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The evaluation of oxidation and reduction potentials is a pivotal task in various chemical fields.
However, their accurate prediction by theoretical computations, which is a complementary task and
sometimes the only alternative to experimental measurement, may be often resource-intensive and
time-consuming. This paper addresses this challenge through the application of machine learning
techniques, with a particular focus on graph-based methods (such as graph edit distances, graph
kernels, and graph neural networks) that are reviewed to enlighten their deep links with theoreti-
cal chemistry. To this aim, we establish the ORedOx159 database, a comprehensive, homogeneous
(with reference values stemming from density functional theory calculations), and reliable resource
containing 318 one-electron reduction and oxidation reactions and featuring 159 large organic com-
pounds. Subsequently, we provide an instructive overview of the good practice in machine learning
and of commonly utilized machine learning models. We then assess their predictive performances
on the ORedOx159 dataset through extensive analyses. Our simulations using descriptors that are
computed in an almost instantaneous way result in a notable improvement in prediction accuracy,
with mean absolute error (MAE) values equal to 5.6 kcal mol−1 for reduction and 7.2 kcal mol−1

for oxidation potentials, which paves a way toward efficient in silico design of new electrochemical
systems.

I. INTRODUCTION

The experimental optimization of chemical reagents is
very often a time-consuming and financially expensive
task as it requires numerous tries that can also involve
hazardous compounds or complex synthetic strategies.
As a consequence, the exploration of the chemical space
for a given property frequently remains limited to a small
number of variations, and the fine-tuning that is per-
formed is then far from being optimal. It is thus highly
desirable to have at disposal a fast screening tool that can
efficiently guide the applied chemists for the selection of
the best synthetic targets.

Numerical techniques are certainly suitable candidates
for shortcut strategies that can be led at larger scales,
provided the associated computations can treat the sys-
tems both in a reasonable time and with a sufficient ac-
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curacy. Advanced quantum chemistry (QC) methods,
such as density functional theory (DFT) or post-Hartree-
Fock methods, are indeed capable of achieving the latter
point mentioned. However, their application to extensive
compound searches is limited by the significant compu-
tational time required - calculations for a single molecule
can span several hours to days, especially for extended
systems. This limitation underscores the challenge of us-
ing these methods for broad compound exploration.

Such limitations can be alleviated by the use of ma-
chine learning (ML) methods, which usually provide pre-
dictive models that can be deployed at a large scale (then
enhancing the exploration of the chemical space [1]) in a
rather small amount of time when they are based on fea-
tures that can be evaluated in a faster way than the re-
lated full QC calculation. The importance of ML in the-
oretical chemistry has tremendously increased in the last
decade, and has now become ubiquitous in the field (see
for instance the reviews by Keith et al. [2] and Mater et
al. [3]), generating also a lot of individual tools and soft-
ware [4]. Such booming is so exponential that it has be-
come almost impossible to review the use of ML in chem-
istry in a comprehensive way, since it ranges from drug
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design to retro-synthesis analysis, encompassing material
sciences and catalysis, or molecular dynamics and even
QC itself, among other fields of application.

In this paper intended for the special issue of the Jour-
nal of Computational Chemistry devoted to ML and arti-
ficial intelligence in theoretical and computational chem-
istry, we will illustrate in a didactic fashion to what ex-
tent the ML machinery can be efficiently implemented for
the prediction of one of the most fundamental chemical
properties, namely the redox potentials. Indeed, oxida-
tion and reduction are elementary processes that occur
in almost all chemical subfields [5]. This is obviously
the case in biochemistry since many biological processes
involve redox reactions (as epitomized by the cellular res-
piration [6]), but also in geology (formation of blast fur-
naces [7]), in chemical engineering and industry (we can
mention cathodic protection in galvanized steels to fight
against corrosion [8]), in new product synthesis through
electrochemical catalysis [9], and so on.

Being able to accurately predict redox properties, both
for known or new molecules, is thus of utmost importance
in many areas of chemistry and also in daily life (if one
thinks of batteries and solar cells for instance), and ML
methods have already been applied to tackle this issue in
the spirit of Quantitative Structure–Property Relation-
ships (QSPR) approaches. A very recent publication by
Fedorov and Gryn’ova reviewed in detail this topic [10],
and we thus refer the interested reader to this remark-
able paper for an up-to-date account on ML technics for
redox prediction and an expanded panorama of reported
models. We will restrict ourselves to only mention here
few landmark papers (the choice being of course arbitrar-
ily and too much reduced), covering various fields (from
material science to biochemistry) by Kleinová et al. [11],
Méndez-Hernández et al. [12], Ghule et al. [13], Galuzzi
et al. [14], or Bhat et al. [15].

Our aim is actually much less ambitious in this paper
that adopts a hybrid format since it is both a short re-
view and a research paper with new results. Hence, we
will not look for a general and versatile (and even less
universal) model, but, conversely, we will pick out some
specific tools - mainly belonging to graph-based meth-
ods -, maybe less known in the chemical community, and
we will discuss their relevant for the prediction of redox
potentials. Graph theory has actually be efficiently used
for the prediction of many properties belonging to dif-
ferent fields of chemistry, ranging from mutagenicity or
toxicity in medicinal chemistry to boiling points in phys-
ical chemistry (see for instance [16, 17]). Noteworthy,
we will start from the very beginning by setting up from
scratch a completely new database of organic molecules,
with DFT reference values computed by ourselves.

This departs from the common practice based on pre-
existing databases. Indeed, one of the usual drawbacks
of them is that they might gather reference values from
various origins, sometimes without clear source, and they
may thus suffer from a lack of homogeneity that is not
without incidence on the “trustability” of the results.

Conversely, we will generate here our reference values
with a unique and perfectly defined, controlled, and - also
an important point - reproducible computational proto-
col. This database will be described more in details in
the next section.
Then, the computational details and the ML technics

used in this study will be presented in a pedagogical way,
so that it can build a bridge between the two communi-
ties (namely theoretical chemistry and data science). A
particular emphasis will be put on graph-based methods
since they are at the heart of our original ML methods.
Then, the various ML models obtained will be presented
and discussed before final conclusions.
From a methodological point of view, any ML study

should adhere to the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles [18]. Artrith et al. have
recently reviewed best practices in ML for chemistry [19]
that serve as useful guidelines for our purposes. Their
ckecklist consists of six main points: (i) data sources
should be listed, publicly available with a clear identifica-
tion numbers, and with possible biases reported; (ii) data
should be cleaned using a well-defined and discussed pro-
tocol; (iii) the methods for data representations should
be clearly articulated and compared with the literature;
(iv) the implementation of the ML model should be pro-
vided, and the model should be compared to baseline
methods and to state-of-the-art ones; (v) a clear data
split between training, validation, and testing should be
implemented and clearly described; (vi) the code and
workflow should be made available and allow for repro-
ducing the reported results. Accordingly, we will illus-
trate all these general rules throughout this paper.

