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Abstract 

Mass spectrometry is routinely used for myriad applications in clinical, industrial, and 

research laboratories worldwide. Developments in the areas of ionisation sources, high-

resolution mass analysers, tandem mass spectrometry, and ion mobility have significantly 

extended the repertoire of mass spectrometrists, however for coordination compounds and 

supramolecules, mass spectrometry remains underexplored and arguably underappreciated. 

Here, I aim to guide the reader through different tools of modern mass spectrometry that are 

suitable for larger inorganic complexes. I will discuss all steps, from choosing the right 

technique(s), over sample preparation and technical details to data analysis and 

interpretation. The main target audience of this tutorial are synthetic chemists and 

technicians, as well as mass spectrometrists with little experience in characterising labile 

inorganic compounds. 

0. Introduction  

Mass spectrometry (MS) has emerged as an integral part of the analytical toolbox and is one 

of the most routinely used techniques. It has been historically well explored for small organic 

compounds, as such molecules only contain covalent bonds and are mostly easy to ionise.1 In 

the last decades, the focus of MS has expanded rapidly, and two areas have shown particularly 

big promise: the analysis of complex mixtures, e.g. in “omics”,2,3 and the structural 

characterisation of biomacromolecules in their native state.4,5 
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Between the extremes of small (organic) molecules and biomacromolecules, the analysis of 

synthetic inorganic molecules is of particular interest to chemists, including non-covalently 

bound supramolecules and labile coordination compounds. These systems have become 

increasingly important in application areas such as medicine, catalysis, materials and in 

mimicking the functionality of biomolecules.6 The structural characterisation of such 

assemblies is challenging, as X-ray crystallography, NMR spectroscopy or computational 

methods are often difficult or not feasible for larger structures.6  

Methods adapted from native MS offer a range of advantages for their characterisation over 

other methods: a) an ultra-high mass resolution, that enables the unambiguous identification 

of composition and stoichiometry,5 b) the robust analysis of complex product mixtures, where 

different compounds are separated by their m/z, c) the hyphenation with other techniques 

such as chromatography,7,8 ion mobility9,10 or spectroscopy11,12 and d) the potential to adapt 

characterisation workflows to an industrial scale if appropriate.6 The characterisation of 

supramolecular and coordination compounds using MS has been reviewed regularly,6,13–23 

however, it is still not commonly and confidently used in synthetic laboratories. 

This tutorial will focus on the practical application of MS for such inorganic complexes, 

beginning with technical details as well as potential challenges. The analysis of MS data will 

further be discussed in detail, before the tutorial ends with an introduction to other gas phase 

techniques suitable for the investigation of such compounds. While the characterisation of 

these inorganic systems with MS is less trivial than for small organic compounds, every mass 

spectrometrist, chemist and technician can learn the necessary skills with the help of this 

tutorial.  

1. Technical Details 

The main aim of the mass spectrometric analysis is to obtain a mass spectrum of the synthetic 

reaction product. In this section, I will focus on technical details to facilitate this process and 

on pitfalls to avoid (Figure 1). 

1.1 Sample Preparation 

Synthetic products are usually provided as solids or as reaction mixtures in solution, and the 

most common ionisation methods start from solution. For solid samples, the choice of solvent 
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is crucial. As it is challenging for a mass spectrometrist or technician to understand the 

intrinsic properties of the synthetic product on the same level as the synthetic chemist, ideas 

for solvent choices are a valuable input that should be provided. Suitable solvents entirely 

depend on the reaction product and its properties – the sample (and potentially the ionisation 

reagent) need to be dissolved easily while maintaining suitable concentrations, but without 

inducing unwanted disassembly reactions. For labile compounds, it is often advisable to 

prepare the solution fresh prior to analysis, which minimises the time for disassembly or other 

reactions. It is also important to choose a solvent that is compatible with the ionisation 

method of choice. For electrospray ionisation (ESI), this usually involves polar solvents such 

as water, methanol and acetonitrile, whereas non-polar solvents are less suitable.28  

