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ABSTRUCT Noisy cryoEM particle images reflect the conformational heterogeneity of biomolecules 

and have high potential for the study of biological process. As numerous simulation studies have 

shown, the study of biological process is attributed to the description of the free energy landscapes on 

the conformational pathways along with collective variable, which is usually difficult to define. In this 

study, we propose a methodology to automatically generate plausible conformational pathways via the 

theoretically isometric latent space trained by deep Auto-Encoder model using cryoEM experimental 

dataset directly. The proposed method of the PaStEL can speedily show structural change on the 

plausible conformational pathways along with free energy landscape. Solid theoretical guarantees and 

tests using synthetic cryoEM data have succeeded in obtaining qualitatively correct energy landscapes 

on the generated plausible pathways. Furthermore, benchmarking with real cryoEM experimental data 

of 50S Ribosome has successfully demonstrated that the conformational changes with energy 

landscapes consistent with existing studies without any manual labor. Finally, the PaStEL was applied 

to spike proteins of SARS-CoV-2 and successfully characterized the difference in the conformational 

changes between the wild type and the mutant (D614G) focusing on the Receptor Binding Domain 
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regions. 

 

1. INTRODUCTION 

 Biomolecules are soft functional molecules that are responsible for biological activities by 

controlling important functions such as enzymatic reactions and signal transduction through diverse 

interactions within cells. In particular, proteins fold into relatively stable natural structures based on 

their amino acid sequence. Protein structure and function are closely related, and proteins are known 

to undergo large-scale conformational changes to metastable structures on the millisecond scale when 

they perform various functions in the cell. 

 In elucidating the molecular mechanisms of biological processes and in drug discovery to create 

substances that control biomolecular functions, it is important to elucidate not only native structures 

but also metastable structures and the continuous structural changes on the pathways connecting them. 

 Experimental measurements and simulations have been used to capture the continuous 

conformational changes of biomolecules. Physical quantities obtained from experimental 

measurements of biomolecules have lower dimensions and lower signal-to-noise ratios than the object 

being measured, making data interpretation difficult. Statistical analysis compensates for these 

characteristics, but the individuality reflected in the individual measurement data is lost due to 

averaging. On the other hand, molecular simulations of biomolecules can reproduce time-series 

changes in 3D structures down to μsec, level but it is difficult to capture large stochastic 

conformational changes that move back and forth between associate stable structures. Therefore, there 

is currently no universal method to elucidate metastable structures and continuous structural changes 

on the pathways connecting them. A new method that can capture the various structural changes of 

large biomolecules with more than several hundred residues on a time scale exceeding milliseconds 

with atomic resolution is desired. 

 In single-particle structure analysis, one of the representative analysis methods of cryoEM, individual 

particle images are picked up from micrographs, and 3D density maps are obtained through sifting of 

dominant images by 2D classification and 3D reconstruction. By performing such a multi-image 

analysis, the average image can be reconstructed as a 3D density map with a statistically improved 

signal-to-noise ratio. With the advancement of instruments and analysis methods, the structural 

resolution of 1.2 Å for biomolecules with little conformational change has almost achieved atomic 

resolution. On the other hand, multi-image analysis estimates the statistically predominant density 

position from a large number of measured images, and the flexible regions of biomolecules become 

statistically indefinite, making the existence of invisible regions problematic. 

 In recent years, much effort has also been focused on elucidating the conformational diversity of 

biomolecules. There are two main types of methods: methods that obtain several discrete average 3D 

density maps, and methods that continuously obtain structural changes in 3D density maps via deep 
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learning.  

 RELION, a typical example of former, achieves high resolution by multi-image processing using the 

maximum likelihood method, and obtains several different discretized average structures by 

classifying them into multiple classes. Additionally, cryoSPARC, has a user-friendly interface and 

outputs discrete multi conformations at high speed. Both have been applied to various biomolecules 

to elucidate their multi conformational states. 

 On the other hand, cryoDRGN[8], e2gmm[2], and 3Dflex[9] are representative examples of the latter. 

In these methods, the autoencoder is first trained using the cryoEM image data set. Then, a low-

dimensional continuous sequence of latent variables is defined from the trained encoder, and the 

sequence is passed through the decoder to acquire continuous structural changes in the biomolecules, 

represented as a 3D density map. For example, the authors in [10] experimentally demonstrated the 

potential of cryoDRGN by applying it to a cryoEM image dataset of 50s ribosomes to computationally 

reproduce one of four plausible existing assembly pathways (see Figure 7 in [11]) of manually 

constructed ribosomes. However, as the author of cryoDRGN himself points out, the equivalence of 

the potential distribution of the three representative methods mentioned above and the energy 

distribution of biomolecules has not been fully clarified theoretically [8]. Therefore, the protocol 

proposed by [10] to construct a plausible conformational change pathway is essentially a heuristic 

method since it is not based on an energy distribution. And because of its heuristic, the protocol 

requires more than cryoEM images and analysis; it requires laboratory equipment and biological 

expertise, resulting in significant effort and time. 

 In addition, molecular dynamics simulation (MD) has been used as another important tool to 

elucidate the multi conformational states of biomolecules. As computing power increases, MDs are 

becoming longer and larger in scale. However, large-scale structural changes, which are important in 

elucidating the molecular mechanisms of biological processes, are stochastic processes with a typical 

time scale of milliseconds, making it difficult to capture their structural transitions in brute-force 

microsecond MD simulations. This problem is called the sampling problem, and various sampling 

innovations have been used to capture stochastic and large conformational changes. In McMD, one of 

the advanced sampling methods, comprehensive sampling of a variety of structures at various 

temperatures has enabled us to draw detailed free energy landscape, including metastable states on 

Collective Variables (CV), for relatively small systems of ~100 residues. Once the free energy 

landscape can be drawn, the energy barriers can be discussed along with the conformational changes 

to understand the transition states, which is the key to understanding the molecular mechanism. The 

key to capturing structural transitions is to correctly estimate the most likely conformational path from 

a large number of possible paths. The biggest problem with this method is that there is a limit to the 

size of biomolecules to which it can be applied, and a computational explosion occurs as the molecular 

size increases. 
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 The aim of this study was to develop a new method to capture continuous conformational changes 

of biomolecules, including those on the millisecond scale, exceeding several hundred residues, which 

are difficult to analyze experimentally or by simulation. The proposed method of PaStEL learns 

cryoEM particle images, which are snapshots of multi conformational states, to generate a continuous 

3D density map structure change and free energy surface of plausible conformational pathways. The 

PaStEL uses the cryoTWIN model to obtain a multimodal distribution with GMM representation in a 

theoretically guaranteed latent space (Theoretically Guaranteed Isometric Latent Space) with the 

cryoEM particle image as input. This property and the Max-Flux algorithm allow for quick semi-

automatic estimation of plausible conformational pathway. This allows us to capture the various 

comfomational changes of large biomolecules with more than several hundred residues on time scales 

exceeding milliseconds with high resolution, without requiring prior biological knowledge or 

expertise in setting appropriate CVs. 

