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Abstract

Evolutionary and machine learning methods have been successfully applied to the gen-

eration of molecules and materials exhibiting desired properties. The combination

of these two paradigms in inverse design tasks can yield powerful methods that ex-

plore massive chemical spaces more efficiently, improving the quality of the generated

compounds. However, such synergistic approaches are still an incipient area of re-

search and appear underexplored in the literature. This review covers different ways

of incorporating machine learning approaches into evolutionary learning frameworks,

with the overall goal of increasing the optimization efficiency of genetic algorithms.

In particular, machine learning surrogate models for faster fitness function evaluation,

discriminator models to control population diversity on-the-fly, machine learning based

crossover operations, and evolution in latent space are discussed. The further potential

of these synergistic approaches in generative tasks is also assessed, outlining promising

directions for future developments.
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Introduction

One of the main goals in materials science is the discovery of new chemical compounds

that exhibit certain properties that make them optimal for specific applications. There is a

constant demand for such new and improved materials in many different research areas and

examples include the fields of drug design,1–4 catalysis,5–10 and battery research.11–13 The

virtually infinite size of the chemical space however, makes an exhaustive search impossible

and dictates the use of efficient optimization methods that suggest candidate compounds

by leveraging existing knowledge about the domain of interest. These generative models

tackle the inverse design problem, where the objective is to find solutions that optimally

satisfy a set of requirements imposed by a given specification.14 Evolutionary approaches in

particular, are inspired by Darwinian evolution and operate on a population of solutions that

is evolved in order to incrementally produce solutions that better fit these requirements. In

chemistry and materials science, evolutionary approaches have been adopted already early

in the 1990s,15 for example in the de novo design of polymers16 and proteins.17 With the

explosion of (deep) machine learning in the 2010s, these endeavors have somewhat been

neglected in favor of other generative methods such as recurrent neural networks (RNNs),18–20

variational autoencoders,21–23 normalizing flows,24–26 and diffusion models.27–29 Nonetheless,

these models often times fall short in real world applications because they do not include

relevant constraints like limited training data or the synthetic accessibility of the generated

molecules.30 Evolutionary approaches, on the other hand, require only little initial data

and their optimization aim can be easily modulated to incorporate additional constraints.

They furthermore have the ability to explore truly new regions of chemical space whereas

ANN-based approaches tend to be limited to molecules that are similar to the training set.

There recently has been an uptake in interest for evolutionary optimization in chemistry,

with successful applications to diverse problems including the design of mechanosensitive

conductors,31 polymers,32–34 drug-like molecules,35–38 and catalysts.39–43
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Given the success of both evolutionary and machine learning in materials science, it is natural

to investigate the combination of both approaches. While being an incipient area of research

still in its infancy, efforts have been made to explore the synergies and some very promising

advances have already been achieved.

In this review we will first give a brief introduction to evolutionary learning (EL) and in

particular genetic algorithms (GAs). Next, we will review a series of studies on materials

optimization using hybrid approaches that utilize techniques from evolutionary and machine

learning. Finally, we conclude with a short summary and discuss opportunities for further

developments and applications.

GAs, first popularized by Holland in the 1970s,44 are one of many different types of EL

algorithms and are commonly used in materials science for the de novo design of materi-

als and molecules.45 Like all other types of EL approaches, they are generic and heuristic

optimization algorithms that make no prior assumptions about the solution domain. GAs

are inspired by Darwinian evolution and draw concepts from evolutionary biology such as

mutation, recombination, and selection. The underlying key idea of GAs is that evolution is

dictated by two competing forces: variation, which pushes the population towards novelty,

and selection, which pushes the population towards quality. Combining both forces in an

iterative optimization scheme leads to an efficient search strategy that balances exploration

and exploitation in solution space. The efficiency of GAs is due to the heuristic nature of

selection and recombination operations, that leverage the best partial solutions to construct

better solutions. This makes them ideal for exploring chemical spaces that are usually large

and diverse. On the flip side however, this also means that GAs are non-deterministic,

meaning that they are not guaranteed to converge to the global optimum.