For ESI it is often useful to add salts such as alkali metal halides, or acids/bases, depending on 

the product and its lability. This approach can help to enhance the signal of adduct ions [M + 

x A]x+ and [M + y A]y- (with A+/A- being e.g. an alkali metal cation or halide anion), or of the 

protonated and deprotonated species [M + x H]x+ and [M – y H]y-, respectively. Buffer 

solutions to control the pH value, such as ammonium acetate, which are often used in 

biological mass spectrometry, are usually not needed.29  

The analyte concentration in solution is important, and this is particularly difficult to control 

when a reaction mixture is the starting point rather than a solid. Modern mass spectrometers 

are increasingly sensitive and the optimal sample concentration is decreasing constantly.30 

Typical analyte concentrations in modern MS lie in the low µM region.  

What are the consequences of using too high concentrations? One problem is that higher 

concentrations can cause crystallisation in the solution and at the air/water interface, and 

when using ESI and nano-electrospray ionisation (nESI), this can often clog the capillary.31,32 

High concentrations also lead to clustering during the ESI process, and this makes the 

spectrum more complex and may also not reflect the molecules present in solution.19 Another 

potential problem are space-charging effects, which are due to the repulsion of charged ions 

with the same polarity. This pheomenon can lead to a decrease in accuracy, sensitivity and 

resolution of the mass33,34 (and ion mobility35,36) measurements, although in practice this is 

often not a problem for mass. High concentrations lead more likely to oversaturation of the 

detector,37 which decreases their lifetime, and also means that instruments have to be 

cleaned more frequently due to the contaminations with neutrals from solution.22 
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What are the consequences of using too low concentrations? Below a certain threshold, the 

sensitivity of mass spectrometers is not sufficient to detect the analyte. Less obvious is that 

the formation of coordination compounds and supramolecules is often directed by self-

assembly, and this is driven by entropy that in turn depends on concentration.22 Hence, 

synthetic products can disassemble in solution because the concentration is too low. Most 

MS efforts are pointless if the analyte is not present in solution, and for some compound 

classes, the consequences of using high concentrations have to accepted in order to maintain 

the analyte in solution. For metallosupramolecular complexes, typical solution concentrations 

to avoid disassembly are in the high µM and low mM region.22 

 

Figure 1: Mass spectrometric analysis of supramolecules and coordination compounds, 
including sample preparation, ionisation conditions, ion transfer and analysis. Designed with 
BioRender.  

1.2 Ionisation 

The use of soft ionisation methods has significantly improved the characterisation of large 

biomacromolecules,38 and the lessons learned from biological MS can be applied to labile 

inorganic substances.6 The most commonly used ionisation source is electrospray ionisation 

(ESI), where a high voltage is applied to a solution in a capillary. Ions in the liquid migrate to 

the surface until coulumbic repulsion overcomes the surface tension and an ion-solvent cone 

forms at the tip of the capillary. The further mechanism of ionisation depends on the size and 

structure of the molecule and remains debated.39–41  

A further improvement over ESI for the ionisation of labile complexes to the gas phase is nano-

ESI,42 for which glass capillaries with a sharp opening in the (sub)micron regime are used.43 

Due to lower flow rates and voltages, and the possibility of lower source temperatures, very 

large structures such as whole viruses can be ionised, and hence no relevant, upper mass limit 
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exists for synthetic chemists.44 The design of these “nano-tips” needs some consideration, 

and depending  on usage, either the purchase of premade nano-tips or the in-house design 

with capillary pullers is possible. Parameters for common nano-ESI tips can be found 

elsewhere.43,45 

For successful ionisation using nESI, a voltage needs to be applied to the solution inside the 

tip. Two common options exist: the insertion of an inert metal wire (often Pt) that is 

connected to the source, or the coating of the nano-tip with a conductive material (often Au, 

Pd or Pt).46,47 For most cases, both methods are equivalent. The disadvantage of nESI 

compared to ESI is the difficulty to hyphenate the technique with liquid chromatography, 

although this has been partially overcome,48 and a tedious tip preparation. Nano-tips are also 

not perfectly reproducible, which can make the development of robust workflows difficult.43  

