empiricisms sometimes inspire new theoretical models. However, the fitted rate expressions for nucleation rate from45

an empirical model lack the interpretability and generalizability afforded by a successful fit to theoretical rate models.

A second distinction pertains to the analysis and interpretation of the droplet nucleation data itself. Some studies focus

on the fraction of droplets that nucleate in a specific supercooling range, i.e. the nucleation spectrum (Murray et al. (2010);

Shardt et al. (2022); Ando et al. (2018)). The nucleation spectrum has sometimes been interpreted as an intrinsic property

of supercooled water and/or the nucleants present in the system (Zhang and Maeda (2022); Alpert and Knopf (2016); Knopf50

and Alpert (2023)). However, it also depends on variables beyond chemical or interfacial properties, e.g. the cooling rates and

droplet sizes. An alternative explanation for the nucleation spectrum begins with the survival probability formalism. In survival

probability analyses, the probability that a droplet remains liquid steadily declines with time in proportion to the changing rate

of ice nucleation. The survival probability formalism is easily used in combination with theoretical models for the nucleation

rate, but the combination remains rare in the ice nucleation literature. Indeed, prior combinations of survival probability and55
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nucleation theory in the ice literature focus on heterogeneous nucleation (Wright and Petters (2013); Marcolli et al. (2007);

Alpert and Knopf (2016)).

In this work, we combine survival probability analysis with classical nucleation theory to quantitatively predict the effects of

different droplet volumes (Atkinson et al. (2016)) and cooling rates (Shardt et al. (2022)). The experiments that motivated our

study observed homogeneous nucleation in narrowly sized selected droplets, cooled at a steady rate deep into the metastable60

zone. We are inspired by the experiments to achieve the precise control of droplet sizes, but the atmospheric clouds will

naturally have a distribution of droplet sizes (Painemal and Zuidema (2011)). We demonstrate a method to extract theoretically

derived nucleation rate parameters from the experimental survival probability data of monodispersed droplets and droplets

with the distribution of sizes. The analysis shows that experimental measurements are consistent with predictions of classical

nucleation theory across a range of supercooling, droplet sizes, and cooling rates.65

2 Analytical model to analyze the nucleation of monodispersed droplets

The probability that a single droplet of volume V is not frozen in a given time t can be modelled using the master equation

(Cox and Oakes (1984) ).

dP (t|V )

dt
=−P (t|V )× JV. (1)

Here P (t|V ) is the probability, J is the nucleation rate on a per volume per time basis, and V is the droplet volume. The70

temperature is constant and the rate of nucleation in each liquid droplet also remains constant in induction time measurements.

On integrating Eq. (1) survival probability becomes P (t|V ) = exp[−JV t]. This result has been used to analyze nucleation

data in several crystallization studies, e.g. by plotting lnp(t|V ) vs t to estimate J and its supersaturation dependence (Alpert

and Knopf (2016); Knopf and Alpert (2023); Stöckel et al. (2005); Kubota (2019); Sear (2014)). In contrast, in experiments

where the supercooling increases with time, the nucleation rate in each liquid droplet also increases with time. The survival75

probability can be obtained by integrating Eq. (1), we get

P (t|V ) = exp

− t∫
0

J(t)V dt

 , (2)

where P as a function of time, but the data are usually reported as a function of temperature or supercooling (Murray et al.

(2010); Shardt et al. (2022)). Since the experiments are conducted at a specific cooling rate R (Murray et al. (2010); Shardt

et al. (2022) ), we replace the time variable with temperature using the following relation80

T = Tm −R× t. (3)

After variable transformation the survival probability becomes

P (T |V ) = exp

−V

R

T∫
Tm

J(T ′)dT ′

 (4)
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Eq. (4) separates protocol-specific factors (droplet size and cooling rate) from intrinsic properties of the nucleation kinetics and

their dependence on temperature.85

Now, we need theoretical models or experimental data for nucleation rate to predict the survival probability. Classical nucle-

ation theory gives the rate for homogeneous nucleation as (Volmer and Weber (1926); Becker and Döring (1935))

J =Aexp

[
− 16πγ3v20
3(λ2

f/T
2
m)kBT

(
1

Tm −T

)2
]
, (5)

where A is the kinetic prefactor, γ is the interfacial free energy between the ice and water, λf is the latent heat of ice, kB is the

Boltzmann constant, Tm is the melting point of ice, v0 is the molar volume of ice and T is the absolute temperature.90

To account for the temperature dependence of nucleation and the time-dependent temperature, one must carefully separate

the temperature-dependent and temperature-independent parts of J . Using δT = (Tm −T )/Tm as the dimensionless tempera-

ture, we rewrite the expression for J as

J =Aexp

[
−B

(1− δT )δ2T

]
, (6)

where B = (16πγ3v20)/(3λ
2
fkBTm) depends on properties of ice and water that are nearly independent of temperature for95

the narrow temperature range where homogeneous nucleation is observed in experiments (Kashchiev (2000); Sear (2007);