In the following, the basic building blocks of GAs are briefly described. The literature

provides comprehensive overiews and discussions on the essential building blocks of GAs46

and their applications to chemistry and materials science.45
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GAs operate on a set of solutions called the population, that is iteratively optimized to

yield higher quality solutions over the course of multiple generations. Following the lan-

guage of evolutionary biology, the solutions are also called individuals, which in chemistry

and related fields usually represent molecules or materials.45 In each generation, new off-

spring solutions are created by applying genetic operations that combine information of the

currently best performing solutions (exploitation) and introduce random mutations (explo-

ration). The newly generated offspring solutions then compete against the solutions of the

previous population, and only the best performing solutions are carried over to the next

generation. This process is repeated until some sort of convergence criterion is met (often

times simply a maximal number of iterations).46,47 There are four main building blocks to

any GA that can be adapted in order to modify the evolution behavior in terms of the search

space, optimization target, selection pressure, and diversity control:

• Chromosome: Defines the representation of the solutions.

• Fitness: Measures the quality of the solutions.

• Genetic operations: Create new solutions from existing ones.

• Selection: Selects individuals of the population based on their fitness.

This modular nature makes GAs ideal for applications in chemistry and materials science

where optimization tasks are usually problem specific and diverse.45 All solutions in a GA

share a common, underlying structure that completely defines their traits. In technical terms,

this is represented as an array where each cell corresponds to a different property of the

solution. These cells are referred to as the genes, which in the array, form the chromosome,

expressing properties of a problem-dependent nature. The chromosome usually has a fixed

length and its cell values can be of different data types (e.g. boolean, integer or float).

During evolution, new offspring solutions will be created by applying genetic operations to

the chromosome. Therefore, all chromosome values are usually constrained to be of the same

data type so that meaningful recombination operations between them can be defined.46,47
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The quality of a solution is measured in terms of a so-called fitness that reflects how well

it satisfies a specified set of requirements. Thereby, it essentially defines the optimization

objective and is determined by the specific problem to be solved. The fitness is a real valued

function of the chromosome that can be thought of a hyper-surface on which the GA tries to

find (local) minima. In multi-objective optimization settings48–57 it is a vector, where each

dimension corresponds to a different property of interest. Calculation of the fitness is usually

the computational bottleneck of GAs and since it is evaluated multiple times per generation,

its choice has significant implications on the overall computational cost and performance.46,47

Genetic operations are used to generate new offspring solutions in each generation and push

the population towards novelty. They can be subdivided into two groups, crossover and mu-

tation, which are usually performed in sequence. First, the genomes of two parent solutions

are recombined in a crossover operation to form an offspring solution that then is further

modified by a random mutation. The crossover propagates characteristics of the parent so-

lutions to the offspring. Together with parent selection, it ensures that genetic information

of well performing solutions is carried over to the next generations. There exist different

implementations, such as the single point crossover in which the two parent chromosomes

are split at a random position and then exchange genes.46,47 Mutations, on the other hand,

introduce completely new genetic information in a random fashion, which ensures diversity in

the explored solutions. There are many different implementations for mutation operations,

one example is the single point mutation that randomly changes a single gene in a solution’s

chromosome.46,47

Selection pushes the population towards quality by discarding badly performing solutions.

Selection is performed twice in each generation, once to determine which solutions are re-

combined to create new offspring (parent selection), and once to determine which solutions

proceed to the next generation (survivor selection). The selection rules are usually stochastic

and dependent on the solutions fitnesses so that the fittest are more likely to be selected. This

ensures that the population evolves towards better performing solutions while maintaining
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some level of diversity.46,47

In chemistry and materials science, GAs are known to be efficient optimization tools, aiding

the exploration of large chemical spaces of diverse nature.53,58–62 Recent advances are the

graph-based GA (GB-GA)63 that utilizes the graph representations of molecules to define

crossover and mutation operations, as well as the PL-MOGA57 that facilitates the directed,

multiobjective optimization of transition metal complexes. Furthermore, GAs have been

used for the optimization of molecular structures and conformer search. For example in

the automated interaction site screening (aISS)64 approach, that finds accurate aggregate

geometries, such as dimers, at low computational cost.

