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Abstract 

Antimicrobial peptides (AMPs) are naturally occurring or designed peptides up to a few tens of 

amino acids which may help address the antimicrobial resistance crisis. However, their clinical 

development is limited by toxicity to human cells, a parameter which is very difficult to control. 

Given the similarity between peptide sequences and words, large language models (LLMs) might be 

able to predict AMP activity and toxicity. To test this hypothesis, we fine-tuned LLMs using data 

from the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). GPT-3 

performed well but not reproducibly for activity prediction and hemolysis, taken as a proxy for 

toxicity. The later GPT-3.5 performed more poorly and was surpassed by recurrent neural networks 

(RNN) trained on sequence-activity data or support vector machines (SVM) trained on MAP4C 

molecular fingerprint-activity data. These simpler models are therefore recommended, although the 

rapid evolution of LLMs warrants future re-evaluation of their prediction abilities.  

Keywords: large language models, LLM, GPT, hemolysis, activity prediction, antimicrobial 

peptides 
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Introduction 

 

Antimicrobial peptides (AMPs) have gained significant attention in the field of drug discovery due 

to their potential therapeutic applications in the fight against antimicrobial resistance.1–3 However, 

the vast number of possible peptide sequences and their complex structure-activity relationship 

landscape mean that it is difficult to rationally design peptides with the desired biological activity, 

in particular tuning their activity versus toxicity to human cells, which is often measured as 

hemolysis of human red blood cells.4,5  

To address this issue, several machine-learning models have been developed for the de novo 

design of antimicrobial peptides.6–21 Because property prediction from a peptide sequence can be 

framed as a natural language processing problem, many of these models use architectures 

specifically designed for language processing tasks.22–24 Furthermore, the emergence of large 

language models (LLMs), such as OpenAI’s GPT models,25 has opened new possibilities for 

leveraging powerful language processing capabilities in drug discovery applications. Recent 

attempts by Jablonka et al. to explore the capabilities of GPT-3 for predicting properties of small 

molecules in various applications have shown that GPT-3 was able to perform comparably or even 

outperform conventional statistical models, particularly in the low data regime.26 There also have 

been successful efforts into augmenting LLM capabilities to tackle tasks related to small molecule 

chemistry in the areas of organic synthesis, drug discovery, and materials design.27–30 Hereby, the 

models mainly orchestrate a set of tools to solve chemistry tasks starting from a natural language 

prompt.31–33 However, to the best of our knowledge LLMs have not been implemented to predict 

the bioactivity of peptides yet.   

In this study, we aimed to compare GPT models fine-tuned on antimicrobial peptide 

sequence data with models that have been previously used to predict antimicrobial activity and 

hemolysis of peptide sequences.13,14 Alongside evaluating the performance of the fine-tuned GPT 
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models, we also seek to explore the advantages and disadvantages they offer in terms of time and 

cost effectiveness. Furthermore, we compare the performance of models trained on amino acid 

sequences to a support-vector machine (SVM) trained on the MAP4C fingerprint.34  

Methods 

Datasets 

The datasets used in this study were peptide sequences with annotated antimicrobial and hemolytic 

activity collected from the Database of Antimicrobial Activity and Structure of Peptides 

(DBAASP).13,35 The dataset used for the classification tasks contained 9,548 (7,160 training / 2,388 

validation) sequences with annotated antimicrobial activity, of which 2,262 (1,723 training / 539 

validation) sequences had additional hemolytic activity annotations. To test models in low data 

regimes, we randomly selected subsets from the original training sets, representing approximately 

20% and 2% of the original activity set, and approximately 10% of the original hemolysis set. All 

datasets are further described in Table 1.  To ensure consistency, we maintained the same training 

and test split for all initial evaluations. For the detailed study, we used the same 5-fold cross-

validation sets.  

Table 1: Sizes and composition of the datasets used in the present study. Datasets are available at 

https://github.com/reymond-group/LLM_classifier. 