 Based on the solid theoretical guarantees shown in Result 2.1, the validity of the proposed method 

was verified by simulation data in Result 2.2. In Result 2.3, experimental data on 50s-ribosomes, for 

which there is a large amount of known information, show that the estimated conformational pathways 

are valid compared to the known information. In Result 2.4, PaStEL was applied to the SARS-CoV-2 

spike protein, focusing on the Receptor Binding Domains (RBD) regions to characterize the 

differences in conformational changes between wild-type and mutant (D614G) with plausible pathway 

energy changes. 

2. RESULT 

2.1 The PaStEL method: 

As briefly explained in the previous section, the State-Of-The-Art (SOTA) unsupervised methods 

based on an auto-encoder, such as cryoDRGN [8] and e2gmm [2], do not have sufficient analytical 

results for the relationship between latent and structural distributions, and therefore they do not 

guarantee the following equivalence theoretically: a protein conformational pathway computed via a 

low-dimensional latent distribution is equivalent to a plausible conformational pathway (e.g., optimal 

chemical reaction path a.k.a. MaxFlux pathway [3] and minimum free energy path) computed on a 

high-dimensional structural distribution. Note that the computational cost of the former pathway is 

low, whereas that of the latter pathway is usually high.  

Our proposed method, PaStEL, achieves the above equivalence in the ideal condition: 

(i) The structural distribution of the target protein is a low-dimensional manifold, i.e., the manifold 

assumption [1] holds for the structural distribution, and 

(ii) For reconstructing each structure, the sufficient amount of cryoEM images and their accurate 

pose orientations are obtained. 

PaStEL consists of our auto-encoder namely cryoTWIN and an algorithm that computes the 

conformational pathways. In PaStEL, first, cryoTWIN is trained using the cryoEM images and their 
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pose orientations. After this training, a simple distributional model 𝑝𝜓(𝑧) fits the latent distribution, 

and the decoder outputs the corresponding 3D density map as input of a latent variable 𝑧; see Fig. 1b 

for the predicting procedure. Under the ideal condition, it is theoretically guaranteed that the latent 

space and the output space of the decoder (the space of the 3D density map) have an isometric 

relationship [4]. From this isometric property, we can immediately derive the proportionality between 

the latent distribution 𝑝𝜓 and the distribution of the 3D density map, i.e., the structural distribution 

𝑝; see the proportional relationship between the two distributions in Fig. 1c. 

Thanks to the isometric property of cryoTWIN, only PaStEL can have the following two strong 

theoretical guarantees, compared to the SOTA methods: 

(i) Suppose that the cryoEM images of target protein are collected in the equilibrium condition. 

Then, the free energy of the 3D density map is equivalent to the simplified low-dimensional 

formula −log 𝑝𝜓 except for the constants; see equation (3). 

(ii) The protein conformational pathway (as a sequence of the 3D density maps) computed via the 

low-dimensional latent distribution 𝑝𝜓(𝑧) is equivalent to the MaxFlux path computed directly 

on the high-dimensional structural distribution 𝑝; see equation (4). 

 Our computational algorithm is based on the theoretical guarantee (ii). In this algorithm, firstly, the 

ridgeline between the starting point 𝑧0  and the end point 𝑧1  given on the trained model 𝑝𝜓  is 

obtained as a finite sequence of latent variables; see the orange dash line on the left in Fig. 1c for the 

ridgeline. Then secondly, the sequence is transformed into a sequence of the 3D density maps by the 

decoder. At last, the algorithm outputs the 3D density map’s sequence. 

In practice, it is difficult to obtain a large number of cryoEM images and their accurate pose 

orientations. In this case, for a limited amount of cryoEM images, we first estimate the pose 

orientations by an existing technique such as cryoSPARC [5], and then approximate the expected loss 

of cryoTWIN using the cryoEM images with their estimated orientations. See the definitions of the 

expected loss and the approximated loss in equation (1) and (5), respectively. In addition, see Fig. 1a 

for the diagram of how to compute the approximated loss. Here, we remark that the weight to define 

the weighted squared L2 loss in Fig. 1a is related to the theoretical guarantee of PaStEL.  

PaStEL and molecular dynamics can be complementary technologies to each other, because of the 

above theoretical guarantees (i) and (ii). Further, since PaStEL requires only cryoEM images and 

reasonable computational resources for the implementation, the method has a potential to 

revolutionize the process of drug discovery in the future. In the following sections, we evaluate the 

performance of PaStEL using a limited amount of cryoEM images. 
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Figure1. Overview of our method, PaStEL. a, Diagram of how to define loss function in practice for 

training our auto-encoder (cryoTWIN). The loss is defined by three terms in red rectangles, where 𝝍 

is a set of the trainable parameters. b, Diagram of how to predict the corresponding 3D density map to 

a latent variable 𝒛 by trained decoder of cryoTWIN. c, Illustration of how our algorithm computes 

conformational pathway as inputs of start point 𝒛𝟎 and end point 𝒛𝟏 based on a cryoTWIN with 

isometric property. First, the orange ridgeline from 𝒛𝟎 to 𝒛𝟏 is computed, and then it is transformed 

to conformational pathway by the decoder. 