Source conditions for labile inorganic complexes need to be soft, which means to avoid in-

source fragmentation and to preserve the structure of the analyte. Low flow rates, 

temperatures and voltages are recommended.22 There is a trade-off between these soft 

parameters and those that maximise signal (high flow rates, temperatures and voltages), and 

finding the ideal parameters may require careful tuning. A key step in the formation of ions 

via ESI is desolvation, which benefits from high pressures and temperatures in the ion source, 

and also depends on the solvent.49 Incomplete desolvation can lead to solvent adducts, which 

particularly occur with coordinating solvents like acetonitrile.19  

The source temperature is a major factor for preserving the original structure of labile 

molecules during ESI. Cryo- or cold-spray ionisation sources (CSI) have been developed, 

achieving remarkable results that were not amenable with ESI.50–52 As CSI is not commercially 

available and only few sources exist, it will not be discussed further.53,54 

Matrix-assisted laser desorption ionisation (MALDI) is another ionisation technique, which is 

often deployed for synthetic molecules such as organic polymers55 and dendrimers.56 An 

important difference to ESI is that fewer multi-charged ions are formed, which facilitates data 

interpretation. The sample is embedded in an organic matrix, and excited with short laser 

pulses. After the energy absorption through the matrix and relaxation in the crystal lattice, 

parts of the sample are desorbed and ionised, and transferred to the mass spectrometer.57 

While MALDI has its merit for labile synthetic molecules, it is far less common than ESI. Other 
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ionization methods, such as electron ionisation, chemical ionisation or field ionisation are 

even less frequently used, but can be suitable e.g. for organometallic compounds.58  

1.3 Ion Transfer in the Mass Spectrometer 

The transfer of ions in the mass spectrometer is realised through a combination of direct 

current (DC) and alternating radiofrequency (RF) fields.59 The most important consideration 

is the polarity of the ion optics, as this determines whether cations or anions are transmitted. 

The preference for either polarity depends on the nature of the sample, its acidity/basicity 

and ionisation energy/electron affinity.60 Biological MS relies overwhelmingly on the positive 

ion mode, however for synthetic molecules, negative ion mode is also frequently used. MS 

data collected in negative ion mode are often simpler, but less intense, due to the availability 

of fewer ionization pathways.19  

There is a trade-off between high ion transmission (using high voltages and low pressures) 

and preserving the ion structure (using low voltages and high pressures), and the required 

“softness” of the parameters depends on the rigidity and stability of the sample. When 

selecting an ion in a mass analyser in the centre of the instrument (often a quadrupole), labile 

compounds can yield mass spectra that include fragment ions, although no additional collision 

energy is applied (see 3.1 Tandem Mass Spectrometry). This suggests fragmentation due to 

harsh transfer after the mass analyzer, indicating which ion optics need to be tuned softer. 

The m/z also plays an important role in how well ions are transmitted. Higher m/z ions require 

higher RF voltages (and lower RF frequencies, but this is usually not user-controlled), but this 

is not specific for inorganic compounds. More details on tuning mass spectrometers can be 

found in resources for the specific instruments.59 As modern mass spectrometers are able to 

transmit ions in the Megadalton regime (1 Dalton = 1 Da = 1 g·mol-1), the size of synthetic 

compounds is not a limiting factor for ion transfer.44 

 

2. Analysis of the Mass Spectrum 

The measurement of the mass to charge ratio (m/z) is realised in the mass analyser. The three 

most common mass analysers utilised in modern, commercial mass spectrometers are 

quadrupoles, time-of-flight (TOF) analysers and ion traps, in particular the orbitrap.1 
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Quadrupoles have the lowest resolution of the ones listed above, and are mainly used for 

m/z-selection in tandem mass spectrometry experiments or when only a narrow m/z-window 

is sufficient for analysis. Both TOF and orbitraps have significantly higher resolution than 

quadrupoles. In particular the orbitrap has emerged as a game changer in modern mass 