Koop et al. (2000) ). The parameters A and B are assumed to be temperature-independent in the present model. The term

(B/[(1− δT )δ
2
T ]) in the exponential denotes the free energy barrier for nucleation, and Eq. (6) shows how it depends on

temperature. Using Eq. (6) in Eq. (4), the survival probability becomes

P (δT |V ) = exp

−(AV Tm

R

) δT∫
0

exp

(
−B

(1− δ′T )δ
′2
T

)
dδ′T

 . (7)100

To our knowledge, Eq. (7) has not been used in previous studies of ice nucleation. It isolates parameters B, a property of

nucleation kinetics, from the dimensionless group (AV Tm/R). The latter depends on intrinsic properties of ice and water (A

and Tm) but also on environmental choices like V and R. Eq. (7) is valid for water droplets of volume V . In most experiments,

there is a distribution of volumes which leads to a distribution of droplet nucleation rates. We consider the distribution of volume

case in section 5, but first, we demonstrate that the model can predict the effect of droplet volume for narrowly size-selected105

droplets.

Across the range of nucleation temperatures observed in experimentsAtkinson et al. (2016); Shardt et al. (2022) for homo-

geneous ice nucleation (234 K - 238 K), the factor (1−δT ) in the rate expression is always near 0.9. Hence, the nucleation rate

expression is approximately J =Aexp(B′/δ2T ). Where B′ is approximately B′ =B/(1− δT )≈ 1.1B. With this approxima-

tion, we have an analytical solution for the survival probability as follows110

ln[P (δT |V )]≈
[
A′V Tm

R

]
δT ×

(√
πB′

δT
erfc

[√
B′

δT

]
− exp

[
−B′

δ2T

])
. (8)

To illustrate the use of Eq. (7) and Eq. (8), we analyze one of the survival probability data sets (droplet size corresponding

to 3.8-6.2 µm) obtained from Atkinson et al. (2016). Optimized fits of the analytical solution (Eq. (8), with A′ = 1.76×
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8

Figure 1. a) Illustration of survival probability fits with analytical (red continuous line) and numerical (cyan dashed line) solutions for the

integral in Eq. (7). The experimental data represented by the empty black circles used as a reference is from Atkinson et al. (2016). b)

Comparison of estimated nucleation rates from experiments using survival probability data as described in Atkinson et al. (2016) (black

circles), and the nucleation rate computed using Eq. (7) (cyan line).

1039cm−3s−1,B′ = 1.3578) and the numerical integration (Eq. (7), with A= 8.68× 1041cm−3s−1,B = 1.2722) are shown

in Fig. 1. Even though the fits show excellent agreement in both analytical and numerical approaches, we note that a 10 %115

error in the exponent (from approximating 1− δT ≈ 1.0 leads to a nearly 1000-fold error in A′ and a 10 % error in B′ relative

to A and B). We conclude that precise A and B values require careful treatment of even weak temperature dependencies

within J . Although the prefactor and barriers are different, the predicted nucleation rates are not. For example, at 234.9 K both

approaches give an estimate of nucleation rate to be 1.44× 109cm−3s−1.

The noisy estimates of J in Fig. 1b have been obtained by a finite difference of the cumulative survival probability data. For120

the finite difference procedure, large numbers of droplets are needed to obtain an estimate of J from the incremental nucleation

events in each ∆T interval. As seen in Fig. 1b, there is considerable noise in the J estimates even in an experiment with

hundreds of droplets. Our data analysis approach directly fits a model to the cumulative fraction of frozen droplets. It should

therefore remain accurate for data sets with smaller numbers of droplets.

3 A computer code for analysis of drop-freezing experiments125

We implemented the numerical integration in Eq. (7) and analytical model of Eq. (8) in an python code to estimate A, B and J

from experimental drop-freezing data. The code outputs the parameters A and B from Eq. (7). These are used to compute the

nucleation barriers ∆G, the temperature that corresponds to 50% of frozen droplets T50, and the homogeneous nucleation rate

evaluated at T50 using Jmodel
hom (δT ) =A e−B/[(1−δT )δ2T ]. The AINTBAD (Analysis of Ice nucleation Temperature for B and A

Determination) code is illustrated in Fig. 2. The code is available in (https://github.com/Molinero-Group/volume-dispersion),130

last access: 18 Mar 2024).
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[ [

Figure 2. Flowchart of the AINTBAD (Analysis of Ice nucleation Temperature for B and A Determination) code.

