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Abstract

The projected atomic orbitals (PAO) technique is presented for the construction

of virtual orbital spaces in projection-based embedding (PbE) applications. The pro-

posed straightforward procedure produces a set of virtual orbitals, which is used in
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the final, high-level calculation of the embedded active subsystem. The PAO scheme

is demonstrated on intermolecular potentials of bimolecular complexes, in ground and

excited states, including Rydberg excitations. The results show the outstanding per-

formance of the PbE method when used with PAO virtual orbitals compared to those

produced using common orbital localization techniques. The good agreement of the

resulting PbE potential curves with those from high-level ab initio dimer calculations,

also in diffuse basis sets, confirms that the PAO technique can be suggested for future

applications using top-down embedding methods.

Keywords: excited states, intermolecular interactions, embedding, PAOs
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Embedding techniques1 have emerged to be some of the most effective approaches to

overcome the serious limitations of the applicability of high-level quantum chemistry meth-

ods due to the system size. This family of methods treat the relevant subsystem (reaction

center, chromophore, etc.) at a higher level of theory while including the effect of the other

parts in an approximate way, e.g., by using lower-level methods. Density Functional Theory

(DFT) methods are ideal for embedding applications provided that the density can be dis-

tributed between the fragments and the functional form of the interactions allows a suitable

definition of the embedding potential. Wave-function-in-DFT (WF-in-DFT) embedding2,3

approaches allow the treatment of the active fragment by advanced ab initio techniques,

while the environment is modeled at the DFT level. In particular, various formulations of

Coupled Cluster theory4–7 are commonly invoked for the active subsystem(s) also in ex-

cited electronic states,8–14 where the accuracy of these methods is often warranted even for a

qualitatively correct description. Two major types of these embedding techniques are the so-

called bottom-up (frozen density)2,3 and the top-down4,5 approaches. The problematic point

of the former is the calculation of some non-additive terms.15 These are avoided in top-down

projector-based embedding techniques which maintain the orthogonality of the subsystems

by applying appropriate projectors, however, a low-level calculation on the entire system

is necessary. While for non-covalently interacting systems the non-additive terms are less

crucial, for higher accuracy and for generalizability top-down projection-based embedding

(PbE)4 methods seem more suited for the description of multichromophore systems.16

In the top-down models a low-level calculation (usually at the DFT level) is performed

first on the entire system, followed by a localization of the occupied orbitals on a priori

defined sets of atoms (subsystems). This latter step is usually accomplished by using Pipek–

Mezey localization,17 intrinsic bond orbitals,18 or the SPADE (Subsystem Projected AO DE-

composition)19 technique and the orbital space belonging to the different fragments, which is

then used to set up the embedding potential from the fragments’ density, is defined by the po-

sition of the resulting localized orbitals. Subsequently, the orbitals of the active subsystem(s)

are reoptimized under the influence of the embedding potential, applying the orthogonality

constrain between the subsystems by level shifting,4 solving the Huzinaga equation,5 or by

applying the projection scheme by Hoffmann et al.20 The high-level correlated calculations
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on the active fragment are finally performed using the Fock matrix that results from the

above procedure. Since only the electrons defining the density on the active fragment(s) are

used in these calculations, a significant reduction of the cost of the calculation is achieved.

Details of the PbE workflow used in this study are described in Section S1.3 (see also Refs. 12

and 16).

Nevertheless, the original formulations of PbE4,5 leave the space of virtual orbitals intact,

i.e., that of the original supersystem, which poses serious limitations on the applicability of

the higher-level ab initio methods due to the unfavorable scaling of the computational cost

with the size of the virtual space.21 In addition, the untruncated virtual space tendentially

leads to the appearance of artefactual low-lying charge transfer (CT) states,16 often ren-

dering the identification of local excited states impossible. Several approaches have been

investigated to deal with this problem by truncating the virtual space in a reasonable way,

including the absolutely localized embedding schemes of Chulhai and Goodpaster6,9 that

avoid the issue entirely by using monomer basis sets, or the basis set truncation method for