 

 

  

https://doi.org/10.26434/chemrxiv-2024-8t70s ORCID: https://orcid.org/0000-0002-9584-1819 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-8t70s
https://orcid.org/0000-0002-9584-1819
https://creativecommons.org/licenses/by-nc/4.0/


 7 

2.2. The validity of the PaStEL by simulation data of chignolin 

 In this section, the simulation data will be used to validate the pathways presented by PaStEL and 

the generated density maps on the pathways. The cryoEM experimental data, in which samples were 

flash-frozen, contain a variety of conformational states, and some correlation between observation 

frequency and structural stability can be expected. In other words, more stable conformational states 

are observed more frequently and rare conformational states are observed less frequently. The 

correlation between the free energy surface, a measure of protein conformational stability, and the 

distribution in the latent space obtained by learning the observed image set was investigated using the 

McMD calculation. Specifically, for the Chignolin protein, we employed a McMD-assisted method 

(see Method 2: Synthetic cryoEM particle images) to prepare a variety of structures and proceeded 

with verification experiments. 1.5 million artificial 2D images were prepared from free energy-based 

weighted structural sampling and random orientation projection, which were used as a pseudo cryoEM 

image set to train the autoencoder cryoTWIN.  

 Figure 2-a shows the pseudo-free energy surface acquired by training a set of simulated cryoEM 

images. On the other hand, Figure 2-b shows the free energy surface obtained by McMD, which is the 

baseline data. In the free energy plane, in addition to the most stable structure observed in the X-ray 

crystal structure (stable), there are several meta-stable structural, and there is an energy barrier that 

must be crossed between them. In Figure 2-a, the most stable structure, metastable structure, and 

energy barrier can be seen at positions similar to the free energy surface obtained by McMD. The 

correlation value between the free energy surface and the pseudo-free energy surface acquired from 

the image distribution was sufficiently high at 0.84 (Figure 3-c). 

 Figure 2-a shows dotted plausible paths transitioning between stable and metastable structures, as 

estimated by the maximum flux algorithm [7] in latent space. Figure 2-d shows the normalized free 

energy on the conformational path. The pseudo-free energy values of the plausible pathways estimated 

by PaStEL are in good agreement with those of McMD. The MD structure and generated volumes on 

the corresponding pathways are shown in Figure 2-e. In addition to the unevenness of the energy 

surface, the high similarity between the MD structure on the pathway and the generated volume can 

be confirmed. On the other hand, it has been confirmed that when the number of images is less than 

about 500, the reconstructed structure is not reproduced well. The fourth reconstructed volume in 

Figure 2-e is an example of this problem. The above results show that there is a high correlation 

between the pseudo-free energy surface obtained by learning the cryoEM images and the free energy 

surface that is the baseline, and that the proposed method can estimate the pseudo-free energy from a 

finite set of cryoEM images with high accuracy. In addition, we showed that there is a high similarity 

between the generated volume on the pathway and the MD based structure that is the baseline. These 

results indicate that it is possible to analogize the pseudo free energy surface of a protein from cryoEM 

images alone, if sufficient observational data are available. Furthermore, a plausible path can be 
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selected semi-automatically from a pseudo free energy surface, and the transition of energy and 

structure on that conformational path can be visualized. 

 

 

Figure2. (a). Pseudo free energy surfaces estimated by PaStEL. plausible conformational pathways 

between stable and meta stable states, estimated by PaStEL, are indicated by green dots. (b). The free 

energy surfaces calculated from the baseline of McMD. MD sampling points that are closest to the 

estimated conformational pathway are indicated by black dots (ID1-5). (c) Energy scatter diagram. 

Horizontal axis is pseudo free energy of paStEL. Vertical axis is McMD free energy. (d). Normalized 

free energy in the estimated path. Blue line: PaStEL. orange line: McMD. (e). Structure transition in 

the estimated pathway. Upper panel: 3D density map generated by PaStEL. Bottom: Atomic model of 

MD sampling points. 
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2.3 Application of PaStEL to experimental data of 50s-Ribosomes 

In the previous section, we showed that PaStEL can visualize the transition of energy and structural 

changes on the pathway from cryoEM images with high accuracy by using simulated data. In this 

section, we verify the validity of the plausible pathways estimated by PaStEL using actual cryoEM 

experimental data. The assembly pathway of the large subunits of the Ribosome, a protein synthesis 

system, was investigated as an example. The Ribosome has been intensively studied because of its 

biological importance (see references). 

 About 130,000 particle images of ribosomal cryoEM data (EMPIAR-10076: complex) were used to 

train of cryoTWIN. The orientation information obtained from the preliminary analysis by 

CryoSPARC was given in train process. The pseudo-energy surface obtained from the trained 

cryoTWIN is shown (Fig 3-i). There are several metastable structures in the free energy surface, and 

important information for analyzing the structural transition is presented here. Based on this energy 

landscape map, the conformational pathways of conformational transition were calculated by PaStEL, 

along with their likelihood of occurrence, and the results are shown in Figure 3-a as a non-directed 

graph. Each node of the graph corresponds to the density map (volume) of the four states of interest 

(B, C, D, E) of the Ribosome. State B is the structure lacking the most overall density, indicating that 

it is an immature 50S-Ribosome. The state C is one with increased basal density, while the state D has 

CP present but lacks basal and intersubunit density. The state E has basal and CP densities present, 

with changes in density around uL1 and uL10/11 stalk. Each of these conformational states was labeled 

by FSC with the existing density map (details in Method). The distance between edges also represents 

the likelihood of structural transitions occurring, obtained by solving the optimal reaction path 

equation [7]. In other words, the shorter the distance between edges, the more likely a structural 

transition is to occur. The PaStEL also defines a single conformational pathway by specifying the 

number of starting, ending, and transit points. From the MaxFluxScore, which is the sum of edge 

distances, the likelihood of each pathway can be estimated. 

 Using the assembly process of the 50S-Ribosome as an example, the pathways likely to be caused 

by PaStEL were investigated. An exhaustive pathway analysis was performed using state B, the initial 

50S-Ribosome assembly state, as the starting point and state E, the final 50S-Ribosome assembly state, 

as the end point. The results are shown in Figures 3-b (4 transit points) and 3-c (5 transit points). Both 

figures are histogram diagrams of MaxFluxScore obtained by exhaustive analysis, showing that 

pathways located on the left side are more likely to occur. Existing studies by Davis et al. show that 

there are four major reaction pathways (p1, p2, p3, and p4) that connect B-E. All of these major 

reaction system pathways appeared at the top of the MaxFluxScore in our analysis. The p5 pathway, 

which appeared at the top of the list, was found to contain the C4 structure suggested by the cryoDRGN 

analysis using same data. In summary, PaStEL can output plausible structural pathways without prior 

biological knowledge, as long as one has prior knowledge of the 3D structures of the start and end 
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points, a cryoEM image of the target protein, and appropriate computational resources. We further 

emphasize that the runtime of our method is about 10 times shorter than that of cryoDRGN. 