We use the minimize function from the scipy.optimize module in Python to optimize the difference between the target survival

probability and the predicted one by adjusting the parameters A and B. The chosen optimization method is the Nelder-Mead

algorithm, suitable for functions without explicit derivatives. Optional settings include a convergence tolerance of 10−4 and a

maximum iteration limit of 1000.135

4 Analysis of nucleation spectrum in mono dispersed droplets

Atkinson et al. (2016) monitored the freezing temperatures of narrowly size-selected droplets cooled to temperatures near 235

K at a steady rate of 1.0 Kmin−1. The range of droplet sizes in each experiment and the fraction of droplets that remain at

each temperature can be seen as data points in Fig. 3a. We have analyzed the data from Atkinson et al., in two ways. First, we

separately fitted the data for each size range to Eq. (7). Because the range of sizes each size-selected group is narrow, we have140

assumed that all droplets in each size range are spheres with the mean diameter for that range. These fits (not shown) result in

independent estimates of the optimized nucleation prefactor A and the barrier parameter B from each of the six experiments.

Table 1 shows the range of droplet sizes in each experiment, the independent log10A and B estimates, the predicted free energy

barrier β∆G=B/[(1− δT )δ
2
T ] at 235.5K, and the predicted nucleation rate (from J =Aexp[−B/((1− δT )δ

2
T )] at 235.5K.

The separate A and B estimates vary considerably, but they are highly correlated to each other. Fig. 3b shows B vs. log10A145

for each of the independent estimates. When B is small (large), A is also small (large). The estimated parameters compensate

for errors in each other such that all six data sets yield models that predict consistent nucleation rates. The predicted nucleation

rates are shown in Table 1 for the temperature 235.5K.

The measurements of Atkinson et al., were all made in the same way, so the same fundamental nucleation rate expression

should describe all six size selected data sets. Accordingly, we reanalyzed the data of Atkinson et al., with one global rate150

expression (J =Aexp[−B/((1− δT )δ
2
T )]), keeping the same A and B values across all six data sets. The nucleation rate

parameters obtained from the global fit are A= 2.79× 1046(cm−3s−1) and B = 1.45. Fig. 3a shows the experimental data

for different droplet sizes along with model predictions from the global fit. We emphasize that these are six curves, accurately

fitted with just two free parameters, and that both parameters have a clear physical and theoretical interpretation. However, we
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Figure 3. a) Illustration of survival probability fits for homogeneous nucleation with varied droplet sizes at a cooling rate of 1 Kmin−1.

Open symbols represent experimental data from Atkinson et al. (2016) and continuous lines represent model predictions. Colors of symbols

indicate different droplet diameters. b) Illustration of the correlation between the log10A and B parameters obtained from individual fits.

Black star indicate the ones obtained by the global fit, and other symbols correspond to estimations for different sizes of droplets.

Droplet size (D/µm) log10A B β∆G235.5K log10J235.5K

5.0 41.9 1.27 77.5 8.3

7.5 44.5 1.38 84.2 7.9

10.1 45.7 1.42 86.7 8.1

12.6 39.2 1.18 72.0 7.9

15.1 49.8 1.57 95.8 8.1

17.6 42.0 1.29 78.8 7.8

global 46.4 1.45 88.5 8.0
Table 1. Computed nucleation rate parameters A and B for various groups of droplet sizes using the volume corresponding to the mean

diameter of the group. D is the mean diameter of the droplets in the group in µm. β∆G is the free energy barrier for nucleation, and J is

nucleation rate computed using fit parameters in Eq. (6). Estimations of β∆G and J are corresponding to a temperature of 235.5 K.

note that the theoretical relationship between B and β∆G reflects only the reversible work to create a nucleus at equilibrium,155

but the parameter B as obtained from experimental data also reflects activation energy contributions from the prefactor. See

Section 9.2 for more explanation about this point.

At a temperature of 235.5 K, the global fit yields a prediction J = 108cm−3s−1 for the nucleation rate, consistent with

predictions from the independent fits. The free energy barrier at 235.5K from the global fit is 88.5 kBT . This is again similar

to those obtained from fits to the individual size-selected data sets (Table 1).160

Although the rate predictions show remarkable internal consistency, the inferred barriers are scattered and larger than barriers

which have been inferred from other data sets (Murray et al. (2010); Shardt et al. (2022); Riechers et al. (2013)). Section 5,

explores the effects of size dispersity on inferred rate parameters. Section 6, examines whether size dispersity within the narrow,
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but non-zero size-ranges of Atkinson et al., may still affect the inferred rate parameters. The discrepancy may be a consequence

of theoretically unaccounted for temperature dependences within the pre-factor. Note that the data sets in cyan and pink Fig. 3a165

actually cross over each other. The crossover indicates that small droplets are nucleating at warmer temperatures than the

larger droplets, which should not occur according to nucleation theory. These two anomalous curves correspond to the two

most extreme estimates of A and B (upper right and lower left in Fig. 3b). Thus scatter in the A and B parameters, seems to

be a true reflection of experiment-to-experiment variation.