PbE by Bennie et al.22 which relies on net Mulliken population criteria. Claudino and May-

hall developed a concentric virtual orbital localization technique21 which uses a (smaller)

projection basis to assign a virtual subspace to atoms and then span the virtual space by

iteratively including more and more virtual orbitals belonging also to the environment. This

technique has been used by Parravicini and Jagau in embedded excited state calculations.11

Visscher and co-workers generalized the intrinsic atomic orbital approach18 to molecular

fragments,23 constructing orthogonal localized orbitals by spanning the supersystem valence

and virtual space24 using reference fragment orbitals. Conventional MO-based localization,

such as Pipek–Mezey17 and SPADE19 can also be applied to the virtual space, and by as-

signing orbitals to the subsystems based on some selection criteria, those of the environment

can be discarded.25 Using the original SPADE algorithm19 for the virtual orbitals we ob-

served,16 however, that without any further adjustments the resulting virtual space can be

severely distorted compared to that of an isolated monomer. As suggested in Ref. 16, the

distortion can be reduced by extending the space by some environment orbitals that show

the largest overlap with the atomic orbitals centered on the active subsystem (called the “ex-

tended SPADE” approach hereafter). Nevertheless, the effective construction of appropriate
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virtual orbitals, especially if diffuse basis functions are present, remains a challenge in PbE

applications. Improper virtual spaces can cause a drastic overestimation of the energy and

result in nonphysically repulsive intermolecular potentials,16 calling for a compelling remedy

for this issue. In this letter, the use of projected atomic orbitals (PAOs) is suggested as an

alternative for creating virtual orbitals localized on the active subsystem.

PAOs were first suggested by Boughton and Pulay26 to define the virtual space in local

correlation calculations. We suggest the implementation of this concept in PbE, relying on

the use of the atomic orbitals centered on the active subsystem’s atoms as the basis for the

construction of a virtual space (the PAOs).

We define the projector of the occupied orbitals of the supersystem as

R = CoccC
T
occ, (1)

where Cocc is the occupied orbital block of the MO coefficient matrix. The application of

this projector leads to the PAOs

CPAO = 1−RS, (2)

where S is the AO overlap matrix. These orbitals are projected into the basis of the active

subsystem, similarly to the first step in the concentric localization procedure by Claudino

and Mayall.21 This is done in such a way that the resulting orbitals span the virtual space

of the active fragment, which is enforced by a truncation based on the norm of the PAOs,

dropping all orbitals that have negligible contribution to the active subsystem’s virtual space.

The norms are obtained as

Ni =
act.AOs∑

µ

(CPAO)iµ(SCPAO)iµ , (3)

where the indices µ and i label AOs of the active subsystem (act.AOs) and the PAOs,

respectively, and the PAOs with Ni below an appropriately chosen small threshold value are

discarded. The remaining orbitals are renormalized, producing a new set of PAOs, C′
PAO.

To eliminate linear dependencies from this set, a second truncation step is introduced by
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screening the redundant PAOs via the diagonalization of their overlap matrix

SPAO = (C′
PAO)T SC′

PAO, (4)

so that only PAOs with an absolute value of their eigenvalue |si| above a chosen truncation

parameter are retained. The resulting set of linearly independent PAOs are finally used as

the virtual orbital basis when solving the Huzinaga equation.5 Details are given in Section

S1.3 of the Supporting Information.

The generation of PAOs using the above scheme thus requires the definition of the atoms

used for the construction of the PAOs, as well as two truncation parameters, one for the

post-projection norm (Ni) and another for the tolerance of the overlap for redundant orbitals

(|si|). In our experience, the dimension of the resulting virtual space is the same as that of

the bare monomer, except at the shortest intermolecular separations. This is very important

since this way the cost of the embedded calculation on the active fragment does not exceed

that of an isolated monomer. This scheme has been implemented in the MRCC program

code.27,28

We evaluate the effect of the virtual space truncation on the quality of the interaction

potential energy curves, both in ground and excited states, for the stacked homodimers

of formaldehyde [(CH2O)2] and pyrrole [(Pyr)2], as well as for the cytosine-uracil complex

[Cyt-Ura]. The structures of the complexes are available in the Supporting Information.