spectrometry, as it delivers high resolution with moderate costs and effort, and has hence 

found its way in many research and industry facilities worldwide.61 More detailed information 

about mass analysers can be found elsewhere.1 

2.1 m/z and Mass 

High-resolution mass spectra provide wide and rich information that go far beyond the 

comparison of measured mass with predicted molecular weight. For multiply charged ions, 

the first step is decoupling the mass m from the charge z. High-resolution mass spectra of 

most small ions show isotopic distributions, and the distance d between two neighbouring 

isotopic peaks is related to the charge state of the ion via the formula 𝑑 =  
1

𝑧
 (Figure 2a). Based 

on the charge state of the ion, the mass can easily be determined by multiplying z with the 

measured m/z. This approach works usually well, except for when a limitation in resoluton or 

overlapping peaks occur (Figure 2b). For the former, the resolution in the mass spectrometer 

may be increased, e.g. by extending the time the ions spend in the orbitrap.61 Overlapping 

peaks can be addressed by deconvoluting the different signals, either manually or with 

software,62 or by using orthogonal separation approaches such as tandem mass spectrometry 

and ion mobility. A classic example of overlapping species is the combination of the monomer 

[M + x A]x+ and its dimer [2 (M + x A)]2x+, which share the exact same m/z. The only difference 

between both ion populations is the distance between the isotopic peaks, however the 

pattern may not be easy to interpret. Here ion mobility can help, which separates ions based 

on their size, shape and particularly charge (see 3.2 Ion Mobility Spectrometry). 
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Figure 2: Predicted and experimental isotopic pattern of a) [Cr6Gd2F8(O2CtBu)16NH2
nPr2]+ and 

b) [Cr12Gd4F21(O2CtBu)28(NH2
nPr2)2]+. Example a) illustrates how the charge state can be 

determined by quantifying the m/z distance between two neighbouring isotopic peaks, 
leading to d = z = 1. The predicted isotopic pattern agrees well with experiment, and so does 
the accurate mass of the most intense peak. Case b) is more difficult, and the unexperienced 
reader might consider the agreement between experiment and prediction sufficient. While the 
digits of the accurate mass are in good agreement with simulation, the experimental 
maximum and the whole distribution seems shifted to lower m/z. The agreement is not 
sufficient to confidently assign this peak to the proposed sum formula. Based on X-Ray 
crystallography data, we found that some of the fluoride atoms have likely been substituted 
for hydroxyl groups, which suggests an overlap of ions with different number of F atoms and 
OH groups present.64 a) and b) are simulated with enviPat63 at resolution = 12500.  

2.2 Resolution and Accurate Mass 

Peak overlaps also occur between ions with similar, but not identical m/z, and for that the 

resolution of the instrument as well as the accurate mass play an important role. The former 

defines how well two given peaks can be separated, and continous advances in commercial 

instrumentation have led to increasing resolving powers.65,66  

The accurate mass describes the mass of a given ion more precisely than in integer units. For 

modern orbitrap and TOF mass spectrometers, these agree with the predicted mass for 1 – 3 
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digits, depending on the size of the ion, the quality of the calibration and the resolution of the 

instrument (Figure 2a). It is often not possible for synthetic chemists to recalibrate the 

instrument, and the mass accuracy can be determined by introducing a sample of known 

accurate mass (e.g. NaI or CsI clusters) as an internal standard.19 It can also help to collect a 

mass spectrum just around the peak of interest, allowing to average as many ions as possible 

for better accurate mass measurements. The accurate mass can also predict the rough 

elemental composition of an ion: For molecules that involve only common organic elements 

such as H, O, N and C, the accurate mass is usually close to the integer (± 0.2 Da), whereas 

transition metals often occupy odd accurate masses and their ions are found in the whole 

range between two integer m/z. 