5 Droplets with distribution of volume170

Experiments that report on droplet size dispersity (Murray et al. (2010); Shardt et al. (2022); Ando et al. (2018)) consistently

report a broader range of sizes than the droplets of Atkinson et al. (2016). This section develops a superposition formula,

starting from Eq. (7), for drops of specific sizes, to predict the survival probability for experiments with a broad distribution

of droplet sizes. As seen from Fig. 3, large droplets in a broad distribution will nucleate early (at milder supercoolings), while

small droplets will survive to deeper supercoolings. The steep sigmoidal survival probabilities for droplets of a specific size,175

when superimposed, result in a more gradual sigmoid. The gradual sigmoid looks deceptively like the theoretical prediction

in Eq. (7), but with artificially reduced barrier B and prefactor A parameters. The analysis here shows how size-dispersity

broadens the nucleation spectrum and how the results can potentially affect the inferred nucleation rate parameters.

The joint survival probability distribution with volume and temperature variables is given by

P (V,δT ) = ρ(V )×P (δT |V ), (9)180

where ρ(V ) is the normalized distribution of droplet volumes and P (δT |V ) is the survival probability for droplets of a specific

volume, i.e. Eq. (7). The survival probability in time/temperature is obtained by integrating over droplet volumes in the joint

distribution.

P (δT ) =

∞∫
0

P (V,δT )dV. (10)

Here we provide an example calculation to illustrate the effects of a broad droplet volume distribution. Let the normalized185

(gamma-type) distribution of droplet sizes be ρ(V ) = 8V −2
0 V exp(−2V/V0). Here V0 is the mean volume of the entire range

of droplets. Let the survival probability for droplets of any specific size be given by P (δT |V ) in Eq. (7), with the global fit

values of A and B, as reported in Table 1. The survival probability for the distribution of droplet volumes can then be obtained

using Equations 9 and 10.

We let V0 = 1057.1µm3 in ρ(V ) to obtain a distribution with droplets of size (diameter) between 3.0 µm and 20 µm. Note190

that the model volume distribution spans the range of sizes in the experiments of Atkinson et al. Fig. 4, shows the gradually

decreasing survival probability from the superposition as a black solid curve with more steeply changing size-selected P (δT |V )

data in the background.
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6.81 x 1031

0.91

Figure 4. Illustrating the effects of droplet size dispersity on survival probabilities. Open symbols are the experimental survival probabilities

for different groups of size-selected droplets from Ref. Atkinson et al. (2016). The continuous black line is the superposition survival

probability of Eq. (10) from the same kinetics and for a distribution droplets from 3.8-18.8 µm.

If we were unaware of the droplet polydispersity or did not account for it, we might interpret the black curve in Fig. 4,

using a survival probability analysis with nucleation theory for droplets of the mean size V0. To illustrate how droplet size195

dispersity influences the inferred nucleation rate parameters, we reoptimized A and B now to minimize the residuals between

the dispersity superposition result in P (δT ) and the naive specific-volume model P (δT |V0). The resulting A and B values are

6.81× 1031cm−3s−1 and 0.91 respectively. The inferred prefactor (Aapparent) is 15 orders of magnitude smaller than that from

the global fit of the sets with narrow volume distribution, and the inferred barrier parameter (Bapparent) has been reduced by

nearly 40%. Moreover, the inferred free energy barrier at 235.5 K is now estimated to be β∆G = 55.7 kBT , relative to a value200

of 88.5 kBT based on the global fit values to the size selected droplet data. The calculation illustrates how a failure to account

for size-dispersity causes a spurious broadening of the nucleation spectrum and reduction in the inferred prefactor A, barrier

parameter B, and free energy barriers.

Once we know the variation in droplet sizes, resultant survival probabilities can easily be computed with the help of the

python code presented in Section 9 and available in GitHub (https://github.com/Molinero-Group/volume-dispersion). The in-205

puts needed for the program are the proposed distribution of droplet sizes (Gaussian, uniform, gamma, etc.) and the variation

of nucleation rate with temperature (see Section 9.1). The output from the code is the effective survival probability.

6 How narrow should a droplet distribution be to safely assume a single volume?

First, we ask whether the range of droplet sizes in each experiment by Atkinson et al., each spanning a few µm, is already

broad enough to adversely impact the inferred nucleation parameters. We have considered two test cases for the analysis. One210

with a midpoint of each reported size range as the size of all droplets in that size range (as shown in the vertical axis of Fig. 5),

and the second with a uniform distribution of droplet sizes over the corresponding size ranges (as shown in the horizontal axis

of Fig. 5). If the size ranges are sufficiently narrow, these two calculations should result in identical A and B parameters. The
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parity plots for the two values of A and B are presented in Fig. 5. As all the data points are close to the x=y line, we conclude

that the droplet size ranges in Atkinson et al., are sufficiently narrow to ignore size dispersion when inferring the nucleation215

kinetics.

