
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

AutoTemplate: Enhancing Chemical Reaction Datasets for

Machine Learning Applications in Organic Chemistry

Lung-Yi Chen1 and Yi-Pei Li1,2*

1*Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4,
Roosevelt Road, Taipei, 10617, Taiwan.

2Taiwan International Graduate Program on Sustainable Chemical Science and
Technology (TIGP-SCST), No. 128, Sec. 2, Academia Road, Taipei, 11529, Taiwan.

*Corresponding author: Yi-Pei Li. E-mail: yipeili@ntu.edu.tw;

Abstract

This paper presents AutoTemplate, an innovative data preprocessing protocol, addressing the
crucial need for high-quality chemical reaction datasets in the realm of machine learning
applications in organic chemistry. Recent advances in artificial intelligence have expanded the
application of machine learning in chemistry, particularly in yield prediction, retrosynthesis, and
reaction condition prediction. However, the effectiveness of these models hinges on the integrity
of chemical reaction datasets, which are often plagued by inconsistencies like missing reactants,
incorrect atom mappings, and outright erroneous reactions. AutoTemplate introduces a two-
stage approach to refine these datasets. The first stage involves extracting meaningful reaction
transformation rules and formulating generic reaction templates using a simplified SMARTS
representation. This simplification broadens the applicability of templates across various chem-
ical reactions. The second stage is template-guided reaction verification, where these templates
are systematically applied to validate and correct the reaction data. This process effectively
amends missing reactant information, rectifies atom-mapping errors, and eliminates incorrect
data entries. A standout feature of AutoTemplate is its capability to concurrently identify and
correct false chemical reactions. It operates on the premise that most reactions in datasets are
accurate, using these as templates to guide the correction of flawed entries. The protocol demon-
strates its efficacy across a range of chemical reactions, significantly enhancing dataset quality.
This advancement provides a more robust foundation for developing reliable machine learning
models in chemistry, thereby improving the accuracy of forward and retrosynthetic predictions.
AutoTemplate marks a significant progression in the preprocessing of chemical reaction datasets,
bridging a vital gap and facilitating more precise and efficient machine learning applications in
organic synthesis. Scientific contribution: The proposed automated preprocessing tool for chem-
ical reaction data aims to identify errors within chemical databases. Specifically, if the errors
involve atom mapping or the absence of reactant types, corrections can be systematically applied
using reaction templates, ultimately elevating the overall quality of the database.

Keywords: Reaction template, Data preprocessing, Atom-to-atom mapping, Reaction data curation
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1 Introduction

Recent advancements in artificial intelligence have greatly expanded its applications in the field of

chemistry. Machine learning techniques have been integrated into various aspects of organic syn-

thesis, including yield prediction [1–4], forward prediction [5–9], retrosynthesis [10–15] and reaction

condition prediction [16–19]. These predictive models rely on extensive and reliable chemical reac-

tion datasets, enabling the development of robust machine learning solutions for real-world scenarios

[20–24].

Chemical reaction databases commonly utilized in the literature can be broadly categorized as

open-source datasets such as the United States Patent and Trademark Office (USPTO) [25] and open

reaction database (ORD) [26], or proprietary datasets like Pistachio [27], Reaxys [28], SciFinder

[29], and Spresi [30]. These datasets are compiled through text-mining or manual recording, both of

which can introduce errors in the chemical reaction data. Fig. 1 illustrates common data deficiencies

observed in chemical databases, including missing reactants, inexplicable extra atoms in products,

and even entirely erroneous reactions. Detecting and rectifying these data inconsistencies often

require human intervention to ensure the quality of machine learning models.

To address these issues, Gimadiev et al. [31] employed atom-to-atom mapping toolkits [32–

35] and the CGRTools [36] python library for preprocessing chemical transformations. They used

a condensed graph of reaction (CGR), representing the superposition of the reactants and prod-

ucts, to remove duplicate reactions and balance reaction equations, particularly in cases where

2
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simple reagents like amine and water were unspecified. In contrast, Vaucher et al. [37] developed a

transformer-based model [38] to complete reaction equations by filling in missing parts of molecules

in partial reactions using a sequence-to-sequence approach. Although the model exhibited versatil-

ity in handling retrosynthesis, forward prediction, and data curation tasks, it achieved an accuracy

of approximately 30% for exact matches, which may pose limitations in its application for extensive

preprocessing of external chemical reaction datasets. More recently, Toniato et al. [39] employed the

concept of catastrophic forgetting [40] to monitor the learning progress of molecular transformer

[9] during training. Data points with difficulty in learning were assumed to be associated with

errors and were subsequently removed from the dataset. However, the extent of data removal using

this approach significantly depended on the model used, its learning capacity, and hyperparameter

selection, rendering it less deterministic.