 In addition, our method allows us to obtain transitions in energy and conformational changes along 

the reaction pathway that would otherwise be difficult to obtain. The energy transition diagrams on 

the main pathway transitioning from B-E are shown in Fig. 3 d,e,f,g,h. Looking at the energy surface 

in Figure 3d-h, one can see the transition from the relatively high energy B state to the lower energy 

state E5. This suggests that the change of state from B to E5 is energetically reasonable. There are 

valleys and peaks of energy between each state, showing different trends in each pathway. Of the 

known pathways, p1-4, p2 and p3 were also ranked higher in MaxFluxScore, indicating that they are 

more likely to proceed, while p1 and p4 are less likely to proceed in comparison. Energy peaks are 

seen between C1 and E2 in p1 of Figure e and between D4 and E3 in p4 of Figure f, indicating that a 

high energy barrier must be exceeded to transition between them. This process is likely due to the 

large conformational changes from C1 to E2 associated with CP (the central protuberance) 

reorganization and the divergence and recombination of uL16 between D4 and E3. The novel pathway 

p5 including C4 was also suggested to be an easier pathway to advance compared to p1 and p4 in 

MaxFluxScore. 
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Figure3. (a) Pathway graph estimated from the learned PaStEL. Pathways p1-p4 of the existing studies 

and the proposed new pathway p5 are shown. (b) Histogram of calculated MaxFluxScore for each 

pathway with the number of nodes from B to E5 structure set to 4. Pathways of existing studies appear 

at the top of the histogram. The number of nodes via c and b is set to 4. Pathways of existing studies 

appear at the top of the histogram. (d) Pseudo free energy transition for the pathway of p2. (e) Pseudo 

free energy transition diagram for the pathway of p3. (f) Pseudo free energy transition diagram for the 

pathway of p1. (g) Pseudo free energy transition diagram for the pathway of p4. (h) Pseudo free energy 

transition diagram for the pathway of p5.(i) Pseudo free energy surfaces estimated by PaStEL. 
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2.4 Application of PaStEL to experimental data of Spike Protein from SARS-CoV-2 

 In this section, we applied PaStEL to cryoEM experimental data of two types of Spike Protein (wild 

type and D614G mutant) in order to clarify the differences in their conformational states. The spike 

protein from SARS-CoV-2 provides a critical trigger for the virus to enter our bodies by binding to 

ACE2 in the cell membrane. In particular, receptor binding domain (RBD) regions are the primary 

targets of neutralizing antibodies, which characterize the binding affinity of SARS-CoV-2. We focused 

on the three RBDs present in the spike protein and investigated by PaStEL the differences in 

conformational state between the wild type and the D614G mutant, in which the 614th aspartic acid 

is mutated to glycine. 

 Figure 4-a shows the pseudo-free energy surface (PC1-PC2 surface) estimated by PaStEL. The 

energy surface of the wild type is more rugged than that of D614G, indicating the presence of many 

relatively high energy barriers. This suggests that D614G is able to transition more smoothly to another 

conformational state. Pathway analysis was performed to capture the diversity of conformational states 

of both species.  

 Here, an exhaustive pathway analysis was performed for structural changes with the most 

energetically stable structure as the endpoint and other structures indicated by PaStEL as the starting 

point. The energy surfaces and structure types for each structure are shown in Figure 4-b. Unlike the 

Ribosome case, which searches for assembly pathways, the point of transit was set to 0 as in the case 

of chignolin, because the protein conformational changes are comprehensively searched for. The top 

30 densest nodes were selected from the average vector of GMMs approximated by 100 Gaussians. 

The MaxFluxScore was calculated for all edges between the 30 nodes, and to improve readability, the 

edges below the top 1/3 were cut off and an undirected graph was plotted (Figure 4-b). Figure 4-c 

shows the node IDs and energy values of the top 30 nodes for the wild type and mutant, respectively. 

In the wild type, 28 states were closed states and 2 states (IDs 17 and 74) were Open 1up states with 

one RBD up. In contrast, the D614G mutant had 21 Open 1up states, 6 Close states (ID 7, 25, 13, 22, 

62and 9), and 3 Open 2up states (ID 17, 23 and 25) with two RBDs up. There is a clear difference in 

conformational state between the them, with an overwhelming probability of being present in the Open 

1up state in the D614G mutant. 

 Next, the details of the structural changes between the different conformational states were examined. 

The topmost Close state of the wild type (ID 96) and the conformational change of Open 1up (ID 14), 

which is the highest (14th) of the different conformational states, and the pseudo-free energy change 

on the conformational pathway are shown in the top row of Figure 4-d. The Closed state is about 2 

units more stable than the Open 1up state. A relatively high energy barrier of 1.2 was found to exist in 

the transition state. On the other hand, the transition state from the Closed to Open 1up states of the 

D614G mutant is shown in the middle panel of Figure 4-d. In the mutant, the Open 1up state is 0.8 

more stable than the Closed state. The transition state of the mutant has a small barrier of 0.7 compared 
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to the wild type, suggesting that it can easily transition between the Closed and Open 1up states. The 

transition state of the mutant has a relatively small barrier of 0.7 compared to the wild type, suggesting 

that it can easily transition between the Closed and Open 1up states. The transition state of the mutant 

has only a small barrier of 0.7 compared to the wild type, suggesting that it can easily transition 

between the Closed and Open 1up states. 

 The results also suggest that Open 1up and Open 2up conformational transitions occur with some 

frequency in the mutant (Figure 4, lower panel). The barrier between the transition energies of Open 

1up and Open 2up is extremely small at 0.2, indicating that both conformational transitions occur 

easily. 

