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ABSTRACT 

The knowledge vapor pressure of a chemical as a function of temperatures is important in many 

chemical and environmental engineering applications. This study introduces a novel approach 

utilizing a machine learning model based on the directed message passing neural network (D-

MPNN) architecture to predict the vapor pressure of organic molecules over a broad temperature 

spectrum. We investigate various strategies for incorporating temperature effects into our models, 

a key factor for accurate vapor pressure predictions. Our results show that the D-MPNN model 

markedly surpasses the traditional PR + COSMOSAC method, achieving a significantly lower 

average absolute relative deviation (AARD) of 0.617 (from D-MPNN vs. 1.36 from PR + 

COSMOSAC) for an extensive dataset of 19,081 molecules. This improvement is notable as it 

does not require additional critical property measurements or quantum mechanical calculations for 

the molecules. This study underscores the potential of machine learning to accurately capture 

complex molecular features for reliable vapor pressure prediction, presenting a robust alternative 

to traditional methods dependent on critical property data or quantum mechanical calculations. 

This breakthrough is especially advantageous for assessing the properties of a novel or under-

characterized chemical species. 
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1. Introduction 

Vapor pressure prediction is critically important in various scientific, industrial, and 

environmental fields [1]. It plays a vital role in designing chemical processes [2], maintaining 

product stability in industries [3], and understanding the behavior of volatile substances [4]. 

Additionally, vapor pressure significantly affects the release of environmental pollutants  [5], the 

performance of materials at high temperatures [6], and phase equilibria calculations [7]. It also 

influences chemical reactions [8], safety assessments [9], climate studies [10], energy system 

design [11], and drug delivery mechanisms [12]. These extensive applications highlight its key 

role in diverse fields and informed decision-making. However, existing databases like Design 

Institute for Physical Properties (DIPPR) [13] and the Dortmund Data Bank (DDB) [14] offer 

limited vapor pressure data for chemicals, and with the rapid discovery of new species, accurate 

vapor pressure prediction models are essential. 

Current methods for estimating vapor pressure include cubic equations of state (EOS), group 

contribution (GC) methods, and quantitative structure-property relations (QSPR) models. Cubic 

EOS, exemplified by the Soave-Redlich-Kwong EOS [15] and the Peng-Robinson (PR) EOS [16], 

offer accurate vapor pressure predictions through simple and computationally efficient equations. 

However, a limitation of these EOS lies in their reliance on parameters derived from experimental 

data (critical temperature, critical pressure, and acentric factor), which may not be available for 

newly discovered or high-temperature unstable compounds. GC methods approach this estimation 

by deconstructing a molecule into various predefined substructures and summing their 

contributions to calculate the vapor pressure of the substance [17-21]. QSPR models, extending 

beyond structural information, incorporate additional molecular descriptors, such as dipole 

moments, hydrogen bonding parameters, and molar volume, in their vapor pressure calculations 
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[22-25]. A notable shortcoming of many traditional QSPR models is their focus on room 

temperature conditions, often neglecting the impact of temperature variations on vapor pressure.  

Recent advancements have addressed this issue by integrating neural networks into QSPR models, 

thereby enabling the estimation of vapor pressures across a range of temperatures [26, 27]. 

Furthermore, Tarjomannejad's innovative approach combines GC methods with neural network 

analysis, enhancing vapor pressure prediction accuracy using acentric factors, critical properties, 

and molecular structures inputted via a predefined group list [28]. Despite these advancements, 

current methods encounter predictive challenges, particularly with molecules that exhibit missing 

group parameters. This necessitates the acquisition of additional data and the development of new 

groups or correction factors to expand the applicability and accuracy of these models [29]. 

In the realm of vapor pressure prediction for unexplored molecular structures, it is crucial to 

employ models that do not depend on experimental properties of the species in question, as such 

data are often unavailable. A prominent method fulfilling this criterion is the Conductor-like 

Screening MOdel (COSMO) [30]. Based on quantum mechanical implicit solvation calculations, 

COSMO excels in determining solvation free energy in the liquid phase. Building upon this, Hsieh 

and Lin have pioneered the PR + COSMOSAC EOS [31]. This novel model integrates COSMO-

derived solvation free energies with the PR equation of state. Remarkably, its reliance solely on 

quantum chemical calculations for inputs allows it to proficiently predict vapor pressures over a 

range of temperatures and to estimate critical properties, making it exceptionally useful for 

compounds lacking experimental data. Recent developments indicate that incorporating 

experimental data can further enhance the model's performance. Tsai and Lin have advanced the 

PR + COSMOSAC EOS by integrating experimental boiling points [32]. This enhancement has 

markedly improved the model’s accuracy, achieving an average absolute relative deviation 
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(AARD) of 0.58 for a dataset of 19,081 compounds with boiling points included, compared to an 

AARD of 1.41 in the absence of experimental data. These results highlight the potential for even 

greater precision in vapor pressure estimation methodologies. 