2.3 Isotopic Distribution 

High-resolution mass analysers yield isotopic patterns for small molecules, which occur as 

most elements involve more than one abundant isotope. When many different atoms are 

combined, their combination yields a fingerprint-like pattern.19 Based on the ion’s sum 

formula and the natural isotopic abundances for a given element, this pattern can be 

simulated. Comparison of the experimental and simulated isotopic distribution can guide and 

confirm the peak assignment to a given formula. For small ions including elements with 

prominent isotopic distributions (e.g. Cl, S, Fe), the pattern can also reveal how many atoms 

of an element are present. Several tools are available online to predict isotopic distributions, 

and software from mass spectrometry vendors also often offers this possibility.67,68 It is 

essential to understand that averaged mass spectra, when acquired for a few minutes, can 

include up to hundreds of millions of ions. With such high ion counts, the statistical foundation 

of isotopic assignments is very powerful, and an isotopically resolved peak should match the 

simulated pattern almost perfectly (Figure 2a). The isotopic pattern is also dependent on the 

instrument and its resolution, and some online resources take that into account.63,69  

A problem occurs when peaks overlap, which results in a deviation from the expected isotopic 

distribution (assuming they have similar accurate masses of the isotopic peaks, otherwise 

they lie in between the other ion’s signal). With some experience it is possible to conclude 

whether a given peak consists of one or more ions, based on peak shape (e.g. whether there 

is a “valley” in the isotopic distribution), and differences in the accurate mass. 
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Besides the advantages for peak assignment, the possibility to isotopically resolve peaks also 

opens a venue for distinguishing a compound from its isotopically labelled species (e.g. with 

2H instead of 1H). This was for example used by Sawada et al. to analyse the preference of 

different host-guest complex enantiomers.70  

2.4 Analysis Approach 

Most users assign the mass spectrum manually, although for frequent users software exists 

that facilitates this process significantly.71,72 For any assignment, the m/z, accurate mass and 

isotopic distribution need to agree, and the formula needs to be a reasonable guess 

containing sensible components, oxidation states, coordination numbers and the correct 

overall charge. I recommend the following procedure for the analysis of a mass spectrum of 

the molecule M: 

1. Search for molecular adduct ions of the formula [M + x A]x+ (positive ion mode) or [M 

+ y A]y- (negative ion mode) with one or more charge carrying ions (A = H+, Na+, K+, Cl- 

etc.).  

2. Look out for other charge states of the same intact analyte, that could originate from 

different numbers of charge carriers A+/A- or through successive loss of oppositely 

charged counterions.  

3. Are there other repeating patterns, separated by the same m/z ratio? These can 

indicate cluster formation or polymeric contaminations. Determine the m/z difference 

between two neighbouring peaks, and try to assign the pattern. Although these 

assignments can inform on potential contaminations, it is often more important to 

avoid them rather than identifying them. 

4. If you are unsure if a given peak originates from the analyte or is a contamination in 

the solvent, run a mass spectrum of the blank. Several contaminant ions are known 

for ESI-MS, however, often contaminations are sample-specific.19 

5. Search for reasonable fragments, e.g. for complexes with loosely bound ligands, as 

well as ions with varying oxidation states of transition metals. These can occur due to 

reactions with moisture or through electrochemical reactions during ESI. 

6. If you find ions with higher masses than M, look for oligomers of M or other 

aggregates.   
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7. I recommend trying to assign as many of the intense peaks as possible, however, MS 

is a highly sensitive technique, and it is easy to get lost in the details of complex 

spectra. Unless there is a specific ion of interest, I would recommend to assign only 

analyte peaks that are higher than 10% of the most intense peak. Relative intensities 

can reflect the composition in solution well, however they are influenced by how easy 

the molecules ionise and by the ions’ stabilities. 

8. The peaks that cannot be assigned with steps 1-5 can be subjected to MS2 (see 3.1 

Tandem Mass Spectrometry). Try tracking the fragmentation channels of these peaks 

down at various collision energies and write down the leaving groups, which will add 

up to the formula of the original ion.  

9. If it is not possible to identify any peak related to M, it is likely necessary to change 

solution conditions and ionisation/MS parameters as discussed above. 