Surrogate fitness functions

When evolving molecules and materials, the fitness function is often times expensive and

difficult to evaluate. This can be due to the fact that values have to be determined ex-

perimentally, which can be challenging in computational approaches, or require doing cal-

culations at an expensive level of theory, such as density functional theory. Therefore, an

obvious remedy is to replace the fitness function with a cheaper machine learning model that

is fitted to previously existing data. These surrogate models of the fitness65 have the ability

to drastically reduce the computational cost. Examples of appropriate machine learning

methods include but are not limited to linear regression, support vector machines, random

forests, and artificial neural networks (ANNs).

Janet and co-workers demonstrated the efficiency of an ANN-based fitness function in the

evolutionary optimization of spin-crossover complexes with a characteristic near-zero free

energy difference between high (H) and low (L) spin states (i.e. the spin splitting energy).66

In previous work,67 the authors had trained an ANN for predicting spin splitting energies on

2,690 relaxed transition metal complexes achieving a root mean squared error of 3 kcal/mol.

This promted the use of these models as a surrogate function in an EL framework for the
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discovery of spin-crossover complexes.

The authors adapted a GA proposed by Shu and co-workers68 that models molecules as

hierarchical trees where each node represents a molecular fragment and the edges are the

chemical bonds connecting them. With a specific set of connection rules, a chemical space of

5,664 single-center transition metal complexes could be represented, using 32 diverse, organic

ligands. The fitness was modeled with the exponential function

F = exp

(
−
(

∆EH−L

∆wH−L

)2 )
(1)

where ∆EH−L denotes the spin splitting energy, and ∆wH−L denotes a control parameter

used to regulate how strongly the fitness decreases for increasing values of ∆EH−L. Instead

of relying on expensive DFT calculations, the spin splitting energies were predicted using the

previously trained ANN.67 In each generation, parents were chosen by roulette wheel selection

with selection probabilities proportional to the absolute fitness values. Crossover operations

were defined by an edge breaking operation in the parents and a subsequent exchange of

the resulting subtrees. In each generation, five of these crossovers were performed before

randomly mutating each tree fragment with a probability of 0.15. The mutation operation

replaced the respective fragment with randomly selected fragments that lead to a valid tree

according to the connection rules. Survivor selection was done deterministically by choosing

the complexes with the highest fitness values from the combined pool of current and new

offspring individuals.

The authors further proposed two additions to this standard GA framework: a diversity

control mechanism to prevent evolutionary stagnation and a distance penalty to account

for low prediction confidence of the ANN for data points very different from the training

data. Their proposed diversity control mechanism increases the mutation probability to 0.5

if the ratio of unique complexes in the current generation falls below 25%. The increased

mutation rate pushes the GA to explore new regions in the chemical space and thereby
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prevents the GA from getting stuck in a local optimum. The distance penalty is motivated

by the observation that ML prediction results tend to become unreliable for data points very

different from the training data. In a GA where the fitness is based on surrogate predictions,

poor predictive performance can hinder evolution and lead to poor final results. Therefore,

using model uncertainty to estimate the surrogate accuracy can be useful to avoid basing

evolution on overconfident fitness predictions. In previous work,67 the authors showed that

a large distance in feature space is a potent indicator of model accuracy (Figure 1) and

successfully used it with a set of features that emphasizes metal-proximal properties.

Figure 1: ANN-based surrogate function using the distance in latent space as a measure for
uncertainty. Points that are close in feature space might not necessarily be close in latent
space.
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This approach was employed here: in order to discourage sampling of candidates with large

distances to the training data, the authors introduced a modified fitness function

F = exp

(
−
(

∆EH−L

∆wH−L

)2)
· exp

(
−
(

d

dopt

)2)
(2)

where, the second term is an exponential penalty term with d denoting the candidates average

distance to the training data points in the MCDL-25 descriptor space,67 and dopt denoting a

control parameter used to scale the distance penalty. In later works,69 the authors propose

an alternative approach that utilizes the distance in latent space (Figure 1) instead of feature

space, which has the advantage of being less sensitive to feature selection.