Figure 5. Parity plots showing how droplet size dispersion influences the inferred A and B parameters. Symbols are inferred A and B

parameters with a sharp monodisperse droplet distribution (delta function) corresponding to mean size of droplets (mid) as shown in the

cartoon on the vertical axis and with a uniform distribution of droplets (uniform) as shown in the cartoon on the horizontal axis. Acombined is

the prefactor estimated using global fit. Intervals and midpoints in V correspond to size-window of Atkinson et al.. The black dashed lines

represent x= y lines (parity).

Figure 6. When droplet size dispersity is ignored, the inferred Bapparent relative to Bactual depends on uniform spread in volume ∆V relative

to the mean volume V̄ . ∆V is the width of a uniform distribution of droplet sizes according to the uniform distribution. Symbols of the same

color correspond to different widths of uniform distribution and different colors correspond to different mean size of the droplets. Bactual is

the predicted B with monodisperse droplets and Bapparent is the computed B with dispersity in droplet sizes

Fig. 6 shows the ratio between the apparent B parameter from superposition of survival probabilities of droplets with sizes

V ±∆V and the true B parameter. The analysis shows that the groups with 2µm variation in diameter resulted in the same
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nucleation rate parameters with approximately less than 1% variation in estimated free energy barriers. Our analysis in Fig. 6

quantifies the effect of dispersion of droplets in the experiments on predicted B parameters, assuming droplets have uniform220

distribution. Given ∆V/V and B values from an analysis that imposes volume dispersity, Fig. 6 can be used to estimate the

true value of B. The analysis shows that to obtain B within 1% of the correct value, the volume dispersity should be no more

than 30% of the mean volume.

7 Comparing homogeneous nucleation rate parametrizations

Fig. 7 shows the comparison for the homogeneous nucleation rates using experimental data from Riechers et al. (2013) (blue225

diamonds) and Atkinson et al. (2016) (green squares). Continuous lines indicate different parametrizations: the fit using the

AINTBAD code Jmodel
hom (T ), where A= 2.79× 1046cm−3s−1 and B = 1.45 for the temperature range of 234.8 to 236.8 K,

and A= 5.72× 1028cm−3s−1 and B = 0.81 for 237.0 to 239.1 K (red continuous lines), the parametrization proposed by

fitting multiple experimental data Jequation
hom (T ) = exp[−3.9126T +939.916] Atkinson et al. (2016) (cyan line), as well as the

parametrizations based on classical nucleation theory (CNT) from Qiu et al. (2019) (black line) and from Koop and Murray230

(2016) (magenta line). In a small temperature range, Jmodel
hom (T ) captures well the experimental data points. The proposed

model, Jmodel
hom (T ), which works well for micrometer-sized droplets at lower temperatures, may have limitations in accurately

capturing the complex nucleation processes occurring in larger droplets at higher temperatures. Thus, Jmodel
hom (T ) can be used

only to predict the homogeneous nucleation rate in the temperature range of the input data used to fit the model.

Figure 7. Comparison of the nucleation rate vs. temperature from experiments of Riechers et al. (2013) (blue diamonds) and Atkinson

et al. (2016) (green squares); empirical model proposed by Atkinson et al. (2016) (cyan continuous line); global fit A and B in model

J =Aexp[−B/((1− δT )δ
2
T )] fitted to Atkinson et al. (2016) and Shardt et al. (2022) (red continuous lines); and the CNT parametrizations

from Qiu et al. (2019) (black dashed line) and Koop and Murray (2016) (magenta continuous line). The temperature axis extends to 245 K,

the upper plausible limit of homogeneous nucleation temperatures as defined in Herbert et al. (2015).
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All parameterizations predict nucleation rates within an order-of-magnitude of each other and with experiments for temper-235

atures between 235 K and 240 K. However, there is a small gap in the data near 237 K. Fig. 7 suggests a slight disagreement

between experimental rates at temperatures below 237 K and those above 237 K. Models for ice nucleation in cloud droplets

require nucleation rates that remain accurate over a broad range of temperatures and droplet sizes. Although it is not possible

to discriminate between models based on the currently available data, physics-based models should help to build parameteri-

zations that are internally consistent and valid over a broad temperature range.240

8 Effect of cooling rate on nucleation parameters

The combined survival probability and nucleation theory expression, as shown in Eq. (7), also predicts that the cooling rate will

impact the nucleation spectrum. In this section, we analyze data from Shardt et al. (2022), whose experiments are performed

at two different cooling rates (0.1 Kmin−1 and 1.0 Kmin−1) with size selected droplets of 75 µm and 100 µm. Shardt et al.

report the uncertainty in the droplet sizes to be 5 µm. We model their droplet size distribution using a Gaussian with a mean of245

75 (or 100) µm and a standard deviation of 5 µm. We have analyzed the survival probability data across the two droplet sizes

and two cooling rates with one global fit. The global fit to the survival probability data across the cooling rates and droplet sizes

are shown in Fig. 8. The computed nucleation rate parameters from the global fit are A= 5.72×1028cm−3s−1 and B = 0.81.