To the best of our knowledge, existing data-preprocessing methods have limited capacity to

detect and correct false chemical reactions simultaneously. This gap has motivated us to develop an

advanced data-preprocessing protocol called AutoTemplate in this work. AutoTemplate establishes

clear criteria for identifying and removing erroneous data while effectively recovering missing reac-

tants. It operates under the assumption that the majority of reactions in datasets are correct and

uses these reactions as templates to guide the curation of incorrect data. The proposed method can

successfully identify incorrect reactions, correct faulty atom mapping, and complete missing reac-

tants, providing a solid foundation for the development of data-driven machine learning models,

thereby enhancing the performance of forward and retrosynthetic predictions.

2 Method

The data cleaning methodology presented in this work is divided into two stages: generic template

extraction and template-guided reaction verification. In the generic template extraction stage, we

first identify meaningful reaction transformation rules within the dataset of interest. These rules are

then expressed as generic reaction templates using a simplified version of the SMARTS representa-

tion [43]. This simplification ensures that the templates can be applied to a wide range of reactions

with the same transformation. In the template-guided reaction verification stage, we leverage the

list of generic reaction templates to systematically validate the reaction data. This involves applying

retro templates to the product. If the original reactants are indeed a subset of the results obtained

through template application, the template-applied outcomes replace the original data. This process

effectively rectifies any missing reactant information and simultaneously corrects potential atom-

mapping errors. However, in situations where none of the templates match the reaction, indicating
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Fig. 1 Illustrations of deficiencies in reaction datasets: (A) The selected Mannich reaction omits formaldehyde in
the reactants. (B) The presence of the carbon atom (labeled as purple) violates the law of conservation of matter, and
the accurate product based on the work by De Nino et al. [41] is shown on the right. (C) The reactant and product do
not match, and the correct chemical reaction is depicted on the right side, extracted from the study by Özdemirhan
[42]. These examples are sourced from the Reaxys database [28], but it is important to note that similar errors exist
in other databases. Notably, the original Reaxys dataset lacks atom-mapping information, and the atom-mapping
labels in the left half of this figure were generated using the RXNMapper software [35].

an unusual chemical transformation and potentially incorrect data entry, we opt to remove that

specific reaction from our dataset. The overall procedure is visually depicted in Fig. 2, with detailed

step-by-step explanations provided in the following subsections.

2.1 Generic template extraction

2.1.1 Reaction data collection

To evaluate the effectiveness of our data cleaning protocol, we applied it to reaction data derived

the Reaxys database [28], a well-established resource in the field of computational chemistry

that, like any large database, may contain some errors [31]. To demonstrate the broad applica-

bility of our data preprocessing approach, we retrieved datasets for 20 different reaction types

from Reaxys. These datasets were obtained by searching for specific reaction names, and they

encompassed a variety of reactions, including Adams decarboxylation, Baylis–Hillman reaction,

Buchwald–Hartwig cross coupling, Chan–Lam coupling, Diels–Alder, Fischer indole synthesis,

Friedel–Crafts acylation, Friedel–Crafts alkylation, Grignard reaction, Hiyama coupling, Huisgen

cycloaddition, Hydrogenation, Kabachnik–Fields reaction, Kumada coupling, Mannich reaction,
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Fig. 2 Overview of the two-stage data cleaning protocol of AutoTemplate for processing chemical reaction data. Panel
(A) illustrates the generic template extraction procedure. Panel (B) shows the template-guided reaction verification
process, which systematically validates the reaction data using a list of generic reaction templates.

Negishi coupling, Pauson–Khand reaction, reductive amination, Suzuki coupling, and Wittig reac-

tion. The reaction IDs for each reaction used in our study are provided in the GitHub repository

for reference [44]. We removed any reactions involving reactants or products that could not be

parsed by RDKit [45]. In addition, we eliminated isotope labels from the molecules since they do not

impact the chemical transformation. It is worth noting that the labels denoting reaction types in the

Reaxys database may not always align accurately with the actual reaction types. Therefore, despite

our efforts to collect data based on the 20 specified reaction names, there were instances where the

recorded reaction entries did not correspond precisely to these 20 designated reaction types.