Recent developments in machine learning have significantly impacted the field of molecular 

property prediction [33-36], contributing substantially to various domains such as drug design [37], 

chemical biology [38], retrosynthesis [39, 40], and reaction engineering [41-43]. A key 

breakthrough in this area is the development of techniques that convert complex molecular 

structures into fixed-length representations [44, 45]. These featurization techniques are generally 

classified into three main categories, based on the dimensional aspect of the information they 

process [46]. The first category, one-dimensional representation, employs a linear string format for 

molecules, exemplified by the Simplified Molecular Input Line Entry System (SMILES) [47]. 

Techniques utilizing this 1D representation approach treat SMILES as a unique language and apply 

generic models from Natural Language Processing (NLP), such as transformers or BERT [48-52], 

for predictive tasks. In the realm of two-dimensional representations, molecules are visualized as 

graphs with atoms and bonds representing nodes and edges, respectively. This approach leverages 

various graph-based models, such as graph convolutional neural networks (GCNNs) and message-

passing neural networks (MPNNs) [53-56], to extract molecular information. Three-dimensional 

representations offer a more detailed perspective, incorporating elements like bond lengths, angles, 

cis-trans isomerism, stereoisomerism, and the spatial arrangement of atoms. This additional detail 

has been demonstrated to enhance model performance in multiple applications [57-59]. However, 

employing 3D representations necessitates access to accurate structural data and accounts for the 

challenge of multiple possible conformations for a given molecule, where different geometries 

may yield distinct property values. These machine learning-based featurization approaches differ 
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fundamentally from traditional methodologies like GC or QSPR, which depend on manually 

defined chemical groups or descriptors. Instead, these advanced featurization methods 

autonomously extract pivotal features from molecular structures, thereby enhancing property 

prediction capabilities. 

In this study, we leveraged the directed message passing neural network (D-MPNN), a 2D 

graph convolutional model acclaimed for its efficacy in diverse tasks [56, 60], to address the 

complex challenge of vapor pressure prediction. Our methodology involved an extensive 

exploration of various D-MPNN pooling architectures and techniques to integrate temperature 

effects into the model. This led to the successful development of a model adept at learning 

molecular features essential for accurate vapor pressure predictions, circumventing the need for 

additional inputs like critical properties, acentric factors, or manually crafted descriptors typically 

required in traditional models. To evaluate the D-MPNN model's performance, we compared it 

with the PR + COSMOSAC method [32]. While the PR + COSMOSAC method is independent of 

experimental critical properties, it necessitates quantum mechanical calculations for each molecule. 

In our experiments, the D-MPNN model demonstrated superior performance over the PR + 

COSMOSAC method without the inclusion of experimental boiling temperatures, achieving an 

impressive AARD of 0.617. This result is notably competitive with the enhanced PR + 

COSMOSAC method that includes experimental boiling points [32]. The results show that the D-

MPNN architecture may achieve accurate vapor pressure predictions with input of only molecular 

structures (atom connectivity). This study underscores the potential of machine learning as a 

promising pathway for accurate and efficient vapor pressure prediction without resorting to 

computationally expansive, quantum chemical calculations, and/or experimental data. 
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2. Methods 

2.1. Model architecture 

In this work, the employed model comprises two distinct components: the encoder block and 

the readout block, as illustrated in Fig. 1. The encoder block utilizes the D-MPNN architecture to 

transform the molecular structure into a vector representation. Details of the D-MPNN architecture 

are elaborated in the work of Yang et al. [56] and Heid et al. [60]. This 2D graph convolutional 

model encodes the features of atoms and bonds into a vector (atomic hidden vector), capturing the 

characteristics of each atom and the local structure it inhabits. 