II. THE OREDOX159 DATABASE

The ORedOx159 database is a collection of 318 one-
electron reduction and oxidation reactions involving 159
large-size organic compounds routinely used as redox in-
dicators, or involved in the development of molecular
electrochemical storage and electrochemical sensors [20].
For instance, it counts viologen derivatives which are
well-known from decades to reversibly change color be-
tween violet and deep blue through reduction and oxida-
tion [21], or 2,2’-bipyridiniums which are used as ‘electron
reservoir’ for electrochemical storage [22], or phenoth-
iazine compounds which has been recently considered as
efficient redox mediators in electrochemical sensors [23].
For each organic compound A, the database collects a
one-electron reduction reaction

A + e− →A−, ∆rG
0
Red (1)

where ∆rG
0
Red denotes the (standard) Gibbs free energy

variation of the reduction process at room temperature.
∆rG

0
Red values are usually computed as negative except

when the oxidant A is less stable than the reducer A−.
This last issue is related to that of negative electron affini-
ties (in general defined for vertical processes) and can also
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be an artefact due to the neglecting of solvent effects (see
for instance the discussion by De Proft and co-workers
within a DFT context [24]).

Complementarily, the oxidation reaction twin writes

A→A+ + e−, ∆rG
0
Ox (2)

with ∆rG
0
Ox being the Gibbs free energy variation during

the oxidation process at the same temperature.
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FIG. 1: Scheme of the main organic derivatives from
which the compounds of the ORedOx159 database are

derived.

Let us recall that the Gibbs free energy is directly re-
lated to the standard reduction potential E0

Red encoun-
tered in electrochemistry. In the general case, an oxidizer
is indeed reduced by z electrons to form a reduced species.
These two quantities are then linked by the well-known
Nernst equation

∆rG
0
Red = −zFE0

Red, (3)

where F is the Faraday constant (i.e., 96,500 C mol −1).
It is thus equivalent to build a predictive model on Gibbs
reaction free energies or on redox potentials.

Regarding its chemical diversity, the database is com-
posed by a large variety of compounds substituted by
electron donor or acceptor groups such as aliphatic,
etheroxy, keto, ester and halogen substituents, and de-
rived from four different organic families that are clus-
tered into the phenothiazine (1), quinone (2), 2,2’-
bipyridinium (3) and viologen (4) subsets. Figure 1 pro-
vides a representation of the main core derivative of each
of them, and Figure 2 depicts the distribution of their
respective Gibbs free energy variations in reduction and
oxidation computed in the gas phase at the PBE0/def2-
TZVPP level of theory.

More precisely, the phenothiazine subset counts 28
derivatives. They are 15 carbon- and 6 aza-substitued
phenothiazines as well as 4 benzothiazines and 3 sulfox-
ided phenothiazines. Their reduction Gibbs free energy

variations span between -26.31 and 10.07 kcal mol−1 while
their oxidation ones vary between 140.00 and 181.55 kcal
mol−1.
The quinone subset composes of 37 compounds. They

belong to naphto- and anthra-quinones (13 and 3 deriva-
tives, respectively) as well as isoindole-4,7-diones (11
derivatives) and other types of quinones (10 derivatives).
Their reduction (resp. oxidation) Gibbs free energy vari-
ations cover a broader energy range than phenothiazine,
which spans between -82.39 (resp. 55.18) and 51.84 (resp.
213.77) kcal mol−1.
The 2,2’-bipyridinium subset counts 45 derivatives. It

is composed of unbridged 2,2’-bipyridiniums (3 deriva-
tives), ethene (3 derivatives), ethane (19 derivatives),
propane (6 derivatives) and butane 2,2’-bipyridiniums (3
derivatives) as well as other types of 2,2’-bipyridiniums
(11 derivatives). Their reduction Gibbs free energy vari-
ations span between -228.58 and -5.67 kcal mol−1, while
their oxidation ones vary between 182.06 and 402.04 kcal
mol−1.
Finally, the viologen subset is composed of 49 deriva-

tives, belonging to core (20 derivatives), symmetric
(12 derivatives) and asymmetric (7 derivatives) substi-
tuted viologens as well as other types of viologens (10
derivatives). Their reduction (oxidation) Gibbs free en-
ergy variations cover a similar energy range as 2,2’-
bipyridinium. It spans between -226.69 (185.29) and -
10.59 (407.36) kcal mol−1.

RSX-PBE0 PBEh-3c B97-3c

∆rG
0
Red 1.56 1.01 0.93

∆rG
0
Ox 5.38 3.44 2.20

TABLE I: Mean absolute deviations (kcal mol−1) for
the reduction and oxidation Gibbs free energies in the
ORedOx159 database between the affine relationships
of FIG. 3 for RSX-PBE0/def2-TZVPP, PBEh-3c and
B97-3c levels of theory, with the values obtained at the

PBE0/def2-TZVPP reference level.

In order to evaluate the bias introduced by the com-
putational protocol on the Gibbs free energies, Figure 3
compares the results obtained at the PBE0/def2-TZVPP
level of theory with those obtained with other density
functionals. The comparison with RSX-PBE0 [25, 26],
a range-separated hybrid density functional known to
provide accurate estimates for ionization potentials and
electronic affinities [26], depicts a quasi-ideal affine re-
lationship. Similar conclusions can be drawn from the
comparison with other composite DFT approximations
such as PBEh-3c [27] and B97-3c [28], the latter being
demonstrated as an excellent cost-effective approach to
predict redox potentials [29]. This graphical observa-
tion is also confirmed by very low mean absolute devia-
tions (MADs) while comparing the affine predicted Gibbs
free energies at B97-3c level with that of PBE0/def2-
TZVPP (Table I). The error introduced is only about
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FIG. 2: Distribution of the reduction and oxidation Gibbs free energy variations (kcal mol−1) covered by the
ORedOx159 database and split over the four subsets, i.e., 1: phenothiazines, 2: quinones, 3: 2,2’-bipyridiniums and

4: viologens.
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FIG. 3: Correlation plots between the Gibbs free energy variations calculated at the (left) RSX-PBE0/def2-TZVPP,
(middle) PBEh-3c, and (right) B97-3c levels of theory with the PBE0/def2-TZVPP reference values.

