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ABSTRACT 

The synthesis of N,O-Dimethyl-N'-nitroisourea, crucial intermediates in pesticide 

manufacturing, was explored through a substitution reaction between O-methyl-N-

nitroisourea and methylamine within a novel continuous flow microreactor system, 

featuring FTIR inline analysis for real-time monitoring. This study embarked on a 

comparative analysis between two optimization approaches: the contemporary machine 

learning-based Bayesian optimization and the traditional kinetic modeling. Remarkably, 

both strategies obtained a similar yield of approximately 83 % under equivalent reaction 

parameters---specifically, an initial reactant concentration of 0.2 mol/L, a reaction 

temperature of 40 °C, a molar ratio of reactants at 5:1, and a residence time of 240 

minutes. The Bayesian optimization method demonstrated a notable efficiency, 

achieving optimal conditions within a mere 20 experiments, in contrast to the kinetic 

modeling approach, which required a more laborious effort for model formulation and 

validation. Despite the long-standing reliance on kinetic modeling for its detailed 

insights into reaction dynamics, our findings suggest its relative inefficiency in 

optimization tasks compared to the machine learning-based alternative. This study not 

only highlights the potential of integrating advanced machine learning methods into 

chemical process optimization but also sets the stage for further exploration into 

efficient, data-driven approaches in chemical synthesis. 
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1. Introduction 

N,O-dimethyl-N'-nitroisourea (3) and 1-methyl-3-nitroguanidine (4), crucial 

intermediates in neonicotinoid insecticides, are produced through the nucleophilic 

substitution of O-methyl-N-nitroisourea (1) with methylamine (2).1-5 Traditional 

methods using batch reactors often struggle with inconsistent reaction conditions and 

potential safety risks.6 Continuous flow microreactors have been recognized for their 

superior mixing efficiency7,8, precise control over reaction parameters9, and safety 

benefits10-13, showing potential for improving reaction selectivity14-17. However, their 

application in synthesizing these specific intermediates remains unexplored. 

 

Kinetic modeling is a traditional approach to optimizing chemical reactions, deeply 

rooted in the principles of physical organic chemistry. This approach effectively 

quantifies the effects of various reaction parameters on conversion and selectivity 

through mathematical formulas, thus providing direct, actionable guidance for 

manipulating reaction conditions18,19. For example, Su et al. demonstrated the practical 

application of kinetic modeling to the reaction of m-phenylenediamine and benzoic 

anhydride. By adjusting key parameters such as initial concentration, reaction 

temperature, and molar ratio, they fine-tuned the selectivity of the reaction to 96.9 %.20 

Moreover, kinetic models possess the distinct advantage of being extrapolative, 

enabling the prediction of reaction outcomes beyond the initially explored parameter 

space, a feature particularly beneficial for scaling up processes.21 Chamberlain et al. 

showcased the utility of kinetic modeling in the context of scaling up by studying the 

aqueous reduction of 4-nitrophenol to 4-aminophenol, facilitated by gold nanoparticles 

(AuNPs) and sodium borohydride (NaBH4). Their work successfully predicted the 

optimal conditions for effectively scaling up this reaction.22 While kinetic modeling has 

been applied to nucleophilic substitution reactions involving aromatic compounds23-25, 

its application to reactions concerning aliphatic compounds remains relatively 

underexplored.  
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In recent years, the application of machine learning, particularly Bayesian optimization, 

has significantly advanced the optimization of continuous flow reactions.26-29 This 

method enables the rapid identification of optimal reaction conditions with a minimal 

number of experiments.30-33 For instance, Shinichiro et al. utilized Bayesian 

optimization to efficiently navigate a search space of 10,500 potential reaction 

condition combinations, successfully identifying the desired conditions for 

unsymmetrical sulfamide synthesis in just 29 experiments.34 The efficiency of Bayesian 

optimization is notably enhanced when integrated with automated platforms. Bourne et 

al. demonstrated this by developing an automated continuous flow platform for the 

multistep synthesis of 1-methyltetrahydroisoquinoline C5 functionalization, achieving 