2.1.2 Atom-to-atom mapping

The original reaction data obtained from Reaxys lacked information on atom mapping, a crucial ele-

ment for establishing correspondence between the atoms of reactants and products. This information

is essential to identify the reaction center where the connectivity of atoms has changed, a prerequisite

for extracting the reaction template. The accuracy of common atom-to-atom mapping toolkits has

been assessed in the study by Lin et al. [33]. According to their findings, the open-source tool RXN-

Mapper [35] demonstrated state-of-the-art performance, processing each reaction within one second.

Due to these advantages, we selected RXNMapper as our preprocessing toolkit for atom-to-atom

mapping. With atom-mapping information available, we can distinguish spectator molecules—those

5
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that do not actively participate in the reaction or contribute any non-hydrogen atoms to the prod-

uct. These spectator molecules were removed because our data preprocessing framework focuses on

curating the chemical transformation itself, rather than the spectator molecules.

2.1.3 Generic template definition and extraction

Upon obtaining the atom-mapped reactions, the next step is to retrieve all the reaction templates

from the dataset using the RDChiral [46] template extractor. It is important to note that RDChi-

ral primarily focuses on generating retrosynthetic templates, which are designed for developing

computer-aided retrosynthesis models. Because chemical reaction datasets often focus on the major

product while not necessarily comprehensively documenting the reactants needed to produce that

product, our study utilizes retrosynthetic templates to verify and curate the reaction data.

The default templates generated by RDChiral provide highly detailed information around the

reaction center. This results in an excessive number of templates for the same type of chemical

transformation, particularly when there are minor variations in neighboring functional groups. It also

extends the time required for the subsequent template application process. The specificity of these

templates can make it challenging to apply a template from one reaction entry to curate another

entry, unless both entries have identical neighboring functional groups near the reaction center. To

overcome these challenges, we made modifications to the RDChiral functions. Our aim was to create

generic reaction templates that include only essential information concerning atom types and bond

types within the reaction centers, while excluding extraneous details. Table 1 provides a comparison

between the default and modified template extraction functions.

Consider the Grignard reaction in Fig. 3A as an example, the corresponding reaction template

generated by default RDChiral is [OH;D1;+0:4]-[CH;D3;+0:5](-[c:6])-[c;H0;D3;+0:1](:[

c:2]):[c:3]>>Br-[c;H0;D3;+0:1](:[c:2]):[c:3].[O;H0;D1;+0:4]=[CH;D2;+0:5]-[c:6]. On

the other hand, its generic template reduces to [#6:1]-[#6:2]-[#8:3]>>Br-[#6:1].[#6:2]=[

#8:3]. In the generic template, details related to atomic aromaticity, degree of freedom, number of

hydrogen atoms, charge, and extra atoms are all discarded. The meanings of the notations used in

the template can be found in the reaction SMARTS documentation [47]. This simplification effec-

tively documents the chemical transformation for most cases. Nevertheless, there are special cases

that require unique treatment. The first exception involves specifying the number of connected

hydrogens in the generic template to accurately represent species involved in radical reactions, as

shown in Fig. 3B. The second exception is the inclusion of the number of charges in the template

when the reaction involves charge transfer, as illustrated in Fig. 3C. The third exceptional case
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Table 1 The features specified in default RDChiral and generic reaction templates.

Level Features RDChiral Generic

Atom

Reactant radius1 1 0

Product radius1 0 0
Aliphatic or aromatic Yes No

Degree of freedom2 Yes No
Chirality Yes No
No. of hydrogen atoms Yes No, except for radical reactions
Charge Yes No, except for charge transfer reactions

Bond
Bond type Yes Yes
Cis-trans isomerism Yes No

Functional
groups

Leaving groups Yes Yes
Predefined groups Yes No

1Radius denotes the extending distance of the neighbor atoms around the reaction center.
2Degree of freedom here represents the number of connecting non-hydrogen atoms.

arises when separate reaction centers occur in the product (Fig. 3D). In such cases, the connect-

ing atoms between the reaction centers should be incorporated into the generic template. These

connecting atoms can be identified using Dijkstra’s algorithm [48], which finds the shortest path

between given nodes. This approach ensures that no redundant atoms are included in the template

and is effectively applicable to extracting templates for ring-opening reactions.
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Fig. 3 Illustration of generic template extraction with the normal and special cases.
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2.1.4 Template canonicalization

To address the issue of having multiple generic reaction templates representing the same chemical

transformation but with different text representations, we employed a graph isomorphism check to

confirm whether the reactants and products in pairwise templates were identical. If both reactant and

product SMARTS patterns were graph isomorphic, we combined the two templates. Additionally, we

calculated the number of bond changes in the templates and keep the one with fewer changes. Fig.