0.93 kcal mol−1 in reduction and slightly larger in oxyda-
tion (2.20 kcal mol−1). We thus conclude that whether
the computational protocol taken as a reference to train
the ML model, its accuracy will certainly remain merely
unchanged.

Please note that a more complete description of the
database is provided in the Supporting Information file,
and the structures and respective electronic and Gibbs
free energies are accessible through the GitHub platform
[30].

III. COMPUTATIONAL DETAILS

With the collected database, we now perform the nec-
essary computations and prediction of the redox poten-
tials. FIG. 4 exhibits the workflow of the procedure,
which breaks down into five steps. Three steps during
the training procedure include: (I) Computing the redox
potentials for each compound in training set using DFT.
The corresponding computational method is detailed at
the following part of this section. (II) Constructing the
descriptor representation for each compound in the train-
ing set, which is detailed in Section IVA. (III) Training
a ML model with the given descriptors and redox poten-
tials. The list of models used in this paper is described in
Section IVB. After that, a ready-to-use model is estab-
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FIG. 4: The workflow for the redox potential
prediction.

lished. When a new chemical compound with unknown
redox potentials is given, we (IV) construct the descrip-
tors for this compound the same way as in step (II), and
then (V) use these descriptors as the input for the trained
model, and take the output of the model as the predicted
redox potential.

We first present the QC methodology to generate the
reference data (I). The Gibbs free energy variations in
reduction and oxidation (see Eq. 1 and 2) are computed
in the gas phase with density-functional theory (DFT).
The structures of the 159 organic derivatives are fully op-
timized in their neutral ground-state as well as in their
reduced and oxidized states. Their geometries are thus
fully relaxed. In other words, we do not consider vertical
electron removal or attachment. Each of the 477 resulting
minimum energy structures is then fully characterized by
a frequency computation (within the harmonic approxi-
mation) from which the thermal, vibrational and entropy
contributions are computed at room temperature using
standard statistical physics formulae.

To further increase the diversity of the organic sys-
tems used to train the ML models, we also introduced
into the optimization process a small dataset composed
by 19 various organic derivatives. Dubbed DivRedOx19,
this dataset adds a collection of 38 reduction and oxida-
tion Gibbs free energy variations to the 318 brought by
ORedOx159. A more complete description of the dataset
is provided in the Supporting Information file, and the
structures and respective electronic and Gibbs free ener-
gies are accessible through the GitHub platform [31].

The PBE0 global-hybrid density functional approxi-
mation for the exchange-correlation energy [32] and the
def2-TZVPP basis set [33] are chosen as a good accura-
cy/cost trade-off to estimate the requested energy prop-
erty for this large number of compounds. All the compu-
tations are performed with the release C.01 of the Gaus-
sian’16 program [34] using a tight energy threshold cri-
terion as well as an ultrafine integration grid.

It should be underlined that only gas phase values are
here considered. Obviously, experimental data are in gen-
eral related to measurements in solution. However, an ac-

curate description of solvation effects in redox processes
is far from being straightforward, and is clearly beyond
the scope of this paper. The same remark applies for a
detailed assessment of the chosen QC methodology. We
refer the interested reader to the valuable works, among
others, by the groups of Gillmore [35] and Grimme [29].

IV. MACHINE LEARNING FRAMEWORK

With redox potential references generated, we now pro-
vide an in-depth elucidation of the ML framework uti-
lized in this paper. We begin with introducing the rele-
vant descriptors, and we subsequently delineate the ML
models employed, corresponding respectively to steps (II)
and (III) in FIG. 4.

A. Descriptor design

As stated in the introduction, our models will be
grounded in graph theory. In a nutshell, a graph G is an
ordered pair, G = (V,E), of vertices (also named points
or nodes) and edges (also known as links or lines) that
are unordered pairs of vertices. In a chemical context,
we first construct a graph from any molecule by identi-
fying atoms as nodes and by modeling chemical bonds
by edges. It is thus obvious that the usual molecular
representation of a chemical compound can be straight-
forwardly translated into the language of graph theory.

In order to prevent any misconceptions about
molecules and graph theory, it should be however stressed
that such a representation does not mean that only in-
teractions between bonded atoms exist. Actually, a full
molecular graph will be in principle a complete graph
(i.e. all pairs of nodes are linked - which is not a syn-
onym of bonded - together), and one can, in princi-
ple, evaluate the interaction energies between all nodes
(for instance, using Pendás’ Interacting Quantum Atoms
(IQA) scheme [36]). However, such graphs rapidly be-
come huge since they involve n(n − 1)/2 edges (with n
the number of atoms), so that their use would intro-
duce a computing complexity that can be prohibitive
for large databases of extended molecules. Conversely,
a linear molecule (i.e. without rings or cages) exhibits
(as a direct consequence of the Poincaré-Hopf relation-
ship within the framework of Bader’s Quantum Theory
of Atoms-In-Molecules (QTAIM) [37]) only n − 1 bonds,
so that linear scaling may be possible with such graph
assumption. An important point to notice is that, in
principle, the node properties, if relevantly chosen, can
reflect both bonded and (indirectly) non-bonded interac-
tions.

Then, once the molecular graphs established, we con-
sider in total 3 types of descriptors for graph-based mod-
els in this research. As we intend this paper to have
some didactic content, we have decided to describe them
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FIG. 5: Descriptors used for the machine learning models.

in more detail with no prerequisite on chemoinformatics.
They are also represented in FIG. 5.

(A) Atom + Bond Types: This kind of descrip-
tor considers element types (for instance, carbon, hydro-
gen, etc.) as node features and chemical bond types (ei-
ther single, double, triple, aromatic) as edge features (see
more details in type B). Since these features are discrete,
they are encoded in a one-hot manner. These descriptors,
while affording a simplistic description of a molecule, are
widely used in various databases for the evaluation of ML
models, such as TUDataset [38]. However, this descrip-
tor may lack the ability to capture sufficient information
for effective learning.