As depicted in Fig. 2, these atomic hidden vectors can be combined through either sum-

pooling or mean-pooling to form two types of molecular fingerprints: the sum-pooling molecular 

fingerprint (mfp-sum) and the mean-pooling molecular fingerprint (mfp-mean). These fingerprints 

represent the holistic vector representation of the molecule and are subsequently fed into a feed-

forward neural network (FFNN) to predict molecular properties. Alternatively, the atomic hidden 

vectors can be treated as atomic fingerprints (afp) and directly inputted into the FFNN to estimate 

the contribution of individual atoms to the molecular property [34]. The aggregate of these atomic 

contributions yields the overall property of the molecule. Previous studies have highlighted that 

the choice of fingerprint representation (mfp-sum, mfp-mean, and afp) significantly influences the 

performance of the model [34], necessitating careful selection based on the targeted molecular 

property. In this study, we carefully evaluate the efficacy of these fingerprint representations in 

predicting vapor pressure, an aspect that, to our knowledge, has not been extensively explored 

previously. 

Another challenging aspect of vapor pressure prediction is its dependence on temperature, 

which also distinguishes it from many other molecular property predictions. This necessitates 
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modifying the architecture of molecular property prediction models to incorporate both molecular 

structure and temperature as inputs. In this study, we investigate two model architectures designed 

to integrate temperature effects into vapor pressure prediction: the Equation Embedded (EE) model  

(Fig. 1(a)) and the Temperature Concatenated (TC) model (Fig. 1(b)). 

The EE model integrates the machine learning model with the empirical equations to capture 

the relationship between vapor pressure and temperature. This approach allows the machine 

learning model to predict coefficients for the empirical equations based on molecular structures 

alone, thereby eliminating the need to incorporate temperature as a direct input. The equations we 

considered in this work include the Antoine equation [61] 

ln 𝑃 = 𝐴 −
𝐵

𝑇 + 𝐶
, (1) 

the second-order group contribution equation derived from the Clausius-Clapeyron equation by 

Tu in 1994 [17] 

ln 𝑃 = 𝐴 +
𝐵

𝑇𝑠
− 𝐶 ln 𝑇𝑠 − 𝐷𝑇𝑠 − ln 𝑀 , (2) 

the Riedel equation [62] 

ln 𝑃𝑟 = 𝐴 −
𝐵

𝑇𝑟
+ 𝐶 ln 𝑇𝑟 + 𝐷𝑇𝑟

6, (3) 

and the Wagner25 equation [63] 

ln 𝑃𝑟 =
𝐴(1 − 𝑇𝑟)1.0 + 𝐵(1 − 𝑇𝑟)1.5 + 𝐶(1 − 𝑇𝑟)2.5 + 𝐷(1 − 𝑇𝑟)5.0

𝑇𝑟
, (4) 

where 𝑃 is the vapor pressure, 𝑇 is the temperature, 𝑇𝑠 is the scaled temperature,  𝑀 is the 

molecular weight, 𝑃𝑟  is the reduced pressure, 𝑇𝑟  is the reduced temperature, and 𝐴, 𝐵, 𝐶, and 

𝐷 are the empirical parameters. To refine the predictive accuracy of vapor pressure calculations 

without relying on critical property data, we adapt the Riedel and Wagner equations (Eq. 3 and 4) 
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by substituting ln 𝑃𝑟   with ln 𝑃 − ln 𝑃𝑐  , where 𝑃𝑐   represents the critical pressure. This 

modification allows the − ln 𝑃𝑐   term to be incorporated into the constant 𝐴  in the Riedel 

equation (Eq. 3) and introduced as an additional empirical constant 𝐸 in the Wagner25 equation 

(Eq. 4). Furthermore, we replace the temperature 𝑇  in the Antoine equation (Eq. 1) and the 

reduced temperature 𝑇𝑟  in both the Riedel and Wagner25 equations with a scaled temperature 𝑇𝑠. 

This scaled temperature is calculated by dividing the actual temperature by a factor of 1,500 K, 

matching the highest temperature present in our dataset. This approach ensures that all scaled 

temperatures fall within a normalized range of zero to one, thereby improving the model’s training 

stability. The reformed Antoine equation 

ln 𝑃 = 𝐴 −
𝐵

𝑇𝑠 + 𝐶
, (5) 

adapts the original equation by utilizing 𝑇𝑠, allowing for the normalization of temperature effects. 