The predictions of free energy barriers across the cooling rates and droplet sizes are presented in Table 2.

75 μm, 1.0 K/min

75 μm, 0.1 K/min

100 μm, 0.1 K/min

100 μm, 1.0 K/min

Figure 8. Survival probability fits for homogeneous nucleation data with different droplet sizes and cooling rates. Open circles represent

experimental data from Shardt et al. (2022) and the solid lines represent model predictions.

The predictions of B have a similar order of magnitude but are approximately 25% lower when compared to other estimates250

(Riechers et al. (2013)). We suspect the variation may stem from the difficulties in measuring the precise temperatures of the

droplets (Shardt et al. (2022); Tarn et al. (2020); Atkinson et al. (2016)). We also note the computed nucleation rate parameters

A and B from Shardt et al., are lower than those from the study of Atkinson et al.. We suspect the reason for this variation

might be due to the uncertainty in measurements of temperature of the droplets. The experiments by Shardt et al. indicated the

uncertainty in temperature measurements to be ±0.2K, whereas experiments by Atkinson et al. reports ±0.04K. The predicted255
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Size (µm) R (Kmin−1) β∆G T50/K

75 0.1 57.3 238.4

75 1.0 55.3 237.7

100 0.1 56.4 238.1

100 1.0 54.1 237.3
Table 2. The computed free energy barriers for various droplet sizes across the cooling rates. T50 is the temperature corresponding to survival

probability of 0.5.

free energy barrier from Atkinson et al. data is 88.5 kBT at 235.5 K, whereas the free energy barrier from Shardt et al. is 55.3

kBT at 237.7 K. These predictions contradict nucleation theory which says ∆G decreases as the temperature decreases.

9 A computer code to predict the survival probability using any droplet size distribution and cooling rate

We developed a versatile code capable of taking various parametrizations for the homogeneous nucleation rate Jhom(T ), the

droplet size distributions (Gaussian, Gamma, uniform, exponential, etc.), and cooling rates to compute the survival probability260

or fraction of frozen droplets. The code IPA (Inhomogeneous Poisson Analysis) is illustrated in Fig. 9. We use the nucleation

rate data vs temperature as the input to compute the survival probability using the following equation

P (δT |V ) = exp

−(V Tm

R

) δT∫
0

J(δ′T )dδ
′
T

 . (11)

Eq. (11) is general representation for any given J and is exactly similar to Eq. (7). We evaluate the integral numerically using

the trapezoidal rule. Even though Eq. (11) is strictly valid only for a given constant volume of the droplets, we can use Eq. (11)265

in combination with Eq. (10) to account for the distribution of sizes. Our code includes diverse nucleation rate variations

with temperature, including the local parametrization Jmodel
hom (T ) discussed in the preceding section, the CNT parametriza-

tion from sources like Qiu et al. (2019) and Koop and Murray (2016), and the empirical parametrization from Atkinson

et al. (2016). Additionally, users can integrate any other parametrization into the code. The code is publicly accessible at

(https://github.com/Molinero-Group/volume-dispersion), last access: 18 Mar 2024).270
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droplet sizes

(11)

Figure 9. Flowchart of the IPA (Inhomogeneous Poisson Analysis) code to obtain the survival probability of water droplets as a function of

temperature for any distribution of droplet sizes, cooling rate, and homogeneous nucleation rate parametrization.

9.1 Survival probability predictions for cloud data using CNT parametrization

To extend Jhom(T ) to higher temperatures, and predict freezing for any size distribution, we use JCNT
hom (T ) based on classical

nucleation theory (CNT) parametrization of experimental properties of water as previously described in Qiu et al. (2017, 2019).

According to CNT, the rate of nucleation is given by

J(T ) =A(T )exp

[
−∆Ghom

kBT

]
, (12)275

where T is the absolute temperature, kB is the Boltzmann constant, A(T ) is the prefactor, and ∆Ghom is the free energy

barrier associated with the formation of a critical ice nucleus. The temperature dependence of the prefactor follows the one

of the diffusion coefficient of liquid water using the Vogel–Fulcher–Tammann (VFT) model and was obtained from Koop and

Murray (2016). The free energy barrier is formulated as

∆Ghom =
16πγ3

ice−liq

3ρ2∆µ2
, (13)280

where ∆µ(T ) is the excess chemical potential of the liquid with respect to the crystal, ρ is the density of the crystal,

and γice−liq is the surface tension of the ice-liquid interface. We follow the procedure developed by Qiu et al. (2019) to

compute the homogeneous nucleation rate Jhom(T ) as a function of experimental properties of water and ice. In sum-

mary, the temperature dependence of the free energy barriers is computed with Eq. (13). The ice-liquid surface tension

at the melting point was selected to match the γice−liq(Tm) = 31.20 mJm−2 to match Jhom at Thom = 238K for µL285

droplets cooled at 1 K/min following the experimental data of Atkinson et al. (2016) and Riechers et al. (2013). We ap-

proximate the temperature dependence of the ice-liquid surface tension γice−liq(T ) by Turnbull’s relation,Turnbull (2004)

where γice−liq(T )/γice−liq(Tm) = ∆Hm(T )/∆Hm(Tm). This parametrization was previously used in Qiu et al. (2019) to

study heterogeneous ice nucleation.