Name Size # Actives / Not Hemolytic # Inactives / Hemolytic 

Activity Training 7,160 3,580 3,580 

Activity Training 20% 1,400 701 699 

Activity Training 2% 140 74 66 

Activity Validation 2,388 1,194 1,194 

Hemolysis Training 1,723 717 1,006 

Hemolysis Training 10% 170 65 105 

Hemolysis Validation 539 226 313 
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Models 

As reference models, we used our previously reported Naïve Bayes (NB), Support Vector Machine 

(SVM), Random Forest (RF), and Recurrent Neural Network (RNN) classifiers trained on the same 

data.13 We furthermore trained two additional SVM models on alternative representations of peptide 

sequences: one utilizing the MAP4C fingerprint34 with a custom Jaccard kernel, and another using 

predicted fraction of helical residues and hydrophobic moment with a linear kernel. Fraction of 

helical residues were predicted using SPIDER3.36 Hydrophobic moment was computed using the 

method of Eisenberg et al.37 

To explore the potential of GPT-3 models for antimicrobial and hemolytic activity 

classification, we performed fine-tuning of the Ada, Babbage, and Curie models which were 

accessible through the OpenAI API (v0.28.0, accessed between 25.05.2023 and 01.06.2023). The 

fine-tuning process involved training each model using the full, 20% and 2% sets for activity 

classification and the full and 10% set for the hemolysis classification. In the later evaluation with 

the more advanced LLM GPT-3.5 Turbo, fine-tuning was also performed via OpenAI's Python API 

(v1.11.1), following the provided guidelines, but we restricted ourselves to the full model. The 

utilized fine-tuning datasets contained a system role ("predicting antimicrobial activity/hemolysis 

from an amino acid sequence"), a user message (peptide sequence formatted as "SEQUENCE ->"), 

and a system message ("0" for negative labels and "1" for positive labels).  

Metrics 

All models were evaluated using five commonly accepted performance metrics: ROC AUC, 

Accuracy, Precision, Recall and F1. Metrics were either calculated using the scikit-learn (v1.4.0) 

Python (v3.12.1) package (reference models and GPT-3.5) or directly obtained from the OpenAI 

platform after fine-tuning was completed (for all GPT-3 models). 

ROC AUC (Receiver Operating Characteristic Area Under the Curve:  The ROC AUC 

measures the area under the Receiver Operating Characteristic curve, which plots the True Positive 
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Rate (Sensitivity) against the False Positive Rate. A higher ROC AUC value (ranging from 0 to 1) 

indicates better discrimination and predictive performance of the model. 

Accuracy: Accuracy measures the overall correctness of the model's predictions, calculating 

the ratio of correctly classified instances to the total number of instances. It provides a general 

understanding of the model's performance but can be misleading in imbalanced datasets. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 

Precision: Precision measures the proportion of true positives out of all predicted positives. 

It focuses on the model's ability to avoid false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall: Recall measures the proportion of true positives out of all actual positives. It 

represents the model's ability to identify positive instances accurately.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score: F1 is the harmonic mean of precision and recall. It provides a balanced measure 

that considers both precision and recall. 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

  

https://doi.org/10.26434/chemrxiv-2023-74041-v2 ORCID: https://orcid.org/0000-0003-2724-2942 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-74041-v2
https://orcid.org/0000-0003-2724-2942
https://creativecommons.org/licenses/by/4.0/


6 

 

Results and Discussion 

 
Model screening 

Starting from the DBAASP dataset of 9,548 peptide sequences annotated with antibacterial activity 

and 2,262 peptide sequences annotated with hemolysis effect, we had previously evaluated NB, RF, 

SVM and RNN models, and found the latter to perform best for predicting both activity and 

hemolysis from sequence data.13,14 For additional reference, we trained an SVM on the fraction of 

helical residues and the hydrophobic moment, two properties commonly known to correlate with 

antimicrobial activity, as well as another SVM on MAP4C, a molecular fingerprint that can reliably 

encode large molecules such as natural products and peptides including their chirality,34 a parameter 

which we considered important since our data listed sequences containing both L- and D-amino 

acids. 

 Aiming to test how LLMs perform in predicting antimicrobial activity and hemolysis, we 

first fine-tuned and evaluated GPT-3 Ada, Babbage, and Curie models. As discussed in our preprint, 

these models performed slightly better than the reference models, and even provided good 

performances when trained in low data regime (20% and 2% of full data). However, these models 

were later deprecated by OpenAI and their performance cannot be reproduced. We therefore discuss 

herein only the results obtained with the more recent GPT-3.5 model, in comparison with the 

reference models.  