81 % of the total yield within 14 hours through Bayesian optimization.35 Similarly, 

Doyle et al. applied Bayesian optimization in conjunction with high-throughput 

screening to optimize multiple reactions, showcasing superior optimization efficiency 

and consistency compared to traditional human-led decision-making processes.36 

Bayesian optimization uniquely ensures a balance between exploring the chemical 

space and exploiting the best-known performance conditions.37,38 Despite its 

advantages, there remains a scarcity of studies that systematically compare the 

effectiveness of kinetic modeling and Bayesian optimization in the optimization of 

continuous flow reactions. 

 

Inline analytical methodologies have markedly enhanced the efficiency of monitoring 

chemical reactions39,40, with inline FTIR emerging as a pivotal tool for investigating the 

kinetics of chemical processes within continuous flow systems41. Notably, Jensen et al. 

have innovated a microfluidic platform that integrates an inline FTIR to accurately 

quantify reaction conversions while simultaneously characterizing the enthalpy and 

kinetics of chemical reactions.42 The non-invasive nature and capability for real-time 

feedback render inline FTIR an indispensable instrument in the realm of automated 

synthesis platforms. A recent exemplary study conducted by Jensen and Jamison et al. 

demonstrates the application of an inline FTIR module within an automated robotic 

flow platform, facilitating the steady-state monitoring of various reaction phases, 
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including SNAr reactions, nitro reductions, and ester activations43. This underscores the 

significant role of inline FTIR in advancing the precision and efficiency of chemical 

synthesis monitoring. 

 

In this study, we developed a continuous flow microreactor system integrated with an 

inline FITR designed to optimize the conditions for 1 and 2 nucleophilic substitution 

reactions. We employed two optimization strategies in parallel: Bayesian optimization 

and kinetic modeling. The results of these optimization methods were carefully 

compared to identify their respective strengths and limitations. This comparative 

analysis reveals the efficacy of each strategy in refining the reaction conditions and 

provides valuable insights into their applicability in continuous flow chemistry. 

 

2. Materials and methods 

2.1 Chemicals 

O-methyl-N-nitroisourea (1, 95 %) Purchased from Qingdao Dexin Chemical Co; 

Methylamine hydrochloride (2, 98.0 %) Purchased from Shanghai Macklin 

Biochemical Technology Co., Ltd.; NaHCO3 (99 %, Sinopharm Chemical Reagent Co., 

Ltd.); pure water (AR, Hangzhou Wahaha Group Co., Ltd.); All reagents were used 

without further purification. 

 

Solution A (1): 1 (0.02 mol, 2.382 g) was dissolved in pure water (60 mL), Solution B 

(2+NaHCO3): 2 (0.04 mol, 2.701 g) and NaHCO3 (0.003 mol, 0.252 g) were dissolved 

in pure water (40 mL). 

 

2.2 Continuous flow microreactor system 

The continuous flow microreactor system is shown in Fig. 1. Solutions A and B were 

stored in two separate syringes (50 mL, Shanghai Kindly Medical Instruments Co., Ltd.) 

and pumped by two syringe pumps (Pump A, Pump B, ZD-50C6, Suzhou Zede Medical 

Instrument Co., Ltd.) into the infusion tubing (PTFE, 1/8inch diameter, Wuxi Hongxin 
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Special Material Technology Co.). The reactants passed through an adapter (PEEK, 

1/8inch to 1/16inch, Hangzhou Weimipai Technology Co.) into a sufficiently long (1 m) 

disk-shaped PTFE capillary tube (PTFE, 1/16inch diameter, Wuxi Hongxin Special 

Material Technology Co.) to be preheated to the reaction temperature, and mixed in a 

T-mixer (PEEK, 1/8inch to 1/16inch, Hangzhou Weimipai Technology Co.). The 

reaction coil (PTFE, 1/8inch diameter) was connected directly to the outlet of the T- 

mixer. The substitution reaction took place in the reaction coil, and the residence time 

could be precisely controlled by varying the flow rate of the reaction mixture or the 

length of the reaction coil. All preheat tubes, T-mixer, and reaction coils were immersed 

in the same water bath to maintain a constant temperature. Finally, when required the 

residence time was reached, the reaction was terminated by pumping an excess of 

purified water through a syringe pump (Pump C, ZD-50C6, Suzhou Zede Medical 

Instrument Co., Ltd.) into a second T-mixer. 