(B) One-Hot Features: Such descriptors encompass
common features for both atoms and chemical bonds,
each of them represented as one-hot coded node and edge
features, respectively. These descriptors are inspired by
the featurizers in DeepChem [39], based on WeaveNet
paper [40]. They can all be directly obtained from the
RDKit [41] software without the need for computation-
ally intensive QC-informed descriptors.

In practice, they are actually very often directly gen-
erated from the Simplified Molecular Input Line Entry
Specification (SMILES) [42] molecular code (see an ex-
ample at the top left corner of FIG. 5) using the standard
rules of chemistry based on Lewis representation, without
resorting to any kind of advanced calculations. For rel-
atively simple molecules in organic chemistry, the bond
pattern predicted by the SMILES code is fully consistent
with those from more elaborated approaches (for instance
QTAIM already mentioned, which affords a univocal def-
inition of chemical bonds) based on QC analysis. This
is one of the main strengths of the SMILES code, since

it can be produced and processed in an almost instanta-
neous manner. However, as it does not encode any 3D
information, it cannot distinguish between the different
conformers (resulting, for instance, from free rotations
around single bonds) of a given molecule.

More precisely, the node features include a 32-
dimensional one-hot vector (see middle part in FIG. 5).
The first 10 components encode the chemical symbol with
the following possible categories: C, N, O, F, P, S, Cl,
Br, I, and others. For instance, a carbon atom will be
coded by (1 0 0 0 0 0 0 0 0 0) while an oxygen atom will
be represented by (0 0 1 0 0 0 0 0 0 0). The hybridiza-
tion type is encoded by three components depending on
it is sp, sp2 or sp3: a carbon atom engaged into a double
bond will hence be coded as (0 1 0).

The other atom descriptors are the electronic charge
(as its evaluation is not straightforward - ideally it re-
quires a QC calculation -, we decided to disregard it by
setting it to zero for all atoms), its aromaticity (repre-
sented by a boolean depending whether the atom be-
longs to an aromatic system or not), its so-called “De-
gree” (corresponding to the coordination number), the
number of hydrogen atoms linked to the studied node
(one-hot coded as a 6-dimension feature), and its possi-
ble chirality (R or S absolute configuration, once again
in one-hot encoding) in the case of an asymmetric car-
bon atom. This representation is thus able to address
stereochemistry issues.

The edge features consist of an 11-dimensional one-hot
vector (see bottom part of FIG. 5) representing bond type
(four categories: single, double, triple and aromatic),
whether the atoms at the end of the bond share the same
ring (no matter the type) and whether the bond belongs
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to a conjugated system (both encoded as a boolean), and
the possible stereoisomerism of the bond in a 5-dimension
feature.

Notice that some structure information is implicitly
embedded into the node features through “Aromatic”,
“Degree”, and ”Chirality”. This may benefit the mod-
els that can not deal with edge features or rings. We
emphasize that these features are easy-to-get and non-
expensive, thus exhibiting how much ML models can
benefit from a short amount of effort of descriptor en-
gineering.

(C) One-Hot Features on Nodes + Distances on
Bonds: This descriptor employs the same node features
as the descriptor (B), but replaces edge features with
the Euclidean distances (here expressed in Angström) be-
tween the nuclei of the corresponding bonded atoms (see
bottom right corner in FIG. 5). We utilize distances to
maintain a 3D invariant system (that-is-to-say the val-
ues remain the same when the molecule is translated and
rotated as a whole), making it applicable to any models
with the ability to handle continuous edge features (at
variance with the previous bond descriptions that used
only discrete descriptors). It can be remarked that in-
ternuclear distances are also the main ingredient of the
celebrated Coulomb matrices (CMs) [43] that enter many
ML models in chemistry. However, it should be noticed
that distances, here (at variance with that is currently
done when using CMs), are not computed for non-bonded
pair of atoms even if they can add additional information
on the geometry adopted by the molecule.

To obtain these distances, we search for the most sta-
ble conformer for all compounds using the freely available
Balloon [44] software with the MMFF94 molecular me-
chanics force field, starting from the SMILES code, with
the following options: –nconfs 20 –nGenerations 300 –
rebuildGeometry. We then compute the distance from
the corresponding Cartesian coordinates of the nuclei.
This computation, though probably less accurate than a
QC geometry optimization, has however an almost neg-
ligible computational cost, fulfilling one of the targets of
our ML modelling.

For the same reason, no QC descriptors are used at
all. Obviously, some of them would be certainly use-
ful for an accurate prediction of redox properties. For
instance, the energy of the Highest Occupied Molecu-
lar Orbital (HOMO) energy is known, in Kohn-Sham
DFT, to be exactly equal (this is due to the asymptotic
form of the electron density in the exponential tail) to
the opposite of the electronic component (thus without
thermodynamic contributions) of the vertical (i.e. with-
out geometry relaxation) ionization energy if the exact
exchange-correlation functional is used (which is unfor-
tunately not known in analytical form). It is also known
that the energy of the lowest unoccupied molecular or-
bital (LUMO), while differing in principle from the oppo-
site of the vertical electron affinity (as a consequence of
the discontinuity of the exchange-correlation potential),
is nevertheless linked to electron capture (see for instance

a detailed discussion by Baerends [45]).
These descriptors, which have already been used in

the literature to build predictive models, unfortunately
require the computationally demanding task of a DFT
calculation. This is exactly what we would like to avoid
thanks to a well tailored ML model based on descriptors
that can be computed at an almost zero cost.

B. Machine learning models

This section outlines the machine learning models uti-
lized in this study, as depicted in Figure 6. Initially, we
employ seven vector-based machine learning models as
baselines. Subsequently, we introduce three categories of
graph-based models, namely, five Graph Kernels (GKs),
one Graph Edit Distance (GED) model, and six Graph
Neural Networks (GNNs), making a total of twelve mod-
els. These models are systematically evaluated on their
performances for the graph prediction challenges.
Vector-based Models: First, we select seven mod-

els that process vectors inputs as baselines [46]. These
models include Linear Regression (LR), Gaussian Kernel
Ridge Regression (GKRR), Support Vector Regression
(SVR), Gaussian Process Regression (GPR), Random
Forest (RF), Gradient-boosted Decision Trees (GBDT),
and K-Nearest Neighbor Regression (KNN). Given the
vector-focused nature of these models, a graph-level pool-
ing step is required beforehand to derive fixed size vectors
from varying size graphs. For this purpose, we adopted
the strategy outlined in [47], wherein statistics are com-
puted for each feature over all nodes within each graph
(stats). Indeed, the number of nodes varies along the
molecular dataset, so that the vector gathering the node
features would have, in general a different size for one
chemical system to another one, precluding the use of
standard ML methods. To avoid this, for a given feature,
we compute the minimal, maximal, mean and standard
deviation values on all nodes, resulting in four statistical
descriptors that can be evaluated for all molecules.
Additionally, we introduced a novel pooling approach