4 illustrates this scenario with two Diels–Alder reaction templates that share identical subgraphs of

reactants and products but differ in reaction transformations due to mapping errors from the atom-

mapping tool. Such errors can lead to incorrect atom swaps, resulting in additional and incorrect

formation and breaking of chemical bonds. Therefore, we retained the template with fewer bond

changes.

S
1

C
3

C
4

C
6

C5

N
2

S 1N2
C

3

C
4

C
5

C6

+

Template 1: [#16:1]1- [#6:3]- [#6:4]=[#6:6]- [#6:5]- [#7:2]- 1

>>[#16:1]=[#7:2].[#6:3]=[#6:4]- [#6:5]=[#6:6]
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Template 2: [#16:1]1- [#6:6]- [#6:5]=[#6:4]- [#6:3]- [#7:2]- 1

>>[#16:1]=[#7:2].[#6:3]=[#6:4]- [#6:5]=[#6:6]

Number of bond change = 7

Wrong template (X)

Number of bond change = 6

Correct template (O)

Fig. 4 Examples of two generic templates extracted from Diels–Alder reactions.

2.1.5 Removal of rare templates

Generic templates are designed to be broadly applicable to reaction instances with similar chemical

transformations. If a generic template matches only a few reaction entries, it suggests an unusual

chemical transformation, possibly indicating that the template may have been derived from a reac-

tion entry with errors. To address this, we monitored the occurrence frequency of each generic

template during the template extraction process. Templates with a popularity of 5 or less were

removed. This process resulted in the final set of generic templates {T1, T2, · · ·TN} for subsequent

template-guided verification.
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2.2 Template-guided verification

2.2.1 Template application procedure

This procedure primarily involves the iterative application of generic reaction templates to the

products of each reaction entry. When the reactants in the original data entry form a subset of

the reactants resulting from the applied template, we replace the original data’s reactants with

those from the applied template. This rectifies any missing reactant information and simultaneously

corrects potential atom-mapping errors. In cases where none of the templates match the reaction,

indicating an unusual chemical transformation and potentially incorrect data entry, we choose to

remove that specific reaction entry from the dataset.

Throughout the template application process, the reactants are automatically supplemented with

the appropriate number of hydrogen atoms based on their charge state and the number of bonds

connected to them. For instance, neutral sulfur atoms are assigned either two or six bonds, resulting

in two possible configurations for a neutral sulfur atom with a connected chemical bond, acquiring

either one or five hydrogen atoms. Exceptions to this rule only occur when the template explicitly

specifies the number of hydrogen atoms connected to the reaction center.

2.2.2 Append atomic chirality and bond stereochemistry

We note that the reactants generated from template application lack annotations for atomic chirality

and bond stereochemistry at the reaction centers. Therefore, an additional step is necessary to rein-

troduce this information into the reactants, but only if this information was included in the original

dataset. This process involves establishing a one-to-one atom correspondence between the original

reactants and template-generated reactants. This can be achieved by initially converting both sets

of reactants into undirected graphs, followed by utilizing the exact graph matching algorithm [49]

to establish a strict one-to-one node correspondence between the two graphs.

3 Results and Discussion

3.1 Analysis of overall results

Table 2 provides information on the number of reactions in the dataset, the number of templates

extracted from these reactions, and the residual proportion after data processing. The variation

in the number of templates for each type of reaction is due to the unique characteristics of their

reaction mechanisms. For example, coupling reactions that involve multiple possible leaving groups

often result in a higher template count. Conversely, reductive amination, where the carbonyl group

9
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Table 2 The data preprocessing results for the chemical reaction datasets.

Reaction type No. of reactions No. of generic templates Residual rate

Adams decarboxylation 2,636 54 62.3%
Baylis–Hillman reaction 7,507 84 81.3%
Buchwald–Hartwig cross coupling 18,341 96 90.7%
Chan–Lam coupling 6,885 43 92.1%
Diels–Alder 18,757 258 74.8%
Fischer indole synthesis 6,841 28 85.9%
Friedel–Crafts acylation 10,095 118 82.9%
Friedel–Crafts alkylation 17,248 164 81.3%
Grignard reaction 13,530 154 73.2%
Hiyama coupling 4,089 106 81.7%
Huisgen cycloaddition 54,183 144 94.1%
Hydrogenation 41,217 306 69.4%
Kabachnik–Fields reaction 5,575 14 91.4%
Kumada coupling 16,371 82 89.1%
Mannich reaction 29,698 271 86.0%
Negishi coupling 10,909 146 84.9%
Pauson–Khand reaction 2,703 19 72.4%
Reductive amination 50,406 16 97.1%
Suzuki coupling 184,219 216 98.2%
Wittig reaction 16,337 94 84.8%

is reduced to an amine, has a large number of reaction entries, but only 16 reaction templates are

extracted, indicating less variation in its reaction transformation.