 

Figure 1. The schematic diagram of the continuous flow microreactor system. 

 

2.3 Sample analysis 

When the continuous flow system was operated to a steady state (after 2-3 times the 

residence time), the reaction solution was quenched and diluted with pure water from 

the reaction system outlet. The quenched reaction solution was piped into the flow cell 

for inline infrared detection (METTLER TOLEDO ReactIR TM 702L) and then flowed 

to the outlet. Mid-infrared (MIR) band spectra (650-3000 cm-1) were collected by an 

attenuated total reflection sensor (ATR; diamond, silicon). Because the MIR band 
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spectra contain diamond absorption bands as well as parts of the concentration-varying 

infrared with poor correlation to the absorption values, we chased 1048-1582 cm -1 band 

spectra for qualitative and quantitative analyses. (Fig. S1) Quantitative infrared analysis 

was performed via METTLER TOLEDO iC Quant TM, each experimental data was 

repeated three times and averaged, and each measurement consisted of 128 scans. 

Because of the similar structure of the reactants and products, there were more 

overlapping IR absorption peaks. We used ConcIRT Live software to build a 

multivariate analytical model for qualitative and quantitative analysis of the different 

components. 44 

 

The reaction order was determined by batch reaction. The reaction solutions were 

collected for quenching at appropriate times and analyzed by high-performance liquid 

chromatography (HPLC, ThermoFisher Ulcel3000). The conversion rate of the samples 

was obtained by constructing the regression equation of the standard curve by the 

external standard method. HPLC detection conditions C18 column (10 μm, 4.6×250 

mm, Welch Materials (Shanghai, China), USA), the mobile phase was 80 % MeOH and 

20 % ultrapure water at a flow rate of 1 mL/min, and the detection wavelength was 270 

nm. The conversion of 1 was calculated by the following equation: 

𝑥𝟏 = (1 −
𝐶𝟏

𝐶𝟏+ 𝐶𝟑+ 𝐶𝟒
)              (1) 

where 𝑥𝟏 is the conversion of 1 and C is the molar concentration of the substances in 

the sample. 

 

The selectivity to 3 was calculated by the following equations: 

S3=
𝐶𝟑

𝐶𝟑+ 𝐶𝟒
                                   (2) 

where S is the selectivity to 3. 

 

The residence time was calculated as follows: 

t=
𝑉

𝑄𝟏+ 𝑄𝟐
                                       (3) 

where t is the reaction residence time and V is the volume of the microchannel. 𝑄𝟏 
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and 𝑄𝟐 are the volume flow rates of the raw material aqueous solution, respectively. 

 

Samples were tested three times under the same conditions and averaged to minimize 

errors. 

 

2.4. Batch reaction 

Batch reactions were carried out using a water bath with magnetic stirring and a single-

necked round-bottomed flask (250 ml). This protocol is used only for IR quantitative 

modeling and determination of the reaction order. Solution A was placed in the single-

necked round-bottomed flask with a reaction temperature, Solution B was heated to 

reaction temperature and poured into the flask quickly all at once. The whole process 

was carried out under stirring at 850 rpm, it has been proved that the effect of the 

external diffusion was eliminated. (Fig. S2) Samples were taken periodically during the 

reaction. The temperature fluctuation during the intermittent reaction is less than 1 °C, 

and the intermittent reaction can be considered as an isothermal process. Due to the 

excellent heat transfer performance of the microreactor, the continuous flow reaction is 

also considered an isothermal process. 