For both, prediction of antimicrobial activity and prediction of hemolysis, the top-

performing models were the MAP4C SVM and the RNN model trained on sequence data, the latter 

being the best performer in our original work (Table 2).13 The performances for both models were 

in a similar range, although the RNN displayed a notably higher ROC-AUC in both tasks. GPT-3.5 

displayed the highest recall performance among the activity models, indicative of the model's 

tendency to overly favor positive predictions, potentially leading to increased false positive 
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predictions. On the other hand, the features SVM trained only on helicity and hydrophobic moment 

did not perform significantly above background, and was later used as a negative control model.  

Table 2. Performance metrics of all models tested on antimicrobial activity and hemolysis classification. The best value 

for each metric is highlighted in bold.  

Model ROC AUC Accuracy Precision Recall F1 

NB act. 0.55 0.55 0.59 0.32 0.42 

RF act. 0.81 0.71 0.7 0.75 0.73 

SVM act. 0.75 0.68 0.68 0.68 0.68 

RNN act. 0.84 0.76 0.74 0.8 0.77 

Features SVM act. 0.65 0.65 0.66 0.62 0.64 

MAP4C SVM act. 0.8 0.8 0.79 0.83 0.8 

GPT-3.5 Turbo act. 0.68 0.68 0.62 0.93 0.75 

NB hem. 0.58 0.56 0.48 0.76 0.59 

RF hem. 0.8 0.77 0.81 0.6 0.69 

SVM hem. 0.69 0.73 0.72 0.58 0.65 

RNN hem. 0.87 0.76 0.7 0.76 0.73 

Features SVM hem. 0.62 0.63 0.57 0.5 0.54 

MAP4C SVM hem. 0.83 0.83 0.76 0.85 0.8 

GPT-3.5 Turbo hem. 0.65 0.69 0.72 0.43 0.54 

 

 

Model comparison 

Following the initial model screening, we aimed to validate our findings through a more robust 

approach: a 5-fold cross-validation involving GPT-3.5, the MAP4C SVM, the RNN, and finally the 

features SVM as negative control. For this purpose, we generated five data splits and conducted 

predictions anew.  

The results, depicted in Figure 1a for antimicrobial activity prediction and Figure 1b for 

hemolysis prediction, confirmed our earlier observations (performances in Table S2). Notably, the 

RNN performances were higher than those observed in the screening experiment, and were clearly 

above those of GTP-3.5. Furthermore, both the RNN and MAP4C SVM demonstrated comparable 

performances, indicating the validity of both approaches in predicting antimicrobial activity and 
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hemolysis. The finding that simpler machine learning architectures, like SVM, can rival the 

performance of more complex RNNs in predicting antimicrobial activity and hemolysis is 

particularly interesting. A comparison with models trained on similar datasets, which achieve 

similar performances as reported in this study, further reinforces the consistency of our findings.19–

21  

This raises questions about the importance of model architecture versus foundational 

elements such as data quality and feature engineering. It suggests that a balanced approach, 

prioritizing optimization of these foundational components, could prove more beneficial than 

focusing solely on model complexity. 

 

Figure 1: Results of the 5-fold cross-validation study aimed at validating MAP4C SVM, Features SVM, RNN, and 

GPT-3.5 turbo performance for a) antimicrobial activity and b) hemolysis predictions. The mean performance across 

the 5 cross-validations for each metric is shown as a bar, the standard deviation is displayed with an error bar. The 

results confirmed earlier observations but showed notably higher performances for the RNN compared to the one-shot 

screening experiment. Both the RNN and MAP4C SVM demonstrated comparable performances. 

Data visualization 

The high performance achieved by the SVM trained on the MAP4C fingerprint suggested that the 

nearest neighbor relationships in the MAP4C feature space could be sufficient to distinguish active 

from inactive and hemolytic from non-hemolytic peptide sequences. In our previous work, we 

observed that the MAP4 fingerprint38 correctly clustered natural products, taken from the 

COCONUT database,39 according to their organism of origin.40,41 In analogy to our previous work, 
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we were curious to see whether a spatial separation of actives/inactives and hemolytic/non-

hemolytic sequences can be obtained from encoding with MAP4C, the chiral version of MAP4, 

possibly explaining the good performance of the MAP4C SVM model. For this, we reduced the 

2048-dimensional feature space of MAP4C to 2D using the dimensionality reduction method 

TMAP,42 and used the obtained visualization to display a set of molecular properties.  