Fig. 5 displays curated reaction results, addressing issues such as false atom-mapping, reactant

omissions, and the identification and removal of incorrect reaction records. Notably, the Diels–Alder

reactions exhibited a high atom-mapping correction rate of 29.3%. This is likely attributed to the

complexity of Diels–Alder reactions, which involve numerous bond transformations and instances of

intramolecular or fused ring formation, making them challenging for accurate atom-mapping predic-

tions. Conversely, coupling reactions generally showed relatively fewer atom-mapping errors, likely

because they involve fewer bond changes. Accurate atom-mapping data can significantly improve

reaction prediction quality, particularly for graph-based models. Regarding the issue of missing reac-

tants, Fischer indole synthesis, Kabachnik–Fields reaction, Pauson–Khand reaction, and reductive

amination display a noteworthy proportion of data with absent reactants. In the case of the Pau-

son–Khand reaction, most instances systematically omit carbon monoxide as a reactant. However,

there is no clear pattern indicating which reactants may be omitted in the data for the other three

types of reactions. Further discussions on specific data errors and curated results are provided in

the following subsections for selected examples.

3.2 Visualized results of selected mapping curated examples

Currently, there is no package available that can generate atom-mapping information perfectly for

all reactions [33]. In this study, the data-driven neural network RXNMapper [35] was utilized to

predict atom mapping. However, it is important to note that even for reactions considered relatively

10

https://doi.org/10.26434/chemrxiv-2024-tq22r ORCID: https://orcid.org/0000-0002-9411-6404 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-tq22r
https://orcid.org/0000-0002-9411-6404
https://creativecommons.org/licenses/by-nc/4.0/


551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

Fig. 5 Distribution of the proportion of repaired reactions after data processing.

straightforward for humans, there can still be instances of incorrect atom mapping, as shown in

Fig. 6A. This example of the Baylis-Hillman reaction incorrectly assigns the atom-mapping number

(6 and 14) at the position of the carbon-carbon double bond, which would lead to the incorrect

reaction template during template extraction. Applying the data processing procedure proposed

in this work can recover this reaction with the true atom-mapping labels. Another example is the

Buchwald–Hartwig cross-coupling reaction illustrated in Fig. 6B, which has the same issue at the

reaction center where the carbon atoms are labeled incorrectly in the intramolecular ring-closing

reaction. We note that false atom-mapping issues occur more frequently at the reaction centers, and

systematically addressing this problem would benefit downstream template-based and graph-based

model applications.

3.3 Visualized results of selected reactant curated examples

The data processing procedure proposed in this work primarily focuses on addressing omitted reac-

tants rather than products, as byproducts and leaving groups are typically not the main focus and

are not specified in reaction datasets. The issue of missing reactants can be identified by comparing

the atom counts between reactants and products, with reactions having fewer atoms on the reactant

side categorized as this type of error. To the best of our knowledge, there is no existing approach

tailored for adding missing reactants. However, with the template-guided verification method pro-

posed in this work, erroneous reaction entries can be recovered along with the omitted reactants.
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(A) Baylis-Hillman reaction, reaction ID: 948889

Raw data:

Data after preprocessing:

(B) Buchwald-Hartwig cross coupling, reaction ID: 31410134

Raw data:

Data after preprocessing:
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Fig. 6 Two selected examples of (A) Baylis–Hillman reaction and (B) Buchwald–Hartwig cross coupling to demon-
strate the curated results of the reaction entries with incorrect atom-mapping. Yellow highlights indicate the reaction
centers, red highlights denote atoms with incorrect atom mapping, and blue highlights represent atoms with curated
mapping.