for the vector-based models, where we quantified the fre-
quency of each feature. As discussed in Section IVA, the
node features, which encompass Atom and Bond Types
(A) and One-Hot Features (B), are encoded using a one-
hot representation in this paper. When two feature vec-
tors are summed, it results in a vector where each element
corresponds to the total count of that feature. To illus-
trate this concept, consider a simple two-node toy graph
with feature vectors (1 0 0 1 0) and (0 1 0 1 0) assigned to
the two nodes. After applying our pooling approach, the
graph-level representation becomes (1 1 0 2 0), obtained
through element-wise summation of the two node feature
vectors.
This means that features at the first, second, and

fourth positions occur once, once, and twice, respectively,
in the entire graph, while the other features do not ap-
pear. For a visual representation, refer to FIG. 6(I). Our
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FIG. 6: Machine learning models used for the prediction.

ML experiments show that this pooling strategy outper-
forms the one proposed in [47] in most cases, as illus-
trated in Section V. It is important to note that these
models primarily emphasize node features and that, dur-
ing the experiments, edge features were disregarded.

Graph Kernels: Graph kernels compute a similarity
measure between graphs by implicitly mapping them into
high-dimensional spaces where the inner product is com-
puted. Such a measure can be defined as a symmetric,
positive semi-definite function k ∶ G × G → R on a space
of graphs G, where a map ϕ ∶ G →H exists into a Hilbert
space H, so that

k(G1,G2) = ⟨ϕ(G1), ϕ(G2)⟩H (4)

for all pairs of graphs G1,G2 ∈ G. Here ⟨⋅, ⋅⟩H is the inner

product in H, as shown in FIG. 6(II). The results are
then processed by a kernel machine for final prediction,
specifically Kernel Ridge Regression (KRR) [46] in this
paper. By altering the design of the mapping, various
graph kernels can be constructed. A commonly design
strategy is inherited from R-convolution kernels, which
measures similarity between two objects, by measuring
the similarities between their substructures [48].

Normally, a series of sub-kernels are first constructed
between pairs of sub-structures of two graphs, then a
graph-level kernel is established upon the summation of
these sub-kernels. In our paper, we examine a set of base-
line graph kernels, including Shortest Path Kernel (SP)
[49], Structural Shortest Path Kernel (SSP) [50], Path

Kernel [16], Treelet Kernel [51], and Weisfeiler-Lehman
Subtree Kernel (WLSubtree) [52], each of them named
after the sub-structures from which the kernel is built.
These kernels are able to tackle linear and non-linear
sub-structures. Detailed descriptions and comparisons
of graph kernels can be found in [53–56].

Graph kernels are able to work directly with the graph
structures, while tackling the similarity measure on high
or infinite dimension spaces, thanks to the kernel trick
[57]. This allows bypassing acquiring fixed embeddings,
extends their expressiveness, and flexibility of design and
integration of prior-knowledge. The proper design can
lead to the invariance to graph isomorphism as well. The
other size of the coin minted their lack of the ability of
automatic learning of the representation, especially com-
pared to graph neural networks. The choice of the ap-
propriate kernel is thus crucial for achieving good perfor-
mance.

Graph Edit Distances: GEDs measure the dissim-
ilarity between two graphs by evaluating the amount of
distortion required to transform one graph into another.
Various basic edit operations, each assigned with a cost,
are used to measure this distortion, and the minimum
total cost represents the GED between the two graphs.
Commonly used edit operations include an insertion, re-
moval, or substitution of vertices or edges. FIG. 6(III)
shows a simple instance of an edit procedure. In this
basic example, the first operation is the removal of the
bottom vertex, followed by the removal of the bottom
edge.

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2 ORCID: https://orcid.org/0000-0002-8646-9365 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2
https://orcid.org/0000-0002-8646-9365
https://creativecommons.org/licenses/by-nc-nd/4.0/


9

Then an edit path π, which in FIG. 6 goes from graph
G to graph G′, can be defined as the sequence of these
operations, whose total cost c is the sum of the costs of
all edit operations in the path, namely c(π) = ∑e∈π c(e),
where e denotes an elementary operation. Then, the
GED between two graphs G1 and G2 is defined as the
minimum cost associated with any possible edit path:

ged(G1,G2) = min
π∈Π(G1,G2)

c(π), (5)

where Π(G1,G2) denotes the set of all possible edit paths
from G1 to G2. We mention here that we only consider
in this paper a constant value for the cost (i.e. it is
independent of the labels of nodes and edges) of every of
the six elementary operations.

Since computing GED is an NP-hard problem [58], ap-
proximation methods have been proposed to estimate
it. In this paper, we use a milestone method, called
Bipartite [59], where the edit costs are optimized us-
ing a method from [60]. This approach boils down the
quadratic assignment problem (QAP) to a linear one
by finding a suboptimal edit path only based on local
structural information. Edit costs are optimized in a
bi-alternate optimization scheme. This approach consti-
tutes a good trade off between computational time and
accuracy. More accurate methods based on the QAP
have been proposed [61, 62], at the cost of an higher com-
putational time. We recommend in-depth papers [63, 64]
on GEDs to interested readers.

As GEDs are a distance measure, we combine them
with the k-Nearest Neighbor regressor (KNN) [65] for
the final prediction. To predict the output value of an
example, this approach simply consists in averaging the
target values associated to its k nearest neighbors ac-
cording to the GED, with the hypothesis that the target
values of similar examples are close to each other. The
contribution of each neighbor can be weighted according
to distance values.

The advantages of GEDs inherit from their flexible and
explicit application of edit operations, which allows for
capturing complex structural differences between graphs,
as well as an explicit demonstration of the modification
process of graphs. This latter merit helps establish the
explainability of the model, which is conductive to their
application on the generative tasks. However, the se-
mantic meaning of graph elements may not be captured
by GEDs. Moreover, as a NP-hard problem, calculating
GEDs can be computationally expensive, especially for
large or dense graphs. The lack of providing a continu-
ous space to interpolate between graphs and invariance
to graph size may also limit their applications to certain
tasks.