The reformed Riedel equation  

ln 𝑃 = 𝐴 −
𝐵

𝑇𝑠
+ 𝐶 ln 𝑇𝑠 + 𝐷𝑇𝑠

6, (6) 

and the reformed Wagner equation 

ln 𝑃 =
𝐴(1 − 𝑇𝑠 )1.0 + 𝐵(1 − 𝑇𝑠)1.5 + 𝐶(1 − 𝑇𝑠)2.5 + 𝐷(1 − 𝑇𝑠 )5.0

𝑇𝑠
+ 𝐸, (7) 

include 𝑇𝑠 to remove the dependency on critical temperature measurements. The coefficients (𝐴, 

𝐵, 𝐶, 𝐷, and 𝐸) for these equations (Eq. 2, 5, 6, and 7) are derived using machine learning 

techniques, with models trained on molecular structures to predict these parameters. These derived 

constants, in conjunction with the scaled temperature 𝑇𝑠, are then employed to estimate vapor 

pressure across various temperature conditions.  

In addition to the EE approach, we also explore the TC model, which introduces temperature 

directly into the machine learning framework to predict vapor pressure at different temperatures. 
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As illustrated in Fig. 1(b), the TC model strategy involves appending the temperature of each data 

point to its molecular fingerprint, thereby expanding the fingerprint vector with an additional 

temperature dimension. These extended fingerprints are subsequently processed by the FFNN to 

predict vapor pressure at the given temperature. To ensure uniformity and enhance model stability, 

temperatures are scaled by a factor of 1,500, normalizing all values to a range between zero and 

one. This scaling is crucial for maintaining a consistent and stable training process across varying 

temperature inputs. Additionally, in the afp model depicted in Fig. 2(c), the machine learning 

framework is tasked with independently predicting each atom's contribution to the empirical 

constants (as per the EE approach) and directly to vapor pressure (as per the TC approach). These 

atomic-level contributions are then aggregated to derive the empirical constants and overall vapor 

pressure for the molecule. By comparing the performance of the EE and TC models, our research 

aims to identify optimal strategies for leveraging molecular structure and temperature data, 

ensuring accurate vapor pressure estimations across a broad spectrum of conditions. 

 

Fig. 1. Two approaches for integrating temperatures into vapor pressure prediction. (a) The 

equation embedded (EE) approach involves using the machine learning model to predict the 
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constants (A, B, C, D, and E) of different empirical equations describing the link between vapor 

pressure and temperature. (b) The temperature concatenated (TC) model involves directly 

appending the temperature to the fingerprint representation generated by D-MPNN. This 

augmented input is then fed into a FFNN to predict vapor pressure at the specified temperature. 

 

 

Fig. 2. Schematic representation of the methodology for deriving molecular fingerprints from 

atomic hidden vectors. Part (a) shows the generation of sum-pooling molecular fingerprints (mfp-

sum), and part (b) depicts the creation of mean-pooling molecular fingerprints (mfp-mean), both 

of which capture the comprehensive vector representation of molecules for subsequent property 

predictions through a FFNN. Part (c) illustrates the approach of utilizing atomic hidden vectors as 

atomic fingerprints (afp), which are directly fed into the FFNN to evaluate the individual 

contributions of atoms to the molecular property of interest. 

https://doi.org/10.26434/chemrxiv-2024-nmnlk ORCID: https://orcid.org/0009-0007-3113-4553 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-nmnlk
https://orcid.org/0009-0007-3113-4553
https://creativecommons.org/licenses/by-nc/4.0/


 

2.2 Data preparation 

Following the methodology of Tsai and Lin[32], we gathered vapor pressure data for 19,081 

unique organic molecules from the NIST-TRC databank available in Aspen Plus V11[64]. This 

extensive dataset, documented using Wagner25 coefficients[63], critical temperature, and critical 

pressure, serves as the foundation for our machine learning models. The SMILES representations 

for all molecules are provided in the Supporting Information.  

To assess the generalizability of models for unfamiliar molecular structures and temperature 

ranges, we organized the data into two distinct datasets: one based on molecule split and the other 

on temperature split. For the molecule split, the data was partitioned into training, validation, and 

testing sets according to molecule species, maintaining an 8:1:1 ratio while ensuring that each 

molecule was exclusively categorized into one set. This approach ensures the integrity of the 

evaluation process by preventing overlap between the training and testing phases. For the training 

and validation sets, vapor pressures were calculated using the Wagner25 equation at ten 

temperatures evenly spaced within the valid range. If the upper temperature limit of a molecule 

surpassed 1,500 K, this limit was adjusted to 1,500 K. The testing set vapor pressures were 

determined at three representative temperatures: high T (Tr = 0.9), medium T (Tr = 0.65), and low 

T (Tr = 0.4) for molecules not included in the training or validation sets, excluding any data points 

beyond the valid temperature range or above 1,500 K. The training and validation sets combined 

comprised 190,810 data points, while the testing set totaled 51,713 data points, detailed further in 

the distribution plots within Fig. 3(a). 