The investigated excited states are selected such that, for simplicity, the two-state model

is valid for them, except for very short intermolecular distances in certain cases. The same

states have been studied in a recent work16 and the PbE technique using the SPADE-based

localization of virtual orbitals was found to give unphysical potential energy surfaces in

most cases. As reference, we use Coupled Cluster with Singles and Doubles (CCSD)29 and

Equation-of-Motion Coupled Cluster with Singles and Doubles (EOM-CCSD)30,31 calcula-

tions for the ground and excited states, respectively, corrected for the basis set superposition

error (BSSE). The same wave function methods are employed in the WF-in-DFT type PbE,

with the low-level DFT calculations using the Perdew–Burke–Ernzerhof (PBE) functional.32

For the excited states of the homodimers, a single reference curve is obtained by averaging
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the energies of the two interacting states, that is, by removing the excitonic coupling. This

choice allows the comparison of the calculated curves without any bias arising from the ap-

proximation used for the latter quantity. In the case of the [Cyt-Ura] heterodimer this is

not possible and in this example the interaction of the two states via excitonic couplings

is also included in the embedding models using the scheme described in Ref. 16 (see the

Supporting Information for more details and Ref. 16 for discussion on the validity of this

approximation). To make meaningful comparisons to the reference, the interaction energy

has to be augmented by a dispersion correction,16,25 for which the D3 dispersion correction

by Grimme was chosen.33 Since in the present scheme the interaction energy is described

by DFT, this choice is in accordance with Szalewicz’s finding.34 All calculations have been

performed by the MRCC suite of codes.27,28 Further details of the test calculations can be

found in the Supporting Information.

In panel A of Figure 1, the ground state potential energy curves for the [(CH2O)2] dimer

are shown, calculated with four different virtual spaces: the full virtual space, one localized

with the SPADE procedure, the latter extended by two additional virtual orbitals “ext.

SPADE”), as well as with the space produced with the PAO scheme. Note that the SPADE

and PAO schemes are using the same number of virtual orbitals which is that of the monomer.

It is clearly seen that while with the full valence space the interaction energy is slightly

overestimated, the SPADE localization results in a far too small interaction energy. Adding

the two environment orbitals with the largest overlap with the AOs of the active subsystem

improves the results considerably, while with PAO virtual orbitals an almost perfect curve

is obtained.

8

https://doi.org/10.26434/chemrxiv-2024-g9047-v2 ORCID: https://orcid.org/0000-0003-1885-3557 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-g9047-v2
https://orcid.org/0000-0003-1885-3557
https://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: CCSD ground-state interaction energies (in atomic units) of the [(CH2O)2] (Panel
A, N = 0.05, s = 10−3) and [(Pyr)2] (Panel B, N = 0.05, s = 9 ·10−5) homodimer complexes
as functions of the intermolecular separation d, evaluated in the aug-cc-pVDZ basis. In the
legend, the numbers in parenthesis give the number of virtual orbitals used in the various
calculations at d = 5Å.

Similar conclusions can be drawn in the case of [(Pyr)2] (Panel B of Figure 1), where

again the PAO virtual space gives the best potential energy curves. (Note that for this

system the “ext. SPADE” variant includes seven additional orbitals.)

For the Rydberg type excited states obtained in the diffuse aug-cc-pVDZ basis (Figure 2),

the SPADE localization results in repulsive interaction curves. This is the consequence of,

as discussed in Ref. 16, the requirement that for the correct description of the Rydberg

states the virtual orbitals have to extend to the space where the other fragment resides.