 

3. Two-Dimensional Gas Phase Separation Approaches 

3.1 Tandem Mass Spectrometry 

Most commercial mass spectrometers can perform tandem mass spectrometry (MS2) 

experiments. In an MS2 experiment, ion populations are selected based on their m/z 

(commonly with a quadrupole), and subsequently activated, which usually results in smaller 

fragment ions that are in turn mass-analysed. The activation of ions can be realised via 

energetic collisions with inert gas (collision-induced dissociation, CID) or surfaces (surface-

induced dissociation); electron- (electron capture or transfer dissociation) or photon-

mediated (ultraviolet-photodissociation or infrared multiphoton dissociation), as well as with 

other methods.73,74 The most common MS2 technique is CID, in which ions are accelerated 

into a collision cell filled with a stationary inert gas (e.g. N2, Ar, Xe). After every gas collision, 

translational energy of the ion is converted to vibrational energy, which is distributed 

throughout the ion, usually leading to the dissociation of the weakest bonds. Other tandem 

mass spectrometry activation methods are not widespread or commercially available, and are 

beyond the scope of this article.73 

The main information from CID experiments is the composition of fragment ions and 

indirectly of the leaving groups (fragment mass = precursor mass – leaving group mass), and 
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the stoichiometries of the fragments can inform on the structural subunits present in the 

original precursor ion and their connectivities. Fragments can further dissociate to secondary 

fragments, and it is important to select collision energies appropriately. 

The fragmentation of singly charged species occurs from high to low m/z, involving the loss 

of neutral leaving groups that lead to singly charged fragment ions. An ion of the structure 

[AB]+ can fragment to [A]+ and the neutral B, or to [B]+ and A. Both ions [A]+ and [B]+ are at 

lower m/z than the precursor [AB]+ (Figure 3). As neutral leaving groups cannot be detected, 

data visible in the mass spectrum is biased towards structures that maintain charge, which is 

influenced by their size and structure. For the fragmentation of multiply charged species, the 

charge state z can change, leading to fragment ions at higher m/z (but lower z) than the 

precursor. It is possible that both products of the precursor retain a charge.19 An ion [AB]2+ 

can dissociate to [A]+ and [B]+, and due to the reduction of the charge state z, either (but not 

both) of these ions can be at higher m/z than the precursor (Figure 3). 

 

Figure 3: Fragmentation of the singly charged [AB]+ and the doubly charged [AB]2+. For [AB]+, 
the fragment ions [A]+ and [B]+are found at lower m/z than the precursor. The dissociation of 
[AB]2+ can result in [A]+ or [B]+ at higher m/z than the precursor, due to the loss of charge, 
whereas [A]2+ and [B]2+ are always at lower m/z than [AB]2+. 

I will now discuss two hypothetical cases consisting of subunits C, D, E, F and X, Y, respectively 

(Figure 4). These examples are based on the assumption that all subunits cannot dissociate 

further, and that the ions are equally likely to retain the charge upon fragmentation.  

The precursor ion consists of C, D, E and F, and the ions CD, DE, EF, and FG are found in the 

MS2 spectrum (Figure 4a top). From this data, it can be derived that C is likely linked to D and 
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F; D is linked to C and E; E is linked to D and F; and F is linked to E and C. The most sensible 

explanation is a circular structure of the type CDEF, in which C and F are connected as well, 

whereas the absence of the ion CF would have indicated a linear connectivity (Figure 4a 

bottom). Real examples are more complex, and structural rearrangements can occur and 

need to be taken into account when deriving structural information from MS2 spectra.75,76  

Another factor are the relative intensities of fragments, which can inform on two points: 1) 

Likely fragments statistically occur more often. In a chain XYX, the fragments X, Y and XY could 

be observed (Figure 4b). Fragment Y will likely have the least intense signal at low collision 

energies, as both X-Y bonds have to be broken. Conversely, both X and XY will occur with 

similar intensities after the first fragmentation step, as every broken X-Y bond results in equal 

amounts of X and XY. 2) Stable fragments are more abundant. XY is potentially less stable than 

X as it can dissociate a second time to X and Y, whereas X cannot further fragment. Hence, 

the relative intensities of the fragments would follow the order X > XY > Y, until at high 

fragmentation energies XY disappears completely and twice as many X are present relative to 

Y (Figure 4b). 