Graph Neural Networks (GNNs): GNNs are a
class of neural networks that specialize in learning from
graph-structured data. They often utilize a message-
passing scheme, wherein information from nodes, edges,
and the overall graph structure, are aggregated from the
neighbors of each node through a series of graph convolu-
tional operations, as shown in FIG. 6(IV). With denoting

x
(k−1)
i ∈ RF node features of node i in layer (k − 1), and

ej,i ∈ RD denoting (optional) edge features from node j
to node i, the updating of node features using message
passing graph neural networks can be described as

x
(k)
i = γ(k)

⎛
⎝
x
(k−1)
i , ⊕

j∈N (i)
ϕ(k) (x(k−1)i ,x

(k−1)
j ,ej,i)

⎞
⎠
,

(6)
where ⊕ denotes a differentiable, permutation invariant
function (e.g. sum, mean or max), and ϕ denote differen-
tiable functions such as Multi Layer Perceptrons (MLPs).

γ(k) can be thought of as the node’s update or processing
function at that particular layer, which can be as well
implemented as a neural network layer. This formula
captures the message-passing operation of GNNs. At
each layer, information is propagated from neighboring
nodes to the central node i [66]. Following this message-
passing process, a pooling operation (such as sum, mean,
or max) over node features is often applied to obtain a
graph-level representation; a MLP can then be used for
graph-level predictions. We refer to [67–70] readers in-
terested in GNNs.
Several representative GNN architectures have been

considered for study. The Message Passing Neural Net-
work (MPNN) [71] employs message passing and aggre-
gation mechanisms in combination with an edge network
to capture relational information. In contrast, the Graph
Convolutional Network (GCN) [72] utilizes convolution-
like operations with weight sharing for neighbor node
information aggregation. The Deep Graph Convolu-
tional Neural Network (DGCNN) [73] distinguishes itself
through the use of edge features and sort pooling to learn
graph embeddings invariant to permutation of the nodes.
The Graph Isomorphism Network (GIN) [74] combines a
graph isomorphism test with learnable functions to inte-
grate global and local information. On the other hand,
the Graph Attention Network (GAT) [75] employs atten-
tion mechanisms to selectively weight neighboring node
contributions.
Finally, the Unified Message Passing Frame-

work (UniMP) [76] integrates message passing and
transformer-based architectures, harnessing both rela-
tional and self-attention mechanisms for comprehensive
graph representation learning. These diverse models
offer distinct approaches to address our problem.
One significant advantage of GNN models lies in their

time complexity during inference, setting them apart
from GEDs and graph kernels. In the case of GEDs and
graph kernels, it is typically necessary to perform metric
or Gram matrix computations, involving the calculation
of similarity values between each data point in the train-
ing set and the data point to be inferred. This matrix
serves as the inner product in kernel machines and aids
in finding the K nearest neighbors in K-Nearest Neigh-
bors algorithms. The catch is that the computational
time associated with this matrix scales linearly with the
size of the training set, rendering it prohibitively time-
consuming for large datasets. As a result, the scalability
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of these models becomes constrained.
In contrast, GNN models usually feature a linear or

nearly linear time complexity during inference. This effi-
ciency is intricately linked to the model’s design, partic-
ularly the scale of weight parameters. In practice, GNN
computations predominantly involve basic matrix oper-
ations like multiplication and addition. Consequently,
GNN models excel in efficiently handling graphs of vary-
ing sizes, making them exceptionally well-suited for real-
world scenarios. These scenarios often involve graph data
that ranges from small and simple to large and intricate,
then underlining the substantial benefits of GNNs in real-
world applications.

More advantages are offered by GNNs, notably in their
ability to automatically learn representations, which alle-
viates the need for explicit feature engineering. By aggre-
gating and propagating attributes associated with nodes
and edges within the graph, the incorporation of both
local and global information is facilitated for a compre-
hensive understanding of the graph’s context. Addition-
ally, GNNs allow for knowledge transfer through a pre-
training and fine-tuning strategy. However, they come
with certain limitations. GNNs often require substantial
amounts of training data and memory resources, which
can be restrictive in real-world applications.

The lack of proper interpretability and explainability
poses challenges, potentially diminishing trust among ex-
perts. Furthermore, GNNs inherit unresolved fundamen-
tal issues, such as over-smoothing, where nodes tend to
lose their distinctiveness after a certain number of GNN
layers, limiting the feasibility of designing deep GNN ar-
chitectures. These complexities need further investiga-
tion and innovation to fully harness GNNs’ potential in
practical settings.

V. RESULTS AND DISCUSSION

We first mix the ORedOx159 and DivRedOx19
datasets, dubbed MixRedOx178 in the rest of the paper,
to increase the diversity of the considered organic sys-
tems. Then performance evaluations are carried out on
ten different random splits. Each split is partitioned into
80%, 10%, and 10% for training, validation, and testing,
respectively. The hyper-parameters for each model are
tuned on the training sets separately for every split us-
ing a grid-search approach. Consequentially, 10 unique
instances, each with a different set of hyper-parameters,
are selected for each model, corresponding to one in-
stance per split. We calculate the Average Mean Abso-
lute Errors (MAEs) over the 10 splits as the final results,
estimated on the respective test sets.

TABLE II shows the computing resource settings for
the experiments, in which GCCcore[77] and Cython[78]
are for GED computations, and Pytorch[79] and Pytorch
Geometric[66] packages are used to build GNN models.
A more detailed description of the experimental settings,
including the tuning strategy, tuning ranges, and expla-

nation of the hyper-parameters, and the scales of weight
parameters of the GNN models, can be found in the Sup-
porting Information file. For the sake of reproducibility,
the code is available through the GitHub platform [80].

TABLE III presents the MAE values obtained for each
ML experiment. The ± sign indicates the 95% confidence
interval computed over the 10 repetitions. Unsupported
descriptors for each model are denoted by “-”. Notably,
the best descriptor for each model is highlighted in bold,
the optimum result for each descriptor across all mod-
els is marked in green, and the superior results across
all experiments are underlined. In the case of vector-
based models, we focus on the results obtained through
count pooling as it consistently outperforms statistical
pooling. This count pooling thus represents an inter-
esting improvement over the methods previously used
by us to deal with the non-constant number of nodes
along the whole dataset. An exception is observed for
the GPR model with the One-Hot descriptor, where sta-
tistical pooling yields better results, and thus we present
both pooling methods in this case.