However, the standard localization procedures (e.g. the symmetric orthogonalization of the

basis functions in SPADE) cut off this part of the virtual basis, deteriorating the wave

function more and more with decreasing distance between the fragments. We have called

this effect the reverse BSSE in Ref. 16. As evident from Panel A of Figure 2, the extension

of the virtual space by the most overlapping orbitals of the environment does not solve the

problem, the respective potential curve is still repulsive. On the other hand, the use of a

PAO virtual space provides a solution here since the diffuse functions of the active fragments

are retained in the basis, irrespective of their overlap with the other fragment. In the case of

[(CH2O)2] (Panel A), we again get a nearly perfect curve with PAOs, while the improvement

is also apparent for the two investigated Rydberg states of [(Pyr)2] (Panels B and C). Note

that in the latter system, at short distances the two-state model is not valid anymore, thus
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a good agreement of PbE and the reference is only expected at separations above 4 Å.16

Figure 2: EOM-CCSD averaged interaction energies of different Rydberg excited state pairs
in the [(CH2O)2] (Panel A, N = 0.05, s = 10−3) and [(Pyr)2] (Panels B and C, N = 0.05,
s = 9 ·10−5) homodimer complexes as functions of the intermolecular separation d, evaluated
in the aug-cc-pVDZ basis. In the legend, the numbers in parenthesis give the number of
virtual orbitals used in the various calculations at d = 5Å.

This issue also affects the σ−π∗ and π−π∗ valence excited states of [(CH2O)2] calculated

in the aug-cc-pVDZ basis, shown on panels A and B of Figure 3. Nevertheless, only the curves

obtained with PAO virtual orbitals are attractive, fixing the qualitatively wrong repulsive

behavior of the ones based on the SPADE localization. Since here the breakdown of the

two-state model affects the reference curves more strongly,16 their agreement with PbE is

less good than in the examples above.
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Figure 3: EOM-CCSD averaged interaction energies of different valence excited state pairs:
σ − π∗ and π − π∗ states of the [(CH2O)2] complex (Panels A and B, aug-cc-pVDZ basis,
N = 0.05, s = 10−3) and π − π∗ excited states of the [(Pyr)2] homodimer complex (Panel
C, cc-pVDZ basis, N = 0.05, s = 10−3), and the π − π∗ excited states of the [Cyt-Ura]
complex (Panel D, no averaging, cc-pVDZ basis, N = 0.05, s = 10−3) as functions of the
intermolecular separation d. In the legend, the numbers in parenthesis give the number of
virtual orbitals used in the various calculations at d = 5Å. In the case of [Cyt-Ura], the two
numbers refer to the cytosine and uracil calculations, respectively.

The validity of the two-state model is often broader if the basis set does not include diffuse

functions since Rydberg and Charge Transfer (CT) states are pushed to higher energies. This

choice makes the study of the valence excited states possible with the disadvantage of less

accurate interaction energies. In panel C of Figure 3, the curves obtained for the π-π∗ state

of [(Pyr)2] with the cc-pVDZ basis set are shown, and the PAO technique is indeed found

to perform excellently in this non-diffuse basis. Note, however, that the truncation based on

the SPADE localization also gives an attractive, although less accurate potential curve for

this state. This proper behavior can be explained by the small overlap of the active fragment
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orbitals with the environment, even at short distances.

Also for the pair of π − π∗ excited states of the [Cyt-Ura] complex shown in Panel D of

Figure 3, the SPADE method predicts bound configurations, but the interaction energy and

the equilibrium distance are significantly under- and overestimated, respectively. Compared

to these curves, the PAO approach brings a clear improvement yet again and a satisfactory

agreement with the reference calculations.

In summary, the results presented here show the superior performance of the PAOs

for virtual orbital space with the PbE embedding method. Not only are the calculations

cheap (the same as the calculation on the bare fragment), but the potential curves follow

the reference curves obtained for the supersystem nicely. This is true for both ground and

excited states, including both valence and Rydberg type excitations. Since the problem of

virtual space truncation, which is solved effectively by the presented approach, affects any

top-down embedding strategy that relies on orbital localization, we advocate the use of a

PAO virtual space in all such applications, especially those employing diffuse basis sets.
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