 

Figure 4: a) Fragmentation of CDEF with either a cyclic or linear structure. The presence or 
absence of CF can inform on the connectivity of CDEF. b) Fragmentation of the chain XYX to 
the fragments XY + X at lower and 2X + Y at higher collision energies, respectively. The relative 
abundances of X, Y and XY can inform on the precursor structure. 
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The appearance of fragment ions is dependent on the collision voltage, which multiplied by z 

corresponds to the collision energy Elab. This energy is user-defined and stable ions require 

higher collision energies to fragment, and varying the energy can investigate ion structure 

and stability. A good illustrating example is a host-guest complex, in which the guest is 

encapsulated into the host. It is also possible to have “exo”-coordination of the guest outside 

the host, for example, when the guest is too large.25 The host-guest complex will have a higher 

stability than the exo-coordinated compound, and higher collision energies are required to 

dissociate the non-covalent bonds in the former. This illustrates how MS2 experiments can 

distinguish different compounds based on their stabilities.  

Stabilities can also be quantified using MS2 by ramping the collision energy and plotting it 

against the “survival yield” (SY), which represents the share of precursor ions that does not 

fragment. These curves are usually S-shaped, and certain points in the fitted graphs can be 

determined, e.g. the E50 value where 50% of the precursor fragment. These values can be 

regarded as relative measures of ion stability.77,78 While they have a thermodynamic meaning 

for some non-commercial instruments (“guided ion-beam mass spectrometers”),79 for 

commercially available platforms these depend on the instrument, pressures, voltages and 

ion structure. The latter is important as large structures experience more collisions, and this 

kinetic effect can interfere with thermodynamic properties. E50 and similar values should 

hence be regarded as semi-quantitative data, which are best used for the interpretation of 

trends between similar ions, where differences in kinetic effects can assumed to be negligible. 

One example from my own research is the fragmentation and stability trend of the 

polymetallic rings [Cr7MIIF8(O2CtBu)16]- = [RingM]- (Figure 5a Inset), in which seven CrIII and one 

divalent metal (MII = MnII, FeII, CoII, NiII, CuII, ZnII and CdII) are bridged via fluoride and pivalate 

ligands (O2CtBu-, Piv-). The dissociation of these anions proceeds through multiple channels, 

and for [RingMn]- this involves the loss of MnII and two Piv- (to 1), or the loss of CrIII, one F- and 

two Piv- (to 2) or three Piv- (to 3) (Figure 5a). The isostructural ions with other MII fragment 

similarly, and as kinetic affects are likely small, differences in the stability curves (Figure 5b) 

and E50 values are associated with thermodynamic trends. We found E50 differences of up to 

22% between the most stable MII = NiII and the least stable CuII, which we rationalised with 

trends from crystal field theory.27 
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Figure 5: (a) MS2 data of [RingMn]− at Elab = 110 eV. Inset: structure of [RingMn]− (Cr: green, 
Mn: cyan, F: yellow, O: red, C: gray). Hydrogen atoms in the tert-butyl groups were omitted 
for clarity. (b) Normalized survival yield vs Ecom for [RingM]− fitted to a sigmoidal function (M = 
Mn: cyan, Fe: purple, Co: orange, Ni: black, Cu: green, Zn: red, Cd: blue). Ecom is the collision 
energy in the center-of-mass frame and is a more precise representation of the energy that is 
transferred during ion-gas collisions. Reproduced from previous work.27 

Investigating the stability of compounds is not easily achievable with other techniques, and 

the unique feature of MS2 is that solvent molecules and counter ions do not interfere, making 

it possible to decouple these effects from the actual analyte stability.6,80 MSn experiments 

(with n > 2) are possible, although not necessarily available in commercial instruments, and 

this technique can investigate the disassembly and stability of already fragmented ions. 81 

3.2 Ion Mobility Spectrometry 

Ion mobility (IM) is increasingly used in commercial instrumentation, separating ions based 

on their size, shape and charge. In the easiest form, ions move through a gas-filled drift cell 

guided by an electric field. The electric field is usually not strong enough to induce 

fragmentation, however, collisions with the buffer gas still occur, the more the larger the ion. 