When comparing different descriptors, a clear
trend emerges with the One-Hot descriptor prevailing in
most models: 16 out of 20 for both reduction and oxida-
tion Gibbs free energies. In the context of graph-based
models, this dominance continues as 8 out of 12 models
for the reduction targets and 9 out of 12 for the oxidation
targets. Importantly, the performance gap among de-
scriptors is significant on a model-wise basis, which often
surpasses the differences in performance between models.
This phenomenon is particularly pronounced for vector-
based models, likely due to their limitation in handling
only node features. The One-Hot descriptor, encoding
implicit structural information, proves highly beneficial
in this context.

A similar pattern is observed for most GNN models.
Conversely, the Distance descriptor is evaluated only for
models supporting continuous edge features. Its perfor-
mance closely aligns with that of the One-Hot descrip-
tor, sometimes surpassing the latter. These observations
underscore the critical role of descriptor engineering in
performance.

Further insights emerge when comparing different
models. Notably, all optimal results are obtained by
graph-based models, particularly GNNs when using the
One-Hot and the Dis descriptors. The best performances
across all experiments for both targets are achieved by
MPNN, on the Dis descriptor for the reduction and on
the One-Hot for the oxidation, underlining the flexible ca-
pabilities of graph-based models and the representational
power of GNNs. Meanwhile, the GAT model performs
quite well on all three descriptors. This suggests the in-
triguing potential of attention-based models in capturing
core information for graphs with limited features, even
on smaller datasets. These insights emphasize the impor-
tance of finding the correct synergy between descriptors
and models, indicating that their successful integration
is essential for optimal performance.
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TABLE II: Computing resource settings for experiments.

Environments Settings

CPU 128x AMD EPYC 7742 64-Core Processor
Operating system CentOS 7.9.2009.x86 64

Python version 3.8.6
GCCcore version 12.2.0
Cython version 0.29.21
PyTorch version 2.0.1+cu118
PyTorch Geometric version 2.3.1

TABLE III: The prediction MAE (in kcal/mol).

Categories Models
∆rG

0
Red ∆rG

0
Ox

AB Types One-Hot Dis AB Types One-Hot Dis

Vector-Based

LR 56.0±10.8 29.4±2.7 56.1±11.1 31.0±2.5 -
GKRR 28.9±7.5 14.4±5.0 - 30.5±10.4 17.5±4.4 -
SVR 26.0±9.2 14.1±3.7 - 31.4±10.3 17.2±5.2 -

GPR (stats) 42.3±6.5 21.0±5.5 - 43.2±8.8 22.0±3.0 -
GPR (count) 36.8±7.3 26.2±4.6 - 37.6±8.8 29.6±5.1 -

RF 19.7±5.0 14.3±4.6 - 22.3±5.4 15.2±4.0 -
GBDT 19.6±5.1 11.9±4.1 - 20.4±4.9 13.7±3.2 -
KNN 25.3±9.9 10.2±3.9 - 26.2±8.2 11.3±5.4 -

Graph Kernels

SP 29.6±14.4 12.5±2.1 - 31.9±13.9 14.0±2.1 -
SSP 9.5±2.3 14.7±2.8 14.4±3.2 11.9±2.7 16.6±2.8 16.9±3.4
Path 9.7±2.1 10.7±2.4 - 12.8±2.7 12.8±2.3 -
Treelet 10.3±2.7 13.8±3.2 - 13.4±3.1 17.3±3.5 -

WLSubtree 12.4±2.1 12.0±1.8 - 12.0±1.8 13.6±2.2 -

GEDs Bipartite (fitted) 11.9±4.2 8.0±1.8 9.5±4.0 14.3±5.1 12.1±2.7 13.8±4.9

GNNs

MPNN 8.2±3.7 5.8±1.9 5.6±0.6 8.7±3.2 7.2±2.5 10.7±3.3
GCN 21.5±7.6 8.4±3.2 - 24.5±8.4 8.8±2.0 -

DGCNN 17.7±6.2 8.8±3.2 - 22.1±6.2 13.5±4.8 -
GIN 26.9±9.0 13.7±5.0 - 24.7±9.7 13.0±2.9 -
GAT 11.5±4.9 6.9±1.4 8.0±2.3 11.1±6.6 8.5±1.5 9.9±2.2

UniMP 7.3±1.5 7.4±3.0 7.9±1.0 18.0±18.3 9.1±2.6 20.3±24.5

On the whole, with the chosen low-level and
computational-friendly descriptors, the best ML model
achieves a prediction MAE of 5.6 kcal mol−1 for reduction
and 7.2 kcal mol−1 for oxidation on the MixRedOx178
database. It corresponds to a MAE ranging between 0.2
and 0.3 V on the potential, an error which is in line with
the state-of-the-art approach recently developed in com-
putational chemistry [29].

As previously described, our experimental setup con-
ducts performance evaluations using 10 random splits of
the dataset, with each split comprising 178 compounds
and designating 10% of these for testing. This arrange-
ment results in 18 test datapoints for each split, leading
to an aggregate of 180 test datapoints from the MixRe-
dOx178 dataset across all the splits. Subsequently, we
generated plots for these test data, comparing the Gibbs
free energies calculated by DFT with their predicted
counterparts, as shown in FIG. 7. These comparisons
were made using the best-performing prediction system,
which includes the MPNN model, as well as the Dis de-

scriptor and the One-Hot descriptor for reduction and ox-
idation tasks, respectively. The figure displays high cor-
relations between the DFT-calculated and the predicted
values. Specifically, the R2 scores amount to 0.992 for re-
duction and 0.988 for oxidation. These substantial corre-
lation coefficients validate the accuracy of our predictive
model for these tasks and affirm its predictive abilities.
This level of agreement reflects the model’s suitability for
practical applications in predicting reduction and oxida-
tion potentials.