Utilizing the CNT parametrization from Qiu et al. (2019) as an input, we integrate it with diverse droplet size distributions290

and cooling rates. This integration allows us to explore into the distribution of droplet sizes, varying shape parameters, and their
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subsequent freezing behavior. The distribution of water droplets in clouds has been examined through the gamma distribution

function Liu et al. (1995); Painemal and Zuidema (2011); Igel and van den Heever (2017). In Fig. 10a, we showcase how

different gamma size distributions, manipulated by altering the shape parameter as suggested in Igel and van den Heever

(2017), impact droplet sizes. Additionally, Fig. 10b illustrates the survival probability computed via the IPA code under a295

fixed cooling rate (qc=1 K/min), demonstrating the influence of varying shape parameters on freezing behavior. Notably, the

inset reveals a correlation between the shape parameter and freezing temperature. Furthermore, Fig. 10c examines the effect of

cooling rate variation on freezing temperatures. Accurate determination of cloud microphysical properties, as explored through

these analyses, is crucial for improving climate modeling accuracy.

a) b) c)
shape parameter=2

shape parameter=7

shape parameter=14

shape parameter=2

shape parameter=7

shape parameter=14

cooling rate=1K/ns

shape parameter=14

100 K/ns

10-3 K/ns

Figure 10. We use the CNT parametrization from Qiu et al. (2019) as an input, and we integrate it with diverse droplet size distributions

and cooling rates. a) We employ a gamma distribution characterized by different shape parameters as used in Igel and van den Heever. b)

The survival probability predictions for the distributions shown in a) and cooling rates qc = 1 K/min. c) The survival probability predictions

using the same droplet size distribution but with varying cooling rate.

9.2 B as obtained from experiment reflects both diffusion and nucleation barriers300

To demonstrate another aspect of the IPA code, we applied a Gaussian distribution with a mean droplet diameter of 5µm and a

spread of 0.5µm, as shown in Fig. 11a. Using a cooling rate of 1 K min−1 and the JCNT
hom (T ) parametrization from Qiu et al.

(2019), we utilized the IPA code to predict the survival probability (blue circles in Fig. 11b). Subsequently, our AINTBAD code

was employed to extract parameters A, B, ∆G, and T50. In Table 1, droplet sizes vary from 3.8 to 18.8 µm with corresponding

free energy barriers between 72.0 and 95.8 kBT . Additionally, Table 2 presents sizes of 75 and 100 µm with barriers ranging305

from 54.1 to 57.3 kBT . While one might anticipate smaller ∆G for smaller droplets, our observations reveal the opposite trend.

Note that the values of ∆G and T50 obtained from the code align closely with the sum of free energy barriers for diffusion and

homogeneous nucleation, computed using the CNT parametrization from Qiu et al. (2019), as depicted in Fig. 11c. We note

that diffusion barriers in supercooled water may also influence inferred values of A, B, and β∆G as obtained from experiments

with the AINTBAD code.310
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A=1.2x1037
B=1.06

Figure 11. a) Distribution of droplet sizes, b) survival probability prediction using the IPA code and the CNT parametrization from Qiu et al.

(2019) (blue circles) and the fit using the AINTBAD code (black dashed line), and c) comparison between the nucleation barriers computed

using the CNT parametrization from Qiu et al. (2019) and the predicted one from the model.

10 Impact of temperature uncertainty on the apparent nucleation barriers

Another important factor that has a significant effect on the measured nucleation spectrum is the measurement of droplet

temperature. The estimations of the droplet temperatures in freezing experiments show large variability (Tarn et al. (2020);

Shardt et al. (2022)). The highest level of accuracy in the temperature measurements is ±0.2K (Shardt et al. (2022)).