For the temperature split, we reorganized the training and validation datasets by selecting data 

points within the 400 K to 600 K range, creating a new training and validation set with 70,031 data 
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points. The distribution of these sets is visualized in Fig. 3(b). The remaining 120,759 data points 

formed the test sets for the temperature split, with higher temperature data points (≥600 K, 56,309 

data points) and lower temperature data points (≤ 400 K, 64,450 data points) analyzed separately 

to evaluate the performance of models when extrapolated to temperatures outside those in the 

training set. This structured approach allows for a nuanced evaluation of the capacity of the model 

to predict vapor pressure, not only for unseen molecular structures but also for a broad spectrum 

of temperatures, highlighting the potential of machine learning in enhancing our prediction of 

chemical properties. 

 

Fig. 3. Distribution of vapor pressure data. Panel (a) displays box plots (indicating minimum, 

lower quartile Q1, median, upper quartile Q3, and maximum values) for various molecule datasets, 

segmented by molecule split. Panel (b) shows box plots for distinct temperature ranges, 

categorized by temperature split. 

https://doi.org/10.26434/chemrxiv-2024-nmnlk ORCID: https://orcid.org/0009-0007-3113-4553 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-nmnlk
https://orcid.org/0009-0007-3113-4553
https://creativecommons.org/licenses/by-nc/4.0/


 

2.3 Computational details 

In the optimization of our machine learning model, we fine-tuned some hyperparameters to 

ensure optimal performance, leveraging the hyperopt package to navigate the hyperparameter 

space efficiently [65]. After conducting 50 iterative trials, the optimal hyperparameters were 

chosen based on superior model performance, with the specific configurations detailed in Table 

S1, while other hyperparameters not explicitly mentioned retained their default values [60]. To 

bolster prediction accuracy further, we employed a model ensemble strategy. This approach 

amalgamates the outputs of three separate models, each sharing the same architecture but 

differentiated by unique random seed initializations. This diversity in initialization aids in 

mitigating model bias and variance, leading to more robust predictions.  

The training of the models utilized the average logarithmic deviation (ALD) as the loss 

function, defined as: 

ALD =
1

𝑁
∑|ln 𝑃𝑖,𝑝𝑟𝑒 − ln 𝑃𝑖,𝑟𝑒𝑓|

𝑁

𝑖=1

(8) 

where 𝑁  represents the total count of vapor pressure data points, with 𝑃𝑖,𝑝𝑟𝑒  and 𝑃𝑖,𝑟𝑒𝑓  

denoting the predicted and reference vapor pressure values, respectively. This metric effectively 

quantifies the deviation between model predictions and actual measurements, guiding the model 

towards higher precision. To prevent overfitting, an early stopping mechanism halts training if the 

ALD of the validation set does not improve over 30 consecutive epochs, ensuring the 

generalizability of the model. The selection of the best model is based on achieving the lowest 

ALD score on the validation set. 

Ten-fold cross-validation was implemented for the molecule split dataset. This method 

https://doi.org/10.26434/chemrxiv-2024-nmnlk ORCID: https://orcid.org/0009-0007-3113-4553 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-nmnlk
https://orcid.org/0009-0007-3113-4553
https://creativecommons.org/licenses/by-nc/4.0/


ensures comprehensive model evaluation by guaranteeing that each data point in the testing set is 

predicted without the model having been exposed to the same molecule in the training or validation 

phases. Such validation practices are crucial for affirming the ability of the model to accurately 

predict vapor pressure for unseen molecules, thereby confirming the effectiveness and reliability 

of the predictive framework. To maintain consistency and enable direct comparisons with existing 

methods, specifically the PR + COSMOSAC models [32], we adopt the average absolute relative 

deviation (AARD) as our primary performance metric 

AARD = (𝑒 𝐴𝐿𝐷 − 1). (9) 

This conversion from ALD to AARD allows for a more intuitive understanding of the prediction 

error in relative terms, facilitating a straightforward comparison with the established PR + 

COSMOSAC benchmarks. 