First, we wanted to confirm that the TMAP visualization aligns with intuitive distributions 

of structural features relevant for peptides. For that, we colored  the data points based on their heavy 

atom count (HAC), an indicator of molecular size, and fraction of carbon atoms (fraction C), a 

simple proxy for the hydrophobicity of a peptide sequence. The TMAP revealed visible clusters for 

both, HAC (Figure 2a)  and fraction C (Figure 2b), indicating that the reduced MAP4C features 

can reliably represent simple molecular descriptors in the underlying chemical space.  

Following this first observation, we wanted to test if we can detect clusters within TMAP 

visualizations of more complex physicochemical properties, such as the predicted fraction of helical 

residues (Figure 2c) and the hydrophobic moment (Figure 2d). In both cases, we could not detect 

large homogenous clusters as was the case for HAC and fraction C. However, the data formed a 

large number of small local clusters, indicating that the nearest neighbor relationships in the 

MAP4C feature space can possibly be used to distinguish sequences with high 

helicity/hydrophobicity opposed to sequences with low helicity/hydrophobicity.  

Finally, we analysed the distribution of active versus inactive (Figure 2e) and hemolytic 

versus non-hemolytic (Figure 2f) sequences in the MAP4C chemical space. Similarly to the 

visualizations of predicted fraction of helical residues and hydrophobic moment, active and inactive 

or hemolytic and non-hemolytic sequences are spatially separated in a large number of small, local 

clusters. This finding is particularly interesting as it suggests that nearest neighbor relationships in 

the MAP4C feature space are sufficient to separate peptide sequences based on their antimicrobial 

activity and hemolysis. It further provides an explanation to the good performance obtained with the 
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MAP4C SVM, which can leverage the nearest neighbor relationships stored in the MAP4C 

fingerprint feature space when provided with a custom Jaccard kernel function. 

 

Figure 2: Chemical space covered by the 9,548 peptide sequences with annotated antimicrobial activity extracted from 

the Database of Antimicrobial Activity and Structure of Peptides (DBAASP). The sequences are encoded using the 

MAP4C fingerprint and the resulting 2048-dimensional space reduced to 2D using TMAP. The sequences in the 2D 

TMAP were colored based on a) heavy atom count, b) fraction of carbon atoms, c) predicted fraction of helical residues, 

d) hydrophobic moment, e) annotated antimicrobial activity and f) annotated hemolysis.  
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Conclusion 

In the present study we investigated the potential of LLMs as predictive tools for antimicrobial 

activity and hemolysis of peptide sequences. We assessed that fine-tuning GPT models in cloud is a 

relatively easy and fast process as access through the API eliminates the need to buy expensive 

hardware and requires little technical expertise. Duration of fine-tuning was short, and the 

associated costs were low (Table S3). In contrast to cloud-based fine-tuning, local model training 

involves setting up and maintaining hardware, which can be costly and require technical expertise. 

While less complex models like RNNs and SVMs have lower hardware requirements, training 

larger models such as LLMs locally can pose challenges in terms of scalability, as one can rapidly 

face limitations in terms of hardware capacity and maintenance costs.  

However, the lack of control over the training environment in cloud-based approaches raises 

concerns regarding reproducibility of scientific results. In the course of this study, we had originally 

fine-tuned GPT-3 models Ada, Babbage and Curie. These models performed slightly better than the 

reference models, even achieving good performances in low data regimes. Unfortunately, these 

models were later deprecated by OpenAI and their performance cannot be reproduced. When fine-

tuning a newer iteration of GPT-3 (GPT-3.5 Turbo), we observed a significant decrease in 

performance for the same task. We attribute the drop in performance to the increasing optimization 

of LLMs for conversational interactions, which may negatively impact their effectiveness in out-of-

scope predictive tasks. These findings highlight the potential risk of how not controlling one's own 

models can compromise the reproducibility and reliability of scientific results. 