The collisions determine the time the ion spends in the drift cell, and by injecting ion pulses 

and measuring this time, structural information is gained. The drift (or arrival) time can be 

converted to a collision cross section (CCS) value, which is comparable across instruments and 

to values computationally simulated from candidate geometries (e.g. based on hand-drawn 

molecular models, density functional theory or molecular dynamics calculations).9,82 The 

https://doi.org/10.26434/chemrxiv-2024-vptmp ORCID: https://orcid.org/0000-0002-5216-8353 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-vptmp
https://orcid.org/0000-0002-5216-8353
https://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

community has witnessed a significant increase in the use of IM, however, it is still often 

limited to expert laboratories. Synthetic chemists and technicians often do not have access 

to such platforms, and I will hence not discuss this technique in detail.9,10,80,85 

IM can be particularly powerful when combined with MS2, as this enables the structural 

characterisation of collisionally activated ions and fragments. One historic example I want to 

briefly mention is the use of IM to distinguish carbon allotropes. The structural evolution of 

carbon clusters was a hot topic in the 1990s, and different groups independently investigated 

the formation mechanisms of fullerenes. With an increasing number of carbon atoms, a 

transition via linear chains – monocyclic rings – polycyclic rings – fullerenes was observed 

through different peaks in IM data.86,87 It was also shown that collisional activation induces 

rearrangement from rings to fullerenes, revealing the formation mechanism of the famous 

Buckminster fullerene C60.  

The study of the polymetallic rings [RingM]- (Figure 5) further illustrates the insights that IM 

can offer. We coupled MS2 with IM to measure the size and shape of fragments 1-3 (Figure 

6a). For all three species, we found two CCS distributions: one at lower CCS and narrow (C, 

“compact”) and one with a wider peak shape at higher CCS (E, “extended”). Based on 

computational structure optimisations and CCS simulations, we assigned these to closed rings 

(C) and conformationally dynamic, open structures (E, Figure 6b).84 Taken together, these two 

examples highlight the richness of structural data that can be obtained from IM, and I 

anticipate that its application in synthetic laboratories and facilities will significantly increase 

in the future.80 

[RingM]- can encapsulate ammonium cations to form rotaxanes, and I will discuss the case 

example of the polymetallic rotaxane AmMn in the Supporting Information, including sample 

preparation, MS data analysis, as well as MS2 and IM measurements and interpretation. 
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Figure 6: a) CCSN2 Distributions of [RingMn]− and fragments (1–3) at Elab = 110 eV. b) 
Fragmentation of [RingMn]− to 3 including structural assignments of 3C to closed heptametallic 
rings and 3E to conformationally dynamic, open structures. Reproduced from previous work.27 

 

4. Conclusions 

I illustrated how the combination of soft ionisation sources, high-resolution mass analysers 

and commercially available MS2 and IM additions, enhance our understanding of coordination 

compounds and supramolecules. The discussion is limited to techniques that are established 

and commercially available, however MS is an active field of analytical research, and other 

methods such as ion spectroscopy11,12,91 or ion soft-landing including microscopic imaging92 

yield unique structural information as well. I predict that these techniques will gain in 

importance for supramolecules and coordination compounds. This article should be regarded 

as a guideline on how to make the most of the MS toolbox for labile inorganic compounds, 
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and I hope that this tutorial inspires synthetic chemists and technicians to analyse such 

molecules more frequently and with confidence.  
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For Table of Contents only: 

 

 
 

Mass spectrometry is ideally suitable to characterise supramolecules and coordination 

compounds, and this tutorial discusses sample preparation, technical details, data analysis 

and interpretation as well as two-dimensional gas phase separation approaches. 
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