They benchmarked four different variants of the GA: 1) the standard GA, 2) GA with

diversity control, 3) GA with distance penalty, and 4) GA with both diversity control and

distance penalty. In all cases, the GA was initialized with a random selection of 20 complexes

and run for a total of 21 generations. The standard GA quickly converged due to a single

candidate completely dominating the solution. The GA with diversity control exhibited a

slightly higher diversity in the final population while approaching fitness values to those of

the standard GA. However, both the standard GA and the diversity-controlled GA converged

towards candidates with on average large distances to the training data and therefore low

prediction confidence. Introducing the distance penalty term in the fitness function lead to

candidates with 50% lower mean distances to the training data at the cost of a 25% reduction

of the mean population fitness. With this approach, the authors could achieve both higher

diversity in the final candidates as well as fairly small mean distances to the training data.

With ∼50 repeats of the GA, roughly half of the design space could be sampled using the

standard and diversity-controlled approach. With the combined control strategy, 80% of

the lead compounds could be identified, which constitutes an increase of ∼30% compared

to the standard GA. The majority of missed lead compounds had large distances to the

training data, indicating that the distance penalty term works as intended and discourages
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exploration in areas of low confidence, which nonetheless contain a small proportion of the

leads.

In order to estimate the robustness of the ANN-based fitness, the authors determined the

accuracy of the surrogate model for a subset of lead compounds identified by the GA. Relative

to DFT, they obtained an average test error of 4.5 kcal/mol, which is moderately higher than

the model baseline error of 3.0 kcal/mol. For complexes that were very similar to the training

data, the observed mean error was 1.5 kcal/mol. Furthermore, two thirds of the ANN lead

compounds could be validated by DFT optimization, though including solvent effects and

thermodynamic corrections reduced this ratio to one half. According to the authors, these

findings demonstrated sufficient predictive performance of the ANN fitness for its use in

evolutionary design applications.

In their conclusion, the authors emphasized the massive gains in terms of computational

efficiency compared to a traditional GA with a DFT-based fitness function that would require

up to 30 days of computing walltime. They furthermore noted that the observed ANN

errors in the final populations could be reduced by decreasing dopt and discussed options for

leveraging low-confidence candidates to retrain the surrogate model on-the-fly, in order to

improve the predictive accuracy of the model in subsequent generations.

Forrest and co-worker70 made use of similar concepts for the evolutionary optimization of

alloy compositions with respect to their glass forming ability. Instead of a single ANN, they

used an ensemble of ANNs as a surrogate fitness function in order to facilitate predictions of

relevant properties such as the temperature of the crystallization onset. Further, Kwon and

co-workers71 utilized a surrogate model in an evolutionary approach to optimize the maxi-

mum light-absorbing wavelengths in organic molecules. Since their evolutionary algorithm

operated directly on bit-string fingerprint vectors72 they furthermore used a separate RNN

to decode them into chemically valid molecular structures.
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Bayesian surrogate models

A common issue with machine learning surrogate fitness functions is that the initial data

that the model is trained on, might not cover the whole chemical space the GA tries to

explore. This will lead to low predictive quality which, in turn, hinders the evolutionary

progress and causes overall poor results. As in Janet and co-workers work66,67 this can be

accounted for in the fitness function by discouraging exploration of solutions that are very

different from the corresponding training data. An alternative approach to this problem is

to acquire new training data on-the-fly from a reference function and to refit the surrogate

model to the extended dataset. In order to minimize the number of times the expensive

reference function has to be evaluated, the data points to be acquired should be selected

with care. One possible approach for this is to use a Bayesian machine learning model

that additionally gives an uncertainty estimate, quantifying the trust the model has in its

prediction. If the uncertainty for a given data point is higher than a specified threshold, it

should be acquired with the reference function and added to the training data. This general

workflow of Bayesian surrogate fitness functions is illustrated in Figure 2. This ensures

that no unnecessary reference function evaluations are performed and efficiently generates a

dataset that covers the chemical space of interest. This idea is based on the active learning

framework which has been thoroughly explored for applications in chemistry and materials

science.73–75 The combination of Bayesian surrogate models and GAs however, is still a fairly

new and unexplored area of research.