 

3. Results and discussion 

In this section, we parallelly perform Bayesian optimization and kinetic modeling for 

the continuous-flow synthesis of 3 from 1 and 2 (Scheme 1). A comparison of these two 

optimization methods is then discussed. 

 

 

Scheme 1. Synthesis of 3 from 1 and 2.  

 

3.1 Bayesian optimization 

The Bayesian optimization workflow in Fig. 2 begins by defining the search space and 
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optimization objective. An initial batch of experimental variable values is generated 

using Latin Hypercube Sample (LHS)45 and tested in the wet lab. These results train a 

Gaussian Process (GP) surrogate model. The acquisition function qNEHVI46 then 

identifies the next set of variable values for experimentation. This iterative cycle of 

experimenting with new variable values, updating the dataset, and refining the GP 

model continues until the predetermined experiment count is met. The optimization was 

conducted on the FlowBO framework developed in our previous work.26,47 

 

Figure 2. The flowchart of Bayesian optimization in this study. 

 

The optimization objective was defined as maximizing the yield of the principal product 

3. The variable ranges were determined based on the volatility and solubility of the 

reactants, as well as the measurement capabilities of the ReactIR instrument. 

Consequently, the reaction temperature was constrained to 20-40 °C, while reactant 

concentrations were set to 0.05-0.2 mol/L for 1 and 0.04-1 mol/L for 2. Residence time 

was limited to a span of 10-240 minutes to simplify the reaction process. 
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Figure 3. Bayesian optimization results in (a) LHS sampling stage and (b) optimization stage. 

 

Fig. 3 shows the yield of 3 under the experimental variables sampled by the LHS stage 

(a) and the optimization stage (b). After ten experiments, an optimized yield of 83.7 % 

was found from the 7th iteration of the optimization stage. The corresponding values of 

reaction variables are shown in Table 1. We found that the model not only exploits 

around the current optimum but also explores the high-uncertainty areas even if they 

are distant from the current optimum, which escaped the optimization from falling into 

a local optimum.  

 

Table 1. Iterative optimization data and results. 

Data type Entry 
Time 

(min) 

Temp 

(℃) 
1 (mol/L) 

2 Molar 

ratio 
Yield (%) 

LHS sampled data 

1 205 21.0 0.0575 2.27 0.093 

2 67.5 37.0 0.163 1.43 0.192 

3 114 27.0 0.118 4.79 0.371 

4 44.5 39.0 0.0725 3.53 0.180 

5 228 35.0 0.0875 3.11 0.497 

6 136 29.0 0.132 2.69 0.315 

7 159 31.0 0.192 3.95 0.589 
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8 21.5 33.0 0.147 1.85 0.0503 

9 182 25.0 0.102 1.01 0.0684 

10 90.5 23.0 0.177 4.37 0.311 

-Acquisition function 

suggested data 

1 240 35.5 0.168 4.63 0.789 

2 240 35.1 0.200 3.56 0.762 

3 200 40.0 0.200 4.31 0.811 

4 240 40.0 0.164 3.34 0.783 

5 194 40.0 0.154 5.00 0.799 

6 240 40.0 0.112 5.00 0.801 

7 240 40.0 0.200 5.00 0.837 

8 124 40.0 0.200 5.00 0.782 

9 240 32.5 0.200 5.00 0.798 

10 240 40.0 0.200 2.04 0.691 

(During the experiment, we rounded some of the parameters due to the limited precision of the 

instrument.)  

 

3.2 Kinetic modeling and optimization using the kinetic model 

The workflow of kinetic modeling is shown in Fig. 4.  
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Figure 4. The workflow of kinetic modeling in this study. 

 

Initial screening experiments established the experimental conditions of kinetic 

modeling, setting the maximum concentration of the stock solution of 1 at 0.4 mol/L to 

avoid precipitation based on its solubility of 0.5 mol/L in water at 20 °C. The molar 

ratio of 2 to 1 was 2: 1 as no further improvements in the conversion of 1 or the 

selectivity of 3 were observed beyond this ratio (Fig. S3). The liquid flow rate was set 

at 5 ml/h since lower rates significantly reduced the conversion of 1. 