 In addition, these three conformational change pathways are shown on the PCA1-PCA2 plane in 

Figure 4-a. In the mutant, there are multiple conformational state change pathways, centered on the 

restable Open 1up and changing to Closed and Open 2up. In summary, the transition structures of 

intermediate states with high energy barriers can be obtained by this method when transitioning 

between each conformational state. 
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Figure4. Differences in the structural states of two types of Spike Protein (wild type and D614G 

mutant type) a, PCA projection of latent space of the wild type (left) and D614G mutant (right). 

Structural transition from Open 1up to Closed in the wild type (black circle), Structural transition from 

Closed to Open 1up in D614G mutant (black circle), Structural transition from Open 2up to Open 1up 

(blue triangle). b, Structural transition generated from the latent space of a of the wild type and D614G 

mutant. c, Energy transition of the structures corresponding to b of the wild type and D614G mutant. 

 

3. DISCUSSION 

 The advantages of the proposed method are described. Higher dimensional spaces are usually 

required to describe conformational changes in flexible biomolecules. Until now, methods such as 

projection onto low-dimensional space, as typified by PCA, have been used to capture the 

characteristics of conformational changes in biomolecules. The proposed method, PaStEL, can acquire 

a low-dimensional space that captures the features of structural deformation of biomolecules through 
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deep learning using oriented cryoEM images as input. By calculating the MaxFluxScore in the 

acquired low-dimensional space described by GMM, a plausible structural transformation path can be 

extracted semi-automatically based on the distribution of experimentally observed images. This allows 

visualization of the continuous conformational change of the biomolecule, along with the pseudo-

energy surface on the conformational change pathway, by means of a 3D density map representation. 

 This result strongly indicates that the manifold hypothesis holds for the conformational space of 

biomolecules. At the same time, cryoEM images are able to capture snapshots of multi conformational 

states of biomolecules, indicating that they have high potential for analyzing the multi conformation 

of biomolecules. Non-deep learning cryoEM analysis has mainly analyzed the average structure or a 

few classified structures, which requires specialized knowledge. We emphasize that the PaStEL can 

perform the same analysis semi-automatically as an expert would have done, by giving the number of 

transit points at the beginning and end of the pathway. 

 We also emphasize that the real time required for this has been reduced by about 10-folds of the 

existing methods when 50S-Ribosome is used, and we have achieved a fast process. 

 On the other hand, we believe that the proposed method has the following limitations at this time. 

First, it estimates a pseudo-energy landscape that depends on the single-particle image set used in the 

analysis. In order to obtain the more true energy landscape of biomolecules, a data set that exceeds the 

number of images required for 3D reconstruction analysis is presumably necessary. This suggestion 

may change the way experimental data is taken, and it is hoped that more images will be acquired in 

the near future under experimental conditions that include a wider range of structural states. In the 

current implementation, it is also necessary to provide orientation estimations to the images as prior 

information; the estimation of image orientation for cryoEM images relies on the implementation of 

RELION and cryoSPARC, which are preanalysis, and requires specialized knowledge. 

As another problem, the proposed method is affected by multi-image processing, and the problem 

remains that the flexible regions as the average density map are indefinite on the 3D density map. In 

addition, rare structures have a small number of observed images, and their effects appear in the 3D 

reconstructed structure, such as the loss of volume. At present, it is known that the accuracy of 3D 

entertainment manufacturing declines when the number of images strongly associated with a particular 

structure falls below 500. We are currently working on improving this by incorporating devices that 

artificially bring smoothness to the latent space. e.g., Virtual Adversarial Training [IEEE PAMI 2018]． 

 The potential to utilize the acquired latent space is high, and it may be possible to efficiently eliminate 

garbage data in the cryoEM experimental data by removing outliers in the distribution of the low-

dimensional space. 

 The most promising field for social implementation of the proposed method is drug discovery. In 

drug discovery, it is important to consider various structures of target proteins for rational molecular 

design. The proposed method, which semi-automatically provides continuous conformational change 
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pathways, can be a powerful tool in drug discovery. On the other hand, it is not enough to capture the 

continuous or structural changes as a 3D density map to link to drug discovery. In the future, it will be 

necessary to construct an all-atom structure model from the density map, and for this purpose, it is 

important to actively utilize not only the structure obtained by molecular dynamics simulations such 

as FF, but also inferential atomic structure models such as AF2. 

 

4. CONCLUSION 

 In this paper, we propose PaStEL, which efficiently estimates plausible conformational pathways 

using a set of oriented cryoEM images as input. Normally, the optimal reaction path equation must be 

solved in a high-dimensional space, but our method can solve a completely equivalent equation in a 

low-dimensional space via a theoretically guaranteed isometric potential space. This allows us to 

speedily show conformational changes on plausible pathways along with pseudo-free energy 

landscapes. 

 The performance of PaStEL was verified using synthetic data with the MD simulations and cryoEM 

experimental data for 50s-Ribosomes. As a result, we succeeded in obtaining a high correlation of 0.84 

between the free energy surface calculated by the simulation and the pseudo free energy surface 

obtained by PaStEL. In the assembly pathway analysis of the 50s-Ribosome, we succeeded in semi-

automatically obtaining pathways consistent with those shown by existing studies. 

 In addition, by applying the proposed method to two spike proteins from SARS-CoV-2, we elucidated 

the difference in conformational stability states between wild type (D614) and mutant (D614G), along 

with pseudo-free energy values on the conformational pathways. 

 The above means that we can provide a new method to semi-automatically and speedily analyze the 

continuous and rapid structural changes of biomolecules, which have been difficult to analyze because 

of the high-dimensional space, through an equivalent low-dimensional space obtained by deep 

learning. 