In their 2019 study,76 Jennings and co-workers showcased such a model by investigating the

atom ordering of a 147-atom Mackay icosahedral structure.77 They considered all possible

compositions PtxAu147−x for all x ∈ [1, 146]. The optimization goal was to locate the hull

of minimum excess energy configurations for all compositions as calculated by the Effective

Medium Potential (EMT) potential,78 which served as the fitness. The authors defined a

traditional GA that operates on the configuration of Pt and Au atoms. Cut and splice

crossover functions79 as well as random permutation and swapping mutations were used to
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Figure 2: Conceptual workflow of a Bayesian surrogate fitness functions. Data points with
high prediction uncertainties are acquired using a high fidelity reference method and added
to the training dataset.

create new offspring configurations. The crossover and mutation operations were set up to be

mutually exclusive, meaning that offspring was created using either one or the other method.

Parents were selected with a roulette wheel selection scheme based on the fitness values. In

order to ensure that all compositions were searched, the authors furthermore employed a

niching scheme in which solutions are grouped according to their composition. Their fitness

was then determined per niche and the best configurations per composition niche were given

equal fitness.

For the surrogate model they employed Gaussian process (GP) regression, the most com-

monly used method in Bayesian optimization. They employed the squared exponential kernel

defined as

k(x,x′) = exp

(
− 1

2w2
||x− x′||2

)
(3)

where x and x′ denote the feature vectors to compare, || · ||2 denotes the Euclidean distance,

and w is the hyperparameter defining the kernel width. The inputs to the model were

numerical fingerprints that described the chemical ordering within a composition based on
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the number of nearest neighbors. In particular the feature vector for each configuration was

given by

fd =

[
NXX

N
;
NXY

N
;
NY Y

N
;M

]
(4)

where N denotes the number of atoms, M denotes the overall mass, and NXY denotes the

number of bonds between atom types X and Y . The model was trained on relaxed structures

even though predictions used the unrelaxed structures. The authors justified this by the fact

that their set of descriptors is invariant to small changes in the geometries.

The authors began by setting up a baseline run using a traditional GA using the EMT po-

tential as a fitness function and no surrogate model. With roughly 16, 000 fitness evaluations

the GA was able to locate the convex hull, which is already a massive improvement com-

pared to the brute-force approach that would require 1.78 · 1044 energy evaluations. They

continued by setting up an ML accelerated approach based on a nested GA in which the

GP-based surrogate fitness function is used. In each iteration the current population in the

main GA was passed to the nested GA in which solutions were evolved solely based on the

prediction of the GP model trained on the current data. After a number of iterations the

evolved population was passed back to the main GA where the true fitness of candidates

is calculated with the EMT potential before applying recombination and selection as in the

traditional GA. The calculated EMT fitness was furthermore used to retrain the GP model

improving its predictive accuracy for the next run of the nested GA. After survivor selection,

the population from the main GA was again passed to the nested GA for evolution. The

algorithm was terminated when the nested GA did not find any candidates that improved

the population. With the ML accelerated GA the authors reported to find the convex hull

within 1,200 energy evaluations, which constituted about 7.5% of the amount needed in

the traditional GA. While in total more structures were checked, most of them were only

evaluated using the cheap GP model and only few were calculated with the expensive EMT

potential.
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The authors furthermore presented this alternative fitness function based on a candidates

probability of improving upon the currently best known solution:

P (Ex < Ebest) =
1√
2π

∫ 0

−∞
exp

(
−Ẽx − Ebest

σ̃2
x

)
dx (5)

Here, Ex and Ebest denote the EMT energies of the candidate x and the currently best

known solution respectively, and Ẽx and σ̃2
x denote the GP-predicted energy and variance,

respectively. In this way, the uncertainty of the prediction is included in the fitness function,

which encourages the nested GA to also explore unknown regions of the search space. This

definition of the fitness is akin to acquisition functions in active learning frameworks, such

as the expected improvement score.80 Using this approach, the authors reported to find

the convex hull with only 280 required energy calculations indicating its superior ability to

efficiently sample the solution space.

Finally, the authors replaced the EMT potential with a more accurate DFT calculation and

repeated the experiments in order to prove that the obtained results were not an artifact of

the EMT potential. The results showed that a performance similar to that observed with

the EMT potential could be achieved, requiring ∼ 700 DFT evaluations.

Overall, this work demonstrated a significant speed-up with their ML-accelerated GA and

motivated further improvements by proposing a way of including geometry optimization with

additional genetic operators acting on the atomic coordinates.