 

The reaction orders for 1 and 2 were determined using a batch reactor (Fig. S4). The 

initial concentration of 2 was five times that of 1, resulting in an excessive presence of 

2. Consequently, eq. 4 was reformulated to depend on α (the reaction order of 1) and 

the apparent rate constant 𝐾β. The reaction time and conversion were correlated with 

first-order (eq. 5) and second-order (eq. 6) reaction laws. The results of these fittings 

are in Fig. 5a for the first-order reaction and Fig. 5b for the second-order reaction. The 

higher R2 value observed in Fig. 5a confirms that the reaction order for 1 is indeed first-
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order. 

−
𝑑𝐶𝟏

𝑑𝑡
= 𝑘𝐶𝟏

α𝐶𝟐
β ≈ 𝐾β𝐶𝟏

α                       (4) 

𝑙𝑛(1 − 𝑥𝟏) = −𝐾βt                                   (5) 

1

1−𝑥𝟏
=1-𝐾βt                                               (6) 

Where k is the rate constant for the consumption of 1, C1 and C2 are the concentrations of 1 and 2, 

α and β are reaction orders of 1 and 2, Kβ is the apparent reaction rate constant when 2 is 

excessive, x1 = 1- C1/C10 where C10 is the initial concentration of 1, and t is the reaction time in the 

batch reactor. 

 

Given the reaction order of 1 was first-order, eq. 4 was transformed into eq. 7. 

Considering that a total reaction order exceeding two is uncommon for bimolecular 

reactions, we limited our investigation to scenarios where the reaction order of 2, 

denoted as β, could be 0 or 1. This was done by fitting the reaction data to eq. 8 and 9. 

The R2 of 0.997 for the first-order assumption (Fig. 5d) surpasses the R2 of 0.988 for 

the second-order assumption (Fig. 5c). Therefore, the reaction order for 2 was also first-

order. 

−
𝑑𝐶𝟏

𝑑𝑡
= 𝑘𝐶𝟏𝐶𝟐

β
                                   (7) 

𝑙𝑛(1 − 𝑥𝟏) = −𝑘t                               (8) 

1

𝐶𝟐0−𝐶𝟏0
𝑙𝑛 (

1−𝑥𝟐

1−𝑥𝟏
) = −𝑘t                      (9) 

where k is the rate constant for the consumption of 1, C1 and C2 are the concentrations of 1 and 2, 

β is the reaction order of 2, C10 and C20 are the initial concentrations of 1 and 2, x1 = 1- C1/C10, x2 

= 1- C2/C20, and t is the reaction time in the batch reactor. 
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Figure 5. Determination of the reaction orders for 1 (a). ln(1 − 𝑥𝟏) versus t; (b). 
1

1−𝑥𝟏
 versus t; and 2 

(c) ln(1 − 𝑥𝟏) versus t; (d). 
1

𝐶𝟐0−𝐶𝟏0
ln (

1−𝑥𝟐

1−𝑥𝟏
) versus t. Determination of 1 reaction order conditions: 

reaction temperature (T) = 30 °C; initial concentration of reactants in reaction mixture: 𝐶𝟏0 = 0.2 

mol/L, 𝐶𝟐0 = 1 mol/L and 𝐶NaHCO3
 = 0.03 mol/L; stirring speed = 850 rpm. Determination of 2 reaction 

order conditions: reaction temperature (T) = 30 °C; initial concentration of reactants in reaction 

mixture: 𝐶𝟏0 = 0.3 mol/L, 𝐶𝟐0 = 0.6 mol/L, 𝐶NaHCO3
 = 0.045 mol/L; stirring speed = 850 rpm. 

 

With the reaction order determined, the following experiments were performed in a 

continuous flow reactor. Eq. 9 was reformulated as eq. 10. 