 

5. METHODS 

5.1 Theoretical detail of PaStEL 

Let 𝑓𝜃 , 𝑔𝜙, 𝑝𝜓 denote an encoder, decoder, and latent distributional model in cryoTWIN, 

respectively. The symbols 𝜃, 𝜙, 𝜓 denote a set of trainable parameters. In addition, let 𝑋𝑅 ∈

ℝ𝑠×𝑠 denote the Fourier transformation of an cryo-EM image, whose pose orientation is 𝑅 

in a 3D density map 𝑉. The decoder 𝑔𝜙 outputs �̂�𝑅 : = 𝑔𝜙(𝑧, 𝑅), i.e., the reconstruction of 

𝑋𝑅, as inputs of 𝑧 ∈ ℝ𝑑 and 𝑅, where 𝑧 is a latent variable, and this latent variable is an 

output of the encoder 𝑓𝜃. Moreover, let �̆�𝑅: = 𝑔𝜙(𝑧 + 𝜀, 𝑅) denote the noisy reconstruction 

with 𝑋𝑅. The symbol 𝜀 is a random noise vector satisfying the following condition: 𝜀 =

(𝜖1, 𝜖2, . . . , 𝜖𝑑) ∈ ℝ𝑑 , ∀𝑖; 𝔼[𝜖𝑖] = 0, ∀(𝑖, 𝑗); 𝔼[𝜖𝑖𝜖𝑗] = 𝜎2𝟏[𝑖=𝑗]. The function 𝟏[𝑖=𝑗] is the 
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indicator function: 𝟏[𝑖=𝑗] = 1 if 𝑖 = 𝑗, otherwise 0. Furthermore, let 𝑊 denote a 𝑠 × 𝑠 

matrix, whose (𝑖, 𝑗)-th (−𝑠/2 ≤ 𝑖, 𝑗 ≤ 𝑠/2, and 𝑖, 𝑗 ∈ ℤ) factor is √𝑖2 + 𝑗24
. The training 

objective of cryoTWIN is given as follows: 

𝜃∗, 𝜙∗, 𝜓∗ = arg min
𝜃,𝜙,𝜓

𝔼𝑉∼𝑝,𝜀[𝐿], (1) 

where 𝐿: = −log 𝑝𝜓(𝑧) + 𝜆1𝔼𝑅[∥ 𝑊 ⊙ (𝑋𝑅 − �̂�𝑅) ∥2 |𝑉] + 𝜆2𝔼𝑅[∥ 𝑊 ⊙ (�̂�𝑅 − �̆�𝑅) ∥2 |𝑉].  The 

symbols ∗ , ⊙ , and 𝜆1, 𝜆2  mean the optimality, Hadamard product, positive hyper-

parameters, respectively. From Appendix A of our previous work [7], 𝐿 in equation (1) is 

equivalent to −log 𝑝𝜓(𝑧) + 𝜆1𝜋 ∥ 𝑉 − �̂�𝑧 ∥2+ 𝜆2𝜋 ∥ 𝑉 − �̆�𝑧 ∥2, where �̂�𝑧 (resp. �̆�𝑧) denotes the 

predicted 3D density map (resp. noisy 3D density map) with the latent variable 𝑧 (resp. 

noisy latent variable 𝑧 + 𝜀) via the decoder. Thus, from equation (9) in our previous work 

[4], cryoTWIN trained by equation (1) guarantees the isometric relationship between the 

latent space and the output space by the decoder (the space of the 3D density map); see the 

mathematical expression of the isometric property in equation (14) of [4]. By this isometry, 

the following properties immediately hold: 

‖𝑧 − 𝑧′‖ ≈ 0 ⇒ ‖𝑧 − 𝑧′‖ ∝ ‖𝑉𝑧 − 𝑉z′ ‖, and 𝑝𝜓∗(𝑧) ∝ 𝑝(𝑉𝑧), (2) 

where 𝑉𝑧 expresses the true 3D density map with respect to 𝑧.  

 Assume that the cryo-EM images are collected in the equilibrium condition. We here 

consider the mathematical expression of the free energy with 𝑉𝑧  using the trained model 

𝑝𝜓∗(𝑧) . Firstly, from the definition of Boltzmann distribution, 𝐸(𝑉𝑧) = −𝑘𝐵𝑇 log 𝑝(𝑉𝑧) +

const., where 𝑘𝐵 and 𝑇 are the Boltzmann constant and the temperature, respectively. Then 

secondly, from the second proportionality in equation (2), log 𝑝(𝑉𝑧) = log 𝑝𝜓∗(𝑧) + const. 

holds. Therefore,  

𝐸(𝑉𝑧) = −𝑘𝐵𝑇 log 𝑝𝜓∗(𝑧) + const. . (3) 

 Next, we prove that a conformational pathway computed via 𝑝𝜓∗(𝑧) can be equivalent to a 

MaxFlux path computed directly on the structural distribution 𝑝(𝑉𝑧). To do so, we first 

consider a sequence of the latent variables with the start point 𝑧0 and end point 𝑧1: 𝑧(1:𝑚): =

(𝑧(1), 𝑧(2), . . . , 𝑧(𝑚)), which satisfies 𝑚 ≫ 1, ∀𝑗 ∈ {1, . . . , 𝑚 + 1}; ∥ 𝑧(𝑗−1) − 𝑧(𝑗) ∥≈ 0, and both 

𝑧(0): = 𝑧0 and 𝑧(𝑚+1): = 𝑧1 are fixed points. Suppose that 𝑝(𝑉𝑧) is a connected manifold, and 

consider the following function for the sequence 𝑧(1:𝑚): Δ: = ∑
1

𝑝(𝑉
𝑧(𝑗))

∥ 𝑉𝑧(𝑗−1) − 𝑉𝑧(𝑗) ∥𝑚+1
𝑗=1 . 

The MaxFlux path between 𝑉𝑧0
 and 𝑉𝑧1

 is defined by a minimizer of Δ, and the minimizer is 

expressed as a sequence of the 3D density maps: (𝑉𝑧0
, 𝑉𝑧(1) , . . . , 𝑉𝑧(𝑗) , . . . , 𝑉𝑧(𝑚) , 𝑉𝑧1

) . From 

equation (2), the aforementioned minimization problem with Δ is equivalent to  

arg min
𝑧(1:𝑚)

Δ = arg min
𝑧(1:𝑚)

Δ̃, (4) 
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where Δ̃ ≔ ∑
1

𝑝𝜓∗(𝑧(𝑗))
∥ 𝑧(𝑗−1) − 𝑧(𝑗) ∥𝑚+1

𝑗=1 . This equation (4) implies that a sequence of the 

3D density maps obtained by decoding the MaxFlux path on the low-dimensional latent 

distribution 𝑝𝜓∗(𝑧) is equivalent to the MaxFlux path computed on the high-dimensional 

structural distribution 𝑝(𝑉𝑧).  