Ensuring population diversity

Sufficient exploration of the chemical search space is a key challenge when employing GAs

for the de novo design of molecules and materials. Often times the optimization can get

stuck in local minima due to low diversity in the population of solutions, which prevents the

GA from exploring all relevant regions in the search space. This leads to slow convergence

and overall poor results. Therefore, an efficient, on-the-fly management of the population
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diversity is essential in order to ensure comprehensive sampling of the chemical space.

To tackle this problem with an ML approach, Nigam and co-workers proposed an augmented

GA architecture that includes an ANN with the explicit task of increasing the populations

diversity.81 They modeled the fitness as a linear combination of the molecular property to

optimize (J) and a discriminator score (D) that measures the novelty of the molecule m:

F (m) = J(m) + β ·D(m) (6)

where β denotes a hyperparameter that is used to control the weight of the discriminator

score and J was chosen to be the penalized logarithm of the water-octanol partition coefficient

defined as

J(m) = logP (m) − SA(m) − RP(m) (7)

where logP denotes the logarithm of the water-octanol partition coefficient, which is the

actual target, SA denotes a synthetic accessibility penalty,82 and RP denotes a penalty for

rings with more than 6 atoms. The GA operates directly on the so-called SELFIES83 strings

that represent the different molecules. Compared to the more traditional SMILES strings,84

SELFIES are defined in terms of a formal grammar comprising a set of derivation rules.

With these, SELFIES can be translated into SMILES character-by-character akin to a state

machine, where the next output character depends on the current state of the machine and

the input. The set of derivation rules is crafted so that all SELFIES correspond to a valid

molecule, making them an extremely robust molecular representation. The authors restricted

the search space to solutions that produce SMILES strings with up to 81 characters. The

robustness of this representation allowed for specifying random insertion and replacement

mutations directly on the SELFIES character level. In contrast to the standard GA setup,

they did not use any crossover operations, meaning that offspring solutions were created

by only applying these mutations to the parents. Survivor selection at the end of each

generation was performed stochastically, where selection probabilities were calculated using
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a logistic function based on the fitness rankings of solutions.

The discriminator D(·) is a dense ANN with ReLU activations and a sigmoid output layer

that distinguishes molecules generated by the GA from molecules of a reference dataset. In

each generation it is trained for 10 epochs on the molecules of the current population and an

equal amount of molecules randomly drawn from the reference dataset, using chemical and

geometrical properties as features. In the next generation, this model is then used to assign

novelty scores to the newly generated molecules. Molecules that are similar to the molecules

of the previous generation will receive low scores, whereas molecules that are more similar to

structures of the reference dataset will receive high scores. Because the discriminator score

enters the fitness function, the novelty of proposed molecules directly influences their chance

of survival. This effect is illustrated in Figure 3 displaying the workflow of the discriminator

ANN. A nice property of this approach is that the discriminator ANN will become very good

at identifying long-surviving molecules, assigning low novelty scores, and therefore making

it less likely that they will proceed to the next generation. This discourages the survival of

already explored solutions and forces the GA to explore regions of the chemical space that

are similar to the reference dataset. The authors confirmed this in an investigative study

showing that the higher the value of β, the more similar to the reference dataset are the

proposed molecules.

The authors further refined their approach with an adaptive discriminator scheme that in-

troduces a time-dependence for the β parameter. In this setting, β is set to zero and only if

the optimizations stagnates its value is increased to 1000, in order to encourage exploration.

Once stagnation is overcome, β will be set to zero again.

In their experiments, the authors used a subselection of 250k commercially available molecules

from the ZINC dataset85 as the reference dataset and benchmarked their architecture with

(β = 10) and without (β = 0) the discriminator module. The results showed an increase

in the maximum, achieved, penalized logP values of roughly 5% by using the discriminator.

The best logP values were achieved with the time-dependent discriminator, giving a 55%
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Figure 3: Workflow of the discriminator ANN. The overall fitness F is calculated as a
weighted sum of the optimization target J and the discriminator ANN novelty score D. The
fitness of long-surviving candidates with low novelty will gradually decrease making their
survival less likely.

performance increase compared to the regular discriminator. The authors claimed to outper-

form the highest literature values by a factor of more than 2. With a principal component

analysis and clustering of all generated molecules, the authors furthermore showed that, in

the time-dependent approach, the population never stagnated in one chemical family, se-

quentially moving towards different regions in the chemical space.