 

3. Results and Discussion 

3.1 Molecule split performance 

The testing performances of different model architectures on molecule-split data reveal 

nuanced insights into their accuracy for predicting vapor pressure across varying molecular 

structures, as detailed in Table 1. The Antoine EE model showed significantly higher AARD values 

compared to other models, which aligns with expectations given the known limitations of the 

Antoine equation across a wide temperature range [61]. This result highlights the restricted utility 

of the equation in accurately capturing vapor pressure variations. In terms of other temperature 

input methods, whether incorporating temperature directly or adapting empirical equations, the 

overall prediction errors were similar across different approaches. This observation suggests that 

the specific method of temperature integration has a minimal impact on the ability of a model to 
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generalize to new chemical species. However, a consistent trend observed across all models is an 

increase in AARD as the temperature decreases. This pattern reflects the complexities of accurately 

measuring and predicting vapor pressure at lower temperatures, where vapor pressure values 

significantly drop, introducing a greater degree of uncertainty in the reference measurements. 

Comparing the mean-pooling and sum-pooling approaches, as well as the atomic fingerprint 

(afp) model, the mean-pooling method generally yields higher AARD values. This less favorable 

outcome can be attributed to the mean-pooling function's tendency to average hidden atom features, 

which results in a loss of crucial information about molecular size [34]. Given that vapor pressure 

is directly related to molecular size [19], retaining this information is essential for accurate 

predictions. Conversely, the afp model, which sums the contributions of individual atoms, 

maintains the proportionality between predicted properties and molecular size but faces limitations. 

Specifically, the assumption of consistent atom contributions across similar chemical structures 

does not always hold, especially for vapor pressure predictions where the influence of specific 

functional groups can vary with molecular size [19].  

The sum-pooling approach, on the other hand, inherently accounts for molecular size, 

enhancing prediction accuracy. Unlike mean-pooling, it does not dilute molecule size 

representation through averaging and does not assume a simplistic additivity of fragment 

contributions without considering the overall molecular context. As a result, the sum-pooling 

method often achieves the lowest prediction error among the models evaluated. 

 

3.2 Temperature split performance 

In our study, the temperature split analysis was carried out to delve into the performance of 

models in extrapolating vapor pressure predictions at temperatures not covered in the training set. 

https://doi.org/10.26434/chemrxiv-2024-nmnlk ORCID: https://orcid.org/0009-0007-3113-4553 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-nmnlk
https://orcid.org/0009-0007-3113-4553
https://creativecommons.org/licenses/by-nc/4.0/


This evaluation was crucial for understanding how each model architecture manages the challenge 

of predicting vapor pressure across a broad temperature spectrum, thereby highlighting their 

respective strengths and limitations in terms of temperature variability. 

The results of this analysis, detailed in Table 2, reveal that the Antoine EE models 

demonstrated the largest errors among the models tested. This finding aligns with observations 

from the molecule split analysis, reinforcing that the Antoine equation might lack the necessary 

robustness to model the temperature dependence of vapor pressure accurately across a wide range 

of temperatures. The shortcomings of the Antoine equation in this context suggest its limited 

applicability for tasks requiring extensive temperature range predictions. 

Conversely, the mfp-sum Wagner EE model emerged as the most accurate, with an AARD of 

0.672, underscoring the reformed Wagner equation (Eq. 7) as the most suitable for integration into 

a deep learning framework for vapor pressure prediction. The superior performance of the Wagner 

EE model can be anticipated considering the training set data points were generated using the 

Wagner25 equation (Eq. 4) based on experimental critical properties. This congruence between the 

training methodology and the Wagner equation's inherent capacity to encapsulate temperature 

effects on vapor pressure evidently contributes to the enhanced predictive accuracy of the model. 
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Table 1. Comparison of AARD from various model architectures for molecule split data.  