 

5.2 Implementation of cryoTWIN 

 Let us consider the following practical condition: the number of cryo-EM images is not large, 

and their accurate pose orientations are not provided. Let 𝑋  and �̂�  denote the Fourier 

transformation of a cryo-EM image and the estimated pose orientation, respectively. In this 

case, equation (1) is approximated based on Monte Carlo method, using the set {(𝑋𝑖 , �̂�𝑖)}
𝑖=1

𝑁
: 

arg min
𝜃,𝜙,𝜓

1

𝑁
∑ 𝔼𝜀[−log 𝑝𝜓(𝑧𝑖) + 𝜆1 ∥ 𝑊 ⊙ (𝑋𝑖 − �̂��̂�𝑖

) ∥2+ 𝜆2 ∥ 𝑊 ⊙ (�̂��̂�𝑖
− �̆��̂�𝑖

) ∥2]𝑁
𝑖=1 , (5) 

where �̂��̂�𝑖
= 𝑔𝜙(𝑧𝑖, �̂�𝑖), �̆��̂�𝑖

= 𝑔𝜙(𝑧𝑖 + 𝜀, �̂�𝑖), and 𝑧𝑖 = 𝑓𝜃(𝑋𝑖). In this paper, each element in 

the noise vector 𝜀 = (𝜖1, 𝜖2, . . . , 𝜖𝑑) ∈ ℝ𝑑  follows identical and independent uniform 

distribution, whose mean is zero. The latent distribution model is defined by Gaussian 

Mixture Model (GMM) 𝑝𝜓, 𝜓 = {(𝜋𝑐 , 𝜇𝑐 , Σ𝑐)}𝑐=1
𝐶 , where 𝜋𝑐 , 𝜇𝑐 , Σ𝑐 are the weight, mean, and 

variance of the 𝑐-th Gaussian, respectively. Furthermore, the computation of the decoder 𝑔𝜙 

in equation (5) is based on an MLP-type neural network like cryoDRGN [8]: the network 

takes the latent variable 𝑧 and the 3D coordinates as inputs and outputs the weights of the 

corresponding 3D coordinates in the 3D Fourier volume. The computation with the encoder 

𝑓𝜃 in equation (5) is by an MLP-type neural network that transforms the Fourier image 𝑋 

into the latent variable 𝑧. Throughout Result 2 to Result 4, the MLP architecture is 1024 x 3 

(d x l, d: number of nodes per layer; l: number of layers) for both encoder and decoder, and 

the dimension of latent variable is fixed to 8. In addition, equation (5) is defined with 𝜆1 =

1/8, 𝜆2 = 1/8 , and the number of GMM components 𝐶  is set to 100 . The trainable 

parameters in the auto-encoder are randomly initialized, and they are tuned based on 

equation (5) using the RAdam optimizer [12]. The learning rate of the RAdam is 0.0001, the 

number of epochs is 100, and the mini-batch size is 128 (only Result 2 employs a size of 256). 

Finally, the computing environment is NVIDIA V100 GPU with 2 Intel Xeon Gold 6148 

processors. 

 

5.3 Pathway computing algorithm 

 The algorithm requires the trained GMM 𝑝𝜓, 𝜓 = {(𝜋𝑐 , 𝜇𝑐 , Σ𝑐)}𝑐=1
𝐶  of equation (5) and the 

two influential mean vectors 𝜇𝑖 and 𝜇𝑗 as inputs. Then, it approximately solves the right 
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hand minimization problem of equation (4), whose minimizer is the MaxFlux path between 

𝜇𝑖  and 𝜇𝑗  on 𝑝𝜓 , and the minimizer is expressed as a sequence of 𝑚  latent variables: 

𝑧(1:𝑚) = (𝑧(1), 𝑧(2), . . . , 𝑧(𝑚)). Thereafter, the algorithm decodes 𝑧(1:𝑚) into a sequence of the 

3D density maps, using the trained decoder 𝑔𝜙. At last, this 3D density maps’ sequence is 

defined as the output, i.e., the plausible conformational pathway. Here, the influential mean 

is defined by 𝜇  with large density value  𝑝𝜓(𝜇). Additionally, the approximated solution 

𝑧(1:𝑚) is obtained by conducting 𝑚-times greedy optimizations. Suppose that we finish 𝑡 −

1-th (1 ≤ 𝑡 ≤ 𝑚) greedy optimization, and we obtain 𝑧(𝑡−1) . Then, at 𝑡-th (1 ≤ 𝑡 ≤ 𝑚) 

greedy optimization, firstly, we generate sufficient amount of 𝐶-dimensional random weight 

vectors, (𝛼1, . . . , 𝛼𝐶)⊤, satisfying ∑ 𝛼𝑐
𝐶
𝑐=1 = 1, ∀𝑐; 𝛼𝑐 ≥ 0, (𝛼𝑖 , 𝛼𝑗) = ((1 − 𝑡/𝑚)𝜔 , 𝑡/𝑚), where 

only 𝛼𝑖  and 𝛼𝑗  are constants, and the others are random variables. Thereafter, we solve 

𝑧(𝑡): = argmin
{z}

1

𝑝𝜓(z)
‖𝑧(𝑡−1) − z‖, where z: = (∑ 𝛼𝑐Σ𝑐

−1𝐶

𝑐=1
)−1(∑ 𝛼𝑐Σ𝑐

−1𝜇𝑐
𝐶

𝑐=1
), and it is defined 

by the generated weight vector. By its definition, 𝑧(1:𝑚) is a sequence starting at 𝜇𝑖  and 

converging to 𝜇𝑗 ; from the previous study [5], 𝑧(𝑡) (𝑡 = 1, . . . , 𝑚)  belongs to a set of 

candidate points, which locally maximize 𝑝𝜓 . Throughout Result 2 to Result 4, we set 

(𝑚, 𝜔) = (11, 1.2). 

 

5.4 Experimental cryoEM data preparation 

50S Ribosome system 

Since we employ cryoDRGN [28] as the baseline method, the ribosome tutorial dataset provided by 

cryoDRGN was used as our benchmark system. This data set consists of 131,899 images with an 

image size of 128x128. In the cryoDRGN tutorial, 3D reconstruction has already been performed to 

estimate the orientation information of each particle 

image(https://github.com/zhonge/cryodrgn_empiar/tree/main/empiar10076/inputs). We used those 

values as well. 