Lastly, we briefly discuss the computational effort as-
sociated to these ML procedures. Figure 8 illustrates the
reference time required for each datapoint or compound.
The values are presented in seconds and log-scaled with a
base of 10. In this representation, faster reference times,
characterized by smaller values, are indicated by the blue
color, while slower times are depicted in red. Among
the evaluated models, GNN models demonstrate supe-
rior efficiency in terms of reference times compared to
graph kernel and GED models. For GNN models, ref-
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FIG. 7: Potentials computed by DFT vs the ones predicted via the best descriptor and model.
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FIG. 8: Reference time per datapoint for graph-based
models, in log-scaled with base 10, and in seconds.

erence times can be as low as 10−4 seconds, as seen in
the case of GCN, DGCNN, and GIN. The most accurate
model, MPNN, achieves reference times of approximately
0.001 seconds for reduction and 0.01 seconds for oxida-
tion. These values represent, as expected, a dramatic im-
provement in efficiency compared to quantum chemistry-
based methods, for which minutes or hours are needed
for a molecule.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a comprehensive, homo-
geneous, and reliable database ORedOx159 (based on
density functional theory calculations), which collects
one-electron reduction and oxidation reactions involving
large-size organic compounds of experimental interest.
We then applied a series of machine learning models, with
a particular emphasis on graph theory-based methods, on
this dataset, extended by 19 various organic derivatives,
to predict the reduction and oxidation Gibbs free ener-
gies using several descriptors computed from the struc-
tures of the compounds obtained at the cheap molecular
mechanics level.

The analyses of the results suggest that the use of (al-
most) instantly computed descriptors has achieved no-
tably high prediction accuracy, incorporated with the
graph-based models. The Message Passing Neural Net-
work (MPNN) among all models achieves the best re-
sults: mean absolute errors of 5.6 kcal/mol for reduction
and 7.2 kcal/mol for oxidation potentials. Particularly,
the One-Hot descriptor consistently enhances model
performance, prevailing all other descriptors. These
outcomes not only demonstrate the crucial impact of
thoughtful descriptor design, but also illustrate the ef-
fectiveness of tailored model-descriptor combinations.

Looking ahead, future research work will include sev-
eral dimensions. Firstly, from the chemical point of
view, the next important step will be to (i) include to
our model solvation effects, and (ii) extend the train-
ing database to other chemical families of high interest
in electrochemistry. Then, in comparison to tabulated
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reference potentials, our research output will become a
robust built-in package to fast and accurately predict re-
dox potentials of organic compounds in solutions, as it
is for instance the case for nuclear magnetic resonance
spectrum simulations.

Secondly, state-of-the-art machine learning models
may serve as better prediction tools, especially the ones
tailored for our problem. For example, Graph Neural
Networks and transformer-like models, particularly fo-
cusing on leveraging 3D coordinates may unlock new ca-
pabilities and insights. Other machine learning strate-
gies, such as pre-training, may also unlock the potential
of better prediction. Thirdly, we aim at exploring more
suitable descriptors that can better balance the represen-
tation ability and the acquiring time complexity. Lastly,
we plan to broaden our evaluation criteria to incorporate
additional important metrics such as robustness, inter-
pretability and explainability, and overall model trust-
worthiness.

Finally, from a more general perspective, we are con-
vinced that significant progress can be made mainly if
the two involved scientific communities (i.e. theoretical
chemistry researchers and data scientists) enter a fruitful
dialogue, and manage not only to share their tools but
also to build a common language.
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[62] S. Bougleux, B. Gaüzère, and L. Brun, Graph edit dis-
tance as a quadratic program, in 2016 23rd International
Conference on Pattern Recognition (ICPR) (2016) pp.
1701–1706.

[63] D. B. Blumenthal, N. Boria, J. Gamper, S. Bougleux, and
L. Brun, Comparing heuristics for graph edit distance
computation, The VLDB Journal 29, 419 (2020).

[64] H. Bunke and G. Allermann, Inexact graph matching for
structural pattern recognition, Pattern Recognition Let-
ters 1, 245 (1983).

[65] N. S. Altman, An introduction to kernel and nearest-
neighbor nonparametric regression, The American Statis-
tician 46, 175 (1992).

[66] M. Fey and J. E. Lenssen, Fast graph representation
learning with PyTorch Geometric, in ICLR Workshop
on Representation Learning on Graphs and Manifolds
(2019).

[67] L. Wu, P. Cui, J. Pei, L. Zhao, and X. Guo, Graph neu-
ral networks: foundation, frontiers and applications, in
Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (2022) pp. 4840–
4841.

[68] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and
S. Y. Philip, A comprehensive survey on graph neural
networks, IEEE Transactions on Neural Networks and
Learning Systems (2020).

[69] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu,
L. Wang, C. Li, and M. Sun, Graph neural networks:
A review of methods and applications, AI open 1, 57
(2020).

[70] W. L. Hamilton, Graph representation learning, Synthe-
sis Lectures on Artifical Intelligence and Machine Learn-
ing 14, 1 (2020).

[71] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, Neural message passing for quantum chem-
istry, in International conference on machine learning
(PMLR, 2017) pp. 1263–1272.

[72] T. N. Kipf and M. Welling, Semi-supervised classifica-
tion with graph convolutional networks, arXiv preprint
arXiv:1609.02907 (2016).

[73] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, An end-
to-end deep learning architecture for graph classification,
in Proceedings of the AAAI conference on artificial intel-
ligence, Vol. 32 (2018).

[74] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How
powerful are graph neural networks?, arXiv preprint
arXiv:1810.00826 (2018).

[75] P. Velickovic, G. Cucurull, A. Casanova, A. Romero,
P. Lio, Y. Bengio, et al., Graph attention networks, stat
1050, 10 (2017).

[76] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and
Y. Sun, Masked label prediction: Unified message passing
model for semi-supervised classification, arXiv preprint
arXiv:2009.03509 (2020).

[77] GCC online documentation - GNU Project —
gcc.gnu.org, https://gcc.gnu.org/onlinedocs/,
[Accessed 08-03-2024].

[78] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Selje-

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2 ORCID: https://orcid.org/0000-0002-8646-9365 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2
https://orcid.org/0000-0002-8646-9365
https://creativecommons.org/licenses/by-nc-nd/4.0/


16

botn, and K. Smith, Cython: The best of both worlds,
Computing in Science Engineering 13, 31 (2011).

[79] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al., Pytorch: An imperative style, high-performance
deep learning library, Advances in neural information

processing systems 32 (2019).
[80] The code for these ml experiments is available at the

following repository: https://github.com/jajupmochi/
RedoxPrediction/.

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2 ORCID: https://orcid.org/0000-0002-8646-9365 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-gmpmg-v2
https://orcid.org/0000-0002-8646-9365
https://creativecommons.org/licenses/by-nc-nd/4.0/