In this study, we conducted a sensitivity analysis using our model to quantify the impact of temperature measurement uncer-315

tainty on estimated free energy barriers. To perform this analysis, we utilized data from frozen 75 µm droplets, as presented in

Shardt et al. (2022), which were collected at a cooling rate of 0.1 K/min. Through the HUB-backward code de Almeida Ribeiro

et al. (2023), we determined the optimized differential spectra denoted as nm(T ) based on the frozen fraction (represented by

the red continuous line in Fig. 12a). The resulting parameters derived from this analysis were Tmode = 238.2K and s= 0.33,

where Tmode represents the most probable freezing temperature within the distribution, and s characterizes the distribution’s320

spread. Subsequently, we employed the original distribution (red continuous line in Fig. 12b) to generate random temperature

values, augmenting them with random values drawn from a uniform distribution within the range of -0.4 to +0.4 (or -0.2 to

0.2). These additional values introduce noise into the data. We sampled a total of 100 temperature values, equivalent to simu-

lating the behavior of 100 droplets in an experimental setup. The resulting differential freezing spectra is illustrated by the blue

squares and green triangles in Fig. 12b. For each case, we calculated the survival probability and fitted the data using Eq. (7),325

resulting in the continuous lines depicted in Fig. 12c. The effects of temperature variation on the nucleation spectrum are sum-

marized in Table 3. We conclude that measurements with ±0.2K and ±0.4K variations, resulted in 8% and 14% variation in

the computed free energy barriers, respectively. Even though the predictions of free energy barriers show a strong dependence

on the uncertainty in temperature measurements, the nucleation rates are insensitive as shown in Table 3. However, the noise

in the predicted rate data increases with the noise in temperature measurements.330
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Shardt et al. 2022

HUB-backward fit original 
distribution

100 droplets 
(±0.4K noise)

100 droplets 
(±0.2K noise)

100 droplets 
(no noise)

a) b) c)

Figure 12. Illustration of the effect of temperature uncertainty on the nucleation spectrum. a) We use the HUB-backward code,

(de Almeida Ribeiro et al. (2023)) to find the best fit (continuous red line) of the experimental data Shardt et al. (2022) (black circles). b)

The continuous red line shows the optimized differential spectra denoted as nm(T ), with resulting parameters Tmode = 238.2K and s= 0.33,

where Tmode represents the most probable freezing temperature within the distribution, and s characterizes the distribution’s spread. We use

the red continuous line as the original distribution to generate 100 temperature values (orange circles). Random noise is introduced in the

temperature (±0.4 K shown in blue squares, ±0.2 K shown in green triangles). c) The survival probability fit (continuous lines) of the artifi-

cially generated data based on Eq. (8).

Noise (K) B β∆G log10(J238.2K)

0.0 0.97 ±0.05 67.0 ±3.0 5.06 ± 0.03

0.2 0.89 ±0.06 62.0 ±4.0 5.01 ± 0.04

0.4 0.83 ± 0.03 58.0 ±2.0 5.05 ± 0.07
Table 3. The computed free energy barriers and nucleation rates for various uncertainties in the temperature measurements. Mean and

standard deviation of B and β∆G are computed from 5 different estimates. We consider T50 to be 238.2K for all the cases presented in this

table.

11 Conclusions

Homogeneous nucleation can be studied in experiments that record the freezing temperature as ultrapure nanoscale water

droplets are gradually cooled to temperatures far below 00C. Some prior studies have analyzed these experiments using Pois-

son statistics and survival probabilities. Others have analyzed with numerical theories. We combined a stochastic survival

probability analysis with classical nucleation theory (CNT). The combined framework allows us to account for both droplet335

size distribution and cooling rate while extracting prefactor and barrier parameters in CNT type rate expression. We applied it

to analyze the homogeneous nucleation data obtained from two different studies: Atkinson et al. (2016); Shardt et al. (2022).

We first used the new framework to extract parameters and rate expressions from experiments on six groups of size selected

droplets, from 5.0±1.2µm to 17.5±1.2µm. The analysis gave similar prefactors, barriers and rates across all six experiments.

We further showed that all six experiments can be fitted with just two parameters from one global parameterization. We derived340
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a superposition formula to show that a distribution of droplet volumes causes a broadening of the distribution of nucleation

temperatures. We demonstrate that ignoring volume dispersity in analysis of nucleation temperatures causes an artificial reduc-

tion in the inferred barrier and prefactor values. Finally, we applied our model to analyze data from experiments with variations

in cooling rates and droplet sizes Shardt et al. (2022).

345

We present two Python codes AINTBAD and IPA. AINTBAD uses the nucleation spectrum from drop-freezing experiments

to estimate theoretically motivated rate parameters from nucleation theory. AINTBAD directly optimizes the rate parameters

from the cumulative frozen fraction vs. temperature data. It does not require large number of droplets to estimate nucleation

rates at each temperature like other procedures. Although the AINTBAD code does not directly use nucleation rates in the

optimization, it does yield highly accurate and robust estimates of the nucleation rate. The IPA code can predict the nucleation350

spectrum for any given distribution of droplet sizes, any cooling rate, and for any nucleation rate expression. We have demon-

strated its application for rates estimated from experiments and for rates predicted using theoretical models. Even though we

restrict our discussion to homogeneous nucleation data in this article, it should be possible to develop similar methods for het-

erogeneous nucleation data. A key challenge is that volume dispersity multiplies only the homogeneous nucleation prefactor in

a collection of pure water droplets, while the surfaces that promote heterogeneous nucleants will vary both in area (prefactor)355

and contact angle (barrier).
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