𝑙𝑛 [
𝑀−𝑥𝟏

𝑀(1−𝑥𝟏)
] = 𝐾𝜏                   (10)  

where M = C20/C10 and K = (M-1) C10k, C10 and C20 are the initial concentrations of 1 and 2, 

x1 = 1- C1/C10, and 𝜏 is the residence time in the continuous flow reactor. 
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Figure 6. (a). The conversion of 1 at different temperatures and residence times. (b). Determination of 

K at different temperatures. (c). Arrhenius plot of ln k versus 1/T. (d). The conversion of 4 at different 

temperatures and residence times. (e). Arrhenius plots of ln k versus 1/T for forming 3 and 4. (f). 

Comparison of the experimental (data points) and predicted (dotted lines) values for 3 yield at different 

temperatures. Collection of kinetic data reaction conditions: initial concentration of reactants in 

reaction mixture: 𝐶𝟏0 = 0.2 mol/L, 𝐶𝟐0 = 0.4 mol/L, 𝐶NaHCO3  = 0.03 mol/L; the flow rate: Solution A 

(𝑄A) = 3 mL/h, Solution B (𝑄B) = 2 mL/h, quenched H2O solution C(𝑄C) = 100 mL/h; the residence 

time was controlled by changing the length of reacting tubes. The reaction conversion rate and yield is 

monitored in real time by inline infrared.  

 

Fig. 6a displays the temperature-dependent conversion of 1 with residence time. The 
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rate constants (k) at varying temperatures were determined by fitting eq. 10, with all 

fits showing R2 values above 0.99 (Fig. 6b). The activation energy Ea and pre-

exponential factor A were calculated from these k values using the Arrhenius equation 

(eq. 11).  The Arrhenius plot of ln k versus 1/T is depicted in Fig. 6c, from which Ea 

and ln A were obtained (Table 1).  

𝑙𝑛 𝑘 = 𝑙𝑛 𝐴 −
𝐸a

𝑅𝑇
                              (11) 

where k is the rate constant, Ea is the activation energy, A is the pre-exponential factor, R is the 

molar gas constant, and T denotes the Kelvin temperature. 

 

Assuming that the production of 3 and 4 occurs via competitive parallel pathways, each 

adhering to identical reaction kinetics but with distinct rate constants, the overall 

reaction rate constant k can be disaggregated into k3 and k4 for 3 and 4, respectively, as 

delineated in eq. 12. Consequently, the selectivity towards 3 (S3) can be described by 

eq. 13: 

𝑘 = 𝑘𝟑 + 𝑘𝟒                                            (12) 

𝑆3 =
𝑘𝟑𝐶𝟏𝐶𝟐

𝑘𝟑𝐶𝟏𝐶𝟐+𝑘𝟒𝐶𝟏𝐶𝟐
=

𝑘𝟑

𝑘𝟑+𝑘𝟒
 =

𝑘𝟑

𝑘
            (13) 

where k is the overall rate constant, k3 and k4 are rate constant for the production of 3 and 4, S3 is 

the selectivity of 3, and C1 and C2 are the concentrations of 1 and 2. 

 

Our observations indicate that the selectivity towards 3 remains unaffected by the 

residence time (Fig. S5). Therefore, the selectivity of 3 at varying temperatures was 

investigated (Fig. 6d). Utilizing these data, the corresponding values of k3 and k4 were 

computed according to eq. 13. The activation energies (Ea3, Ea4) and pre-exponential 

factors for the concurrent synthesis of 3 and 4 were determined in the same way as in 

eq. 11 (Fig. 6e) and the corresponding values of these constants are presented in Table 

2.  