 

SARS-CoV-2 Spike protein systems, wild type:D614 and mutant:D614G 

The cryoEM experimental images of two SARS-CoV-2 spike proteins were processed using the stored 

data in EMPIAR data base. EMPIAR-10469 was used for the wild-type of D614 cryoEM experimental 

data. EMPIAR-10725 was used for the mutant of D614G cryoEM data. Image processing was 

performed using RELION software according to normally procedures. After conducting motion 

correction of measured movies and CTF estimations, particles images was picked up by manually and 

automatically using template-based particle picking algorithm. All particles images were classified 

into 5 classes by 3D classification algorithm and the class with clear structural density map was 

selected. Finally, the number of particle images of the wild type was 84,945 with a resolution of 4.1 
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Å. The number of images of the mutant of D614G was 40,954, with a resolution of 6.6 Å. The 

orientation information and particle images prepared in this way were used as input data for training 

of cryoTWIN. 

 

5.5 Preparation of synthetic cryoEM particle images 

Preparation of various structure sets by McMD 

To prepare datasets with a variety of structures, we performed multicanonical (Mc)MD simulations 

using Gromacs (version 2018.2) software. McMD simulations consist of three steps: preparation of 

the system, a prerun to iteratively estimate the density of states, and a broad structural production run 

to sample the ensemble.First, as preparation, the target system, Chignolin (PDB-ID: 5awl), was placed 

in a dodecahedral solvated water box containing Na and Cl ions at 0.1 M concentration and subjected 

to 100 ps of energy minimization, NVT- and NPT-MD simulations. The  AMBER99SB-ildn-ions 

force field23 and TIP3P water24 were used for molecular parameterization; LINCS25 was used to 

constrain the protein with a Bussi thermostat26 and a Parrinello-Rahman barostat27. Long-range 

electrostatic fields were calculated using the Zero-Dipole Summation method28,29 and the 

electrostatic and van der Waals cutoffs were set at 12 Å. 

Once the system was prepared, pre-run and productive runs of the McMD simulation were performed 

with the multicanonical temperature constrained to a specific target range between 280K and 700K. 

The pre-run procedure requires multiple iterations of sampling to estimate the density of states and 

correct bias to allow for random walks over a wide energy range. For Chignolin, the number of 

iterations was 32; the McMD weighting function is updated between iterations; after determining the 

proper bias for McMD in the prerun, a 3.2 microsecond (32 x 100 ns) production run was performed. 

Structures were extracted at equal time intervals from the entire ensemble of structures sampled by 

the McMD production run. The resulting data set contained variety of 292,693 Chignolin structures 

with the free energy value. 

 

Simulations of synthetic particle images from prepared structures 

We prepared a dataset of 1.5 million simulated particle images consisting of various molecular 

orientation with 128x128 (A/pix: 0.2) size from different structures by following steps 1-4 as described 

below from the structures. 

STEP1. Calculate the Boltzmann factor, exp(-E/RT); T = 300 K, for each sampled structure 

from the free energy value calculated by McMD.. 

STEP2. Perform N (target total number of images 1.5 million) weighted restoration extractions 

from the population of sampled structures, using the Boltzmann factors as weights. This 

determines the number of 2D projection images, n, to be computed from that structure for each 

sampled structure. 
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STEP3. To determine the orientation of the projection image for each of the n assigned to each 

sampled structure, a uniform restoration extraction from a uniform hemispheric orientation list 

(10,240 orientations) is used to create a projection orientation list for each sample structure. 

STEP4. Each structure is best fitted based on all atoms, excluding hydrogen atoms, and a 3D 

density map is calculated by electron density calculation. Based on the projection orientation 

list created in step 3, 1.5 million images were obtained from the 3D density map for each 

structure to create a synthetic cryoEM particle images. 

 

5.6. Numerical experiment details 

Details of Numerical Experiments on Result 2.2 

 We trained cryoTWIN using equation (5) of Method 1.(2) with 1.5 million Chignolin simulated 

particle images with 128x128 (Å/pixel: 0.2) size and their orientation information as training data. It 

takes about 31 hours 35 minutes (18 minutes 57 seconds per epoch) to train the data. To obtain Fig 

2a,b, Principal Component Analysis, PCA , was performed using scikit-learn OSS library. 

 

Details of Numerical Experiments on Result 2.3  

 We trained cryoTWIN using equation (5) of Method 1.(2) with 131,899 50S ribosome particle images 

of size 128x128 (Å/pixel: 3.275) stored in EMPIAR-10076 and their estimated orientation (orientation 

information estimated by cryoSPARC publicly shared by the author in [8]) as training data. It takes 

about 11 hours 36 minutes (6 minutes 57 seconds per epoch) to train the data. For the visualization in 

Fig. 3a, we first focused on the top 30 average vectors among the 100 average vectors of all GMM 

components in terms of the size of GMM density. Then, the MaxFlux value (see equation (4)) was 

calculated for all edges between the 30 nodes, and only the top 1/3 edges were visualized in order of 

decreasing value and plotted in the graph. 

 

Details of Numerical Experiments on Result 2.4 

Two particle image data sets were prepared from cryoEM raw data stored in EMPIAR using RELION. 

Using those particle image data sets, we performed 3D reconstruction in five classes to obtain 

orientation information for each image. Of the five classes, the subclass that showed the clearest 

density map was selected and used as the training data set. The wild-type (EMPIAR-10469) dataset 

contains 84,945 particle images with a size of 256 x 256 (Å/pixel: 1.087). Using these particle images 

and the estimated orientation, we trained cryoTWIN using equation (5) in Method 1.(2), and the 

training time was 7 hours 50 minutes (4 minutes 41 seconds per epoch). The mutants D614G 

(EMPIAR-10469) dataset contains 84,945 particle images with a size of 256 x 256 (Å/pixel: 0.8566). 

Using these particle images and the estimated orientation, we trained cryoTWIN using equation (5) in 

Method 1.(2), and the training time was 3 hours 46 minutes (2 minutes 15 seconds per epoch). 
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