The aforementioned findings suggest a diminishing suitability of chat oriented LLMs for 

classification tasks over time, a function beyond their intended design. This observation specifically 

applies to LLMs tailored for conversational or human interaction purposes, rather than specialized 

LLMs trained on domain-specific data. Unfortunately, the latter do not provide the ease of access 

and usability that GPT models do. Consequently, we expect that LLMs will increasingly be 
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employed in human interaction settings, facilitating the integration of various chemical tools 

through natural language interfaces as is being pioneered by Bran31 and Boiko et al.32  

Finally, we could demonstrate in the present study that classical machine learning 

techniques, such as SVMs trained on MAP4C fingerprint encodings, can achieve state-of-the-art 

performance in the prediction of antimicrobial activity and hemolysis. This finding is especially 

interesting, as it showcases that good performance can be achieved by less complex models, putting 

the emphasis on data quality rather than model complexity.  
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Table S1. Performance metrics of all models tested on antimicrobial activity and hemolysis classification. The best 

value for each metric is highlighted in bold for activity and hemolysis separately. Results for reduced training sets are 

reported for 20% and 2% size of the original activity dataset and 10% of the original hemolysis set.  

Model ROC AUC Accuracy Precision Recall F1 

GPT-3 Ada act. 0.84 0.78 0.78 0.78 0.78 

GPT-3 Babbage act. 0.85 0.79 0.79 0.78 0.79 

GPT-3 Curie act. 0.86 0.79 0.78 0.81 0.79 

GPT-3 Ada 20% act. 0.75 0.69 0.7 0.67 0.68 

GPT-3 Babbage 20% act. 0.76 0.69 0.7 0.69 0.68 

GPT-3 Curie 20% act. 0.76 0.7 0.71 0.71 0.71 

GPT-3 Ada 2% act. 0.66 0.6 0.6 0.63 0.61 

GPT-3 Babbage 2% act. 0.66 0.62 0.6 0.73 0.66 

GPT-3 Curie 2% act. 0.65 0.6 0.6 0.63 0.61 

GPT-3 Ada hem. 0.9 0.82 0.8 0.79 0.79 

GPT-3 Babbage hem. 0.87 0.8 0.76 0.76 0.76 

GPT-3 Curie hem. 0.89 0.84 0.82 0.79 0.8 

GPT-3 Ada 10% hem. 0.72 0.68 0.63 0.58 0.6 

GPT-3 Babbage 10% hem. 0.72 0.7 0.65 0.6 0.62 

GPT-3 Curie 10% hem. 0.73 0.68 0.63 0.59 0.61 

 
 

Table S2. Mean and standard deviation of performance metrics of selected models tested on antimicrobial activity and 

hemolysis classification. The best value for each metric is highlighted in bold.  

Model ROC AUC Accuracy Precision Recall F1 

Features SVM act. 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 

MAP4C SVM act. 0.8 ± 0.01 0.8 ± 0.01 0.78 ± 0.01 0.83 ± 0.01 0.80 ± 0.01 

RNN act. 0.85 ± 0.01 0.78 ± 0.01 0.76 ± 0.02 0.81 ± 0.01 0.78 ± 0.01 

GPT-3.5 Turbo act. 0.69 ± 0.01 0.69 ± 0.01 0.62 ± 0.01 0.95 ± 0.01 0.75 ± 0.01 

Features SVM hem. 0.62 ± 0.01 0.64 ± 0.01 0.59 ± 0.02 0.48 ± 0.02 0.53 ± 0.01 

MAP4C SVM hem. 0.82 ± 0.02 0.82 ± 0.01 0.78 ± 0.02 0.82 ± 0.04 0.79 ± 0.01 

RNN hem. 0.87 ± 0.01 0.81 ± 0.01 0.77 ± 0.03 0.79 ± 0.03 0.78 ± 0.01 

GPT-3.5 Turbo hem. 0.47 ± 0.01 0.48 ± 0.01 0.38 ± 0.02 0.36 ± 0.02 0.37 ± 0.02 
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Table S3. Training times and costs of GPT models on the full training sets. 

Model Time (h) Costs ($) 

GPT-3 Ada Activity 01:05:04 $0.39 

GPT-3 Babbage Activity 01:09:38 $0.59 

GPT-3 Curie Activity 01:15:05 $2.93 

GPT-3.5 Turbo Activity 00:53:24 $7.00 

GPT-3 Ada Hemolysis 00:55:37 $0.09 

GPT-3 Babbage Hemolysis  00:57:19 $0.13 

GPT-3 Curie Hemolysis 01:08:09 $0.67 

GPT-3.5 Turbo Hemolysis 00:55:58 $1.66 
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