Fig. 7A illustrates a typical example from the reductive amination dataset, where the missing reac-

tant with an amine functional group was generated by applying the generic template to the product,

thus balancing the reaction equation. In the case of the second instance of the Kabachnik–Fields

reaction shown in Fig. 7B, which involves three molecules in the reaction, the two missing fragments

were successfully recovered from the template. It is worth noting that the chirality of the phos-

phorus atom cannot be inferred because the generic template does not specify chiral and cis-trans

stereoisomerism at the reaction center. Including such detailed information in templates would lead

to an excessive number of templates, reducing the chances of applying a template from one reaction

entry to curate another entry.
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Raw data:

Data after preprocessing:

(B) Kabachnik–Fields reaction, reaction ID: 12318568

Raw data:
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Fig. 7 Two selected examples of (A) reductive amination and (B) Kabachnik–Fields reaction to demonstrate the
curated results of the reaction entries with incomplete reactant information. Yellow highlights represent the reaction
centers, while green highlights indicate molecular fragments added through the data curation process.

3.4 Visualized results of selected removed reactions

In cases where none of the templates matched the reaction, indicating an unusual chemical trans-

formation or potential data entry errors, the specific reaction entry was removed from the dataset.

Several examples of such removals are presented in Fig. 8 and discussed below.

Fig. 8A illustrates a two-step Suzuki coupling reaction. To automatically identify multi-step

reactions like this, one would need to repetitively validate them using all the single-step reaction tem-

plates, which becomes increasingly time-consuming as the number of steps allowed grows. Because

most reaction prediction models focus on single-step reactions, the accommodation of multi-step

reactions is less critical in this study. The reactions shown in Fig. 8B and 8C are actually correct

reactions, but none of the generic templates in the final list match them. This occurred because the

templates extracted from these reactions did not match a sufficient number of reaction entries, lead-

ing to their exclusion from the final list of generic templates. As discussed in the method section,

templates with low matching frequencies may indicate errors in the template source data. While
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this approach effectively removes erroneous reaction entries, it can also inadvertently exclude rare

but valid reactions, as demonstrated in Fig. 8B and 8C. The reaction depicted in Fig. 8D belongs

to the category of Huisgen cycloaddition. In this reaction, the atom highlighted in purple (number

10) in the product is identified as a carbon atom. However, at the same position in the reactant,

an oxygen atom is indicated. Rectifying this type of error is challenging because it is difficult to

determine whether the correct structure should be attributed to the reactant or the product. This

particular entry originates from a study by McNitt et al. [50], where atom number 10 was labeled as

an oxygen atom, suggesting a potential error in the recorded product information in the database.
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(B) Friedel–Crafts alkylation, reaction ID: 3808146

(C) Allylboration, reaction ID: 9021436
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Fig. 8 Four selected examples of (A) Suzuki coupling, (B) Friedel–Crafts alkylation, (C) allylboration, and (D) Huis-
gen cycloaddition to illustrate reactions that did not match any of the final generic templates and were consequently
removed during the data processing procedure.
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4 Conclusions

Recent advancements in artificial intelligence have significantly impacted the field of organic chem-

istry. The reliability of predictive models in chemistry, essential for applications such as yield

prediction, retrosynthesis, and reaction condition prediction, is heavily contingent on the quality

of chemical reaction datasets. However, these datasets, sourced from both open-source and propri-

etary databases, often contain inconsistencies like missing reactants, incorrect atom mappings, or

erroneous reactions, necessitating rigorous data preprocessing.

This work introduces a novel data preprocessing protocol called AutoTemplate, designed to

enhance the quality of chemical reaction datasets. AutoTemplate employs a two-stage approach:

generic template extraction and template-guided reaction verification. The process begins with the

extraction of meaningful reaction transformation rules from a dataset, which are then expressed as

generic reaction templates using a simplified version of the SMARTS representation. This simplifi-

cation ensures broad applicability across various reactions. In the subsequent stage, these generic

templates are systematically applied to validate and correct reaction data. This involves rectifying

missing reactant information, correcting atom-mapping errors, and removing incorrect data entries.

Our method stands out by its ability to simultaneously identify and correct false chemical reac-

tions, leveraging the assumption that the majority of reactions in datasets are correct. By using

these reactions as templates for data curation, AutoTemplate not only rectifies existing errors but

also aids in the recovery of missing reactants. The protocol’s effectiveness is demonstrated through

its application to diverse chemical reactions, highlighting significant improvements in dataset qual-

ity. This refined data provides a more reliable foundation for developing machine learning models

in chemistry, enhancing the accuracy of forward and retrosynthetic predictions.

This study represents a significant step forward in preprocessing chemical reaction datasets,

addressing a critical gap in the field and paving the way for more accurate and efficient machine

learning applications in organic synthesis.
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