model Antoine EE Tu EE Riedel EE Wagner EE TC 

fingerprint afp 
mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 

overall 
5.21 

×100 

2.72 

×100 

4.14 

×100 

6.53 

×10-1 

6.99 

×10-1 

6.58 

×10-1 

6.70 

×10-1 

7.53 

×10-1 

6.38 

×10-1 

6.61 

×10-1 

7.01 

×10-1 

6.17 

×10-1 

6.87 

×10-1 

7.22 

×10-1 

6.30 

×10-1 

Tr = 0.4 
8.89 

×100 

6.49 

×100 

1.75 

×101 

1.69 

×100 

1.77 

×100 

1.60 

×100 

1.72 

×100 

1.90 

×100 

1.60 

×100 

1.71 

×100 

1.81 

×100 

1.60 

×100 

1.84 

×100 

1.90 

×100 

1.63 

×100 

Tr = 0.65 
5.83 

×100 

2.27 

×100 

2.12 

×100 

4.84 

×10-1 

4.81 

×10-1 

4.77 

×10-1 

4.97 

×10-1 

5.69 

×10-1 

4.70 

×10-1 

4.92 

×10-1 

5.32 

×10-1 

4.53 

×10-1 

5.02 

×10-1 

5.21 

×10-1 

4.47 

×10-1 

Tr = 0.9 
2.87 

×100 

1.41 

×100 

2.07 

×100 

2.50 

×10-1 

3.23 

×10-1 

3.00 

×10-1 

2.65 

×10-1 

3.13 

×10-1 

2.64 

×10-1 

2.52 

×10-1 

2.65 

×10-1 

2.34 

×10-1 

2.51 

×10-1 

2.86 

×10-1 

2.57 

×10-1 

Table 2. Comparison of AARD from various model architectures for temperature split data. 

model Antoine EE Tu EE Riedel EE Wagner EE TC 

fingerprint afp 
mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 
afp 

mfp-

mean 

mfp-

sum 

overall 
2.06 

×103 

6.11 

×101 

4.67 

×103 

2.18 

×100 

1.95 

×100 

5.07 

×100 

6.25 

×100 

4.40 

×100 

9.43 

×100 

6.95 

×10-1 

7.60 

×10-1 

6.72 

×10-1 

3.39 

×100 

6.21 

×100 

2.74 

×100 

T ≤ 400 K 
2.08 

×104 

4.14 

×102 

6.29 

×103 

2.77 

×100 

2.43 

×100 

9.22 

×100 

2.22 

×100 

2.75 

×100 

2.85 

×100 

1.12 

×100 

1.01 

×100 

1.13 

×100 

6.21 

×100 

1.48 

×101 

3.38 

×100 

T > 600 K 
1.46 

×102 

6.10 

×100 

3.33 

×103 

1.62 

×100 

1.49 

×100 

2.34 

×100 

1.73 

×101 

7.19 

×100 

3.15 

×101 

3.12 

×10-1 

5.11 

×10-1 

2.66 

×10-1 

1.50 

×100 

1.95 

×100 

2.12 

×100 
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3.3 Performance comparison with PR + COSMOSAC methods 

In this section, we focus on evaluating the performance of our optimal model, the 

mfp-sum Wagner EE model, against three previously proposed methods: PR-pred, PR-

pred-expTb, and PR-exp, as delineated by Tsai and Lin [32]. Each of these methods 

represents a distinct approach to predicting vapor pressure, ranging from reliance on 

purely computational inputs to the integration of extensive experimental data.  

The PR-pred method stands out for its use of quantum mechanical solvation 

calculations to estimate energy and molecular volume parameters for the PR EOS, 

eliminating the need for experimental 𝑇𝑐  , 𝑃𝑐  , and 𝜔  [32]. This approach offers a 

theoretical model that bypasses the requirement for experimental critical properties. 

Enhancing the prediction accuracy of the PR + COSMOSAC EOS, the PR-pred-expTb 

method incorporates the experimental normal boiling point into the model [32]. This 

addition aims to improve the model predictions by using one experimental vapor 

pressure data at the normal boiling temperature. Conversely, the PR-exp method relies 

on the PR EOS but utilizes experimental values for 𝑇𝑐 , 𝑃𝑐 , and 𝜔 to calculate vapor 

pressure [16, 32]. This method represents the use of two experimental vapor pressure 

data points (one at the critical point and the other at a reduced temperature of Tr=0.7), 

resulting in high accuracy at the cost of more experimental input.  

The selection of these three methods for comparison spans a spectrum from 

models independent of experimental measurements to those heavily reliant on such data. 

Our analysis targets the same set of testing molecules as utilized by Tsai and Lin [32], 

allowing for a direct comparison of model performances. However, it is important to 

note that the original paper used a weighted average AARD, which leads to slight 

discrepancies between our calculated AARD and the original reported data. This 

comparative study aims to elucidate the trade-offs between computational predictions 
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and the necessity of experimental measurements in achieving accurate vapor pressure 

estimations. 