 

Table 2. Values of the pre-exponential factors and activation energies of the overall reaction and two 

parallel reactions 

Factors Ea (J/mol) ln A Ea3 (J/mol) ln A3 Ea4 (J/mol) ln A4 
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Values 47,605.33 14.31 47,786.04 14.28 45,939.65 11.33 

 

A series of validation experiments were conducted with a temperature range of 20-35 °C 

and a residence time of 27-240 min (Fig. 6f). The yields of 3 predicted from the kinetic 

model were in good agreement with the experimental data, thereby confirming the 

validity of the kinetic model. With the kinetic model constructed, we plot the response 

surface at three different levels of molar ratio (Fig. 7). High temperature is more 

favorable for the formation of 3 since Ea3 is higher than Ea4. In addition, higher molar 

ratio and reaction time are also preferred for a higher yield. Therefore, the optimized 

reaction conditions for 3 were obtained by kinetic modeling: the initial concentration 

of 1 was 0.2 mol/L, the reaction temperature was 40 °C, the molar ratio was 5:1, and 

the reaction time was 240 min. The yield predicted by the kinetic models under these 

conditions was 96.4 %, while the experimentally measured yield under the same 

condition was 82.9 %. 

 

Figure 7. The response surfaces of kinetic modeling from two perspectives. The molar ratio of the 

surfaces from top to bottom are 5:1, 3:1, and 2:1 

 

3.3 Comparison of kinetic modeling with Bayesian optimization results 

In terms of optimization, the kinetic model, while comprehensive, is less efficient than 

the Bayesian optimization. Constructing a kinetic model involved a multi-step 
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experimental process: 5 experiments were performed to determine the range of 

variables that minimize non-chemical kinetic phenomena. This was followed by 7 

experiments to determine the reaction orders and 20 experiments to calculate the key 

parameters such as rate constants, activation energies, and pre-exponential factors. A 

further 16 experiments were required to validate the kinetic model. Subsequently, 

reaction surfaces were generated, and optimal reaction conditions were determined at 

the peak points of these surfaces. 

 

Furthermore, the predictive accuracy of the kinetic model's yield decreased when 

variables exceeded the range used for its construction. This discrepancy was 

highlighted in Fig. 8, where actual yields did not match the model's predictions. For 

example, a yield predicted to be 82.0 % under conditions of 468 minutes at 35 °C was 

actually 77.1 %, and a yield forecasted at 55.3 % for 506 minutes at 25 °C ended up 

being 49.8 %. This issue likely stems from the model's dependence on experimental 

data, which may inherently contain errors. As the explored variables move beyond the 

bounds of the initial experimental data, these errors can accumulate, affecting the 

model's reliability. Despite these discrepancies in yield predictions, it is noteworthy that 

such deviations did not affect the identification of optimal reaction conditions. 

 

Conversely, Bayesian optimization demonstrated a more streamlined approach, 

achieving the same optimal results as kinetic modeling within only 20 experiments. 

One of the significant advantages of Bayesian optimization is its elimination of the 

validation step required in kinetic modeling. This is because the surrogate model in 

Bayesian optimization is utilized solely for suggesting potential reaction conditions 

rather than predicting the outcomes of reactions. As a result, all findings obtained 

through Bayesian optimization are directly determined through experimental means. 

This comparison highlights the efficiency and practicality of Bayesian optimization in 

optimizing chemical reactions, suggesting it is a preferable method when rapid and 

reliable results are paramount. 
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Figure 8. Comparison of response surface predicted by kinetic model and the experimentally 

determined values (red dots). 

 

4. Conclusion 

In this study, we developed a continuous flow microfluidic system equipped with FTIR 

inline analysis for the monosubstitution reactions of O-methyl-N-nitroisourea and 

methylamine. The effectiveness of machine learning-based Bayesian optimization and 

kinetic modeling in optimizing this reaction was compared. Bayesian optimization 

obtained optimized reaction conditions and a main-product yield of 83.7 % within only 

20 experiments. In contrast, kinetic modeling required a significantly larger 

experimental effort to reach similar optimal conditions and yield. Despite kinetic 

modeling's traditional advantage in providing a detailed description of the reaction 

space, it proved less efficient for optimization purposes. Moreover, kinetic modeling 

faced challenges in accuracy when reaction variables extended beyond the initial model 

construction space, highlighting a need for additional data to improve yield estimations. 
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