Figure 4 shows that the AARD for the PR model diminishes as the incorporation 

of experimental data increases, aligning with Tsai and Lin's findings [32]. A key 

observation from our study is the ability of the mfp-sum Wagner EE model to 

significantly outperform the PR-pred method (AARD 0.617 vs 1.36), which, like our 

machine learning approach, does not rely on experimental data inputs. This advantage 

underscores the potential of machine learning in accurately predicting vapor pressures 

for novel chemical species without available experimental measurements. 

Moreover, the machine learning model demonstrates a remarkable capability by 

achieving an overall AARD (0.617) nearly on par with that of the PR-pred-expTb 

method (0.570), despite the latter's reliance on experimental boiling point data. This 

efficiency highlights the utility of the machine learning approach in scenarios where 

direct experimental data are lacking, affirming its value in predicting vapor pressures 

of new chemical entities. Furthermore, the absence of a need for computationally 

demanding quantum mechanical calculations for each molecule positions the machine 

learning model as a viable tool for extensive virtual screening in molecular design 

projects. 

To further understand the model's effectiveness across different molecule types, 

we divided the test set molecules into three categories: hydrogen bonding (14,725 data 

points), polar non-hydrogen bonding (19,994 data points), and nonpolar non-hydrogen 

bonding (16,994 data points). A detailed analysis, as shown in Figure 5, revealed that 

the hydrogen bonding subset consistently exhibited the highest prediction error across 

all models and methods. This was particularly pronounced for the PR-pred model, 

indicating its limitations in capturing electrostatic interactions. In contrast, the mfp-sum 
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Wagner EE model showed better resilience to the presence of hydrogen bonds and polar 

molecules, suggesting its partial capability in handling electrostatic interactions. This 

observation underscores the potential of machine learning techniques in predicting 

vapor pressures for a diverse molecule set. However, our analysis also uncovered 

outliers in machine learning model predictions, especially among nitrogen-containing 

molecules with multiple rings. These outliers increased the AARD for this subgroup, as 

shown in Figure S1, highlighting a challenge in accurately predicting vapor pressures 

for complex structures. This pattern, aligning with prior research [32], suggests avenues 

for model refinement to improve accuracy. Specifically, the difficulties in predicting 

properties of nitrogen-containing molecules indicate opportunities for enhancing the 

model, possibly by incorporating more data or refining model features to better 

understand such intricate chemical species. 
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Fig. 4. Parity plots of the reference vapor pressures and the values predicted by four 

methods, the mfp-sum Wagner EE model, PR-pred, PR-pred-expTb, and PR-exp for 

19,081 compounds at three temperatures, Tr = 0.40, Tr = 0.65 and Tr = 0.90. The title 

of each subplot displays the AARD for that method at a specific temperature, and the 

right column presents the overall AARD for each method, encapsulating their predictive 

performance across the temperature spectrum. 
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Fig. 5. Performance comparison of different models across molecule types. The bar 

color signifies different methods: blue represents mfp-sum Wagner EE, red corresponds 

to PR-pred, yellow depicts PR-pred-expTb, and green denotes PR-exp. Molecule types 

are distinguished based on the presence of hydrogen bonding and polarity. 

 

4. Conclusion 

This study presents a significant advancement in the field of vapor pressure 

prediction, leveraging the power of machine learning to address a critical challenge in 

chemical and environmental sciences. We introduced a machine learning-based model, 

employing the D-MPNN architecture, to predict the vapor pressure of organic 

molecules across a wide range of temperatures. This innovative approach diverges from 

conventional methodologies that typically depend on either direct experimental data or 

the intensive computational demands of quantum mechanical calculations. Notably, our 

model outperforms the existing PR + COSMOSAC method, achieving an impressive 
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AARD of 0.617 for a large testing set of 19,081 molecules. This performance 

significantly surpasses that of the standard PR + COSMOSAC method, which records 

an AARD of 1.36. 

The findings of this study underscore the efficacy of machine learning in 

extracting and utilizing complex molecular features for property prediction, bypassing 

the need for explicit critical properties or extensive experimental data. This capability 

is particularly valuable for novel or unexplored chemical species, for which such data 

may not be readily available. Furthermore, our research highlights the potential of 

integrating temperature effects into molecular property predictions, a critical factor for 

accurate vapor pressure estimation across various applications. This study opens new 

avenues for research in molecular property prediction, offering insights that could lead 

to significant advancements in chemical engineering, environmental science, and 

beyond. 
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