The study also focussed on the simultaneous optimization of logP and drug-likeness by in-

corporating the QED score86 in the fitness function. Their benchmark results on the ZINC85

and GuacaMol87 datasets suggested that their GA is able to efficiently sample the Pareto

front spanned by the two properties.

The authors concluded by highlighting the domain independence of their approach, mak-

ing it interesting also for applications outside the field of chemistry and discussed possible

improvements using another ANN for fitness evaluation.
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Balancing exploration and exploitation

While broad exploration of the chemical search space is important for sampling from a

variety of different molecular families, effective exploitation for finding the best solutions

within these local regions is equally important in order to obtain optimal results. However,

increasing selection pressure in order to promote solutions of higher quality often times

compromises a GA’s explorative ability because suboptimal steps that might be necessary to

escape local minima are strongly discouraged. Finding a good balance between exploration

and exploitation is crucial in order to maximize the quality of the final population and

increase the GAs efficiency.

To that end, Nigam and co-workers improved on their previous ANN-augmented GA81 by

proposing JANUS,88 a parallel GA guided by ANN. JANUS maintains two distinct and

independent, fixed size populations as they are separately evolved. With this two-pronged

approach, one population is responsible for exploration while the other takes care of ex-

ploitation. At the beginning of each generation, the populations can furthermore exchange

individuals in order to combine the benefits of both approaches. A schematic description of

the JANUS architecture is shown in Figure 4.

Analogous to their previous work, JANUS operates directly on SELFIES strings that rep-

resent molecules and, as in any other GA, the quality of an individual is measured using

a fitness function. Selection of survivors is performed deterministically, meaning that only

the best solutions proceed to the next generation. The genetic operators employed differ

for the two different populations in order to promote either exploration or exploitation.

The exploitative population uses the same insertion and replacement mutations excluding

crossovers, as in their previous work,81 and applies them to the n currently best solutions.

In addition to these mutations, the explorative population uses an interpolation crossover

that generates paths between two parents through matching and replacing characters until

both are equal. For all intermediates along these paths, the joint similarity89 to both par-

ents in terms of the Tanimoto score is calculated and the molecule with the highest score
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is selected as the final offspring resulting from crossover. Parents are selected according to

a simulated annealing strategy that allows badly performing individuals to be selected with

low probabilities which allows the population to escape local minima.

Figure 4: Schematic depiction of the JANUS architecture. Two separate populations are
propagated in parallel using different genetic operations in order to promote exploration in
one, and exploitation in the other. An exchange of individuals at the end of each generation
allows the two populations to mix.

Additional selection pressure is applied to filter the offspring individuals before survivor

selection. In the exploitative population only molecules that are similar to the parents are

propagated further. In the explorative population an ANN is used to predict fitness values

and, based on its predictions, the highest scoring individuals are added to the population.

Alternatively, a classifier ANN can be used which directly sorts the offspring individuals

into either “good” or “bad”, only letting “good” molecules to enter the population. Either

approach effectively constitutes a pre-selection of the most promising solutions at a low

computational cost. The ANN is trained in each generation with all molecules for which the
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fitness is known. This implies that the ANNs predictive accuracy becomes better over the

course of multiple generations as more data is added to the training set. For the classifier

ANN, a %-threshold is used to identify which molecules belong to the “good” and “bad”

classes. In their study, the authors experimented with the top 50% and 20%.

The authors tested their architecture on common molecular design benchmarks. As in their

previous work,81 they first investigated the optimization of the penalized logP value as de-

fined in equation 7, modeling molecules using the robust SELFIES representation with a

maximum character limit of 81. In total, four different variations of JANUS were tested:

plain without additional selection pressure added in the explorative population, modified

with the fitness ANN predictor, and modified with the ANN classifier with thresholds of

50% and 20%. All variants outperformed other approaches from the literature in terms

of the single best molecule. On average only one model (genetic expert-guided learning90)

performed better than JANUS. The authors previous GA discriminator approach81 could

achieve results of similar quality only after 10 times the number of generations. Using the

fitness ANN predictor increased the median population fitness compared to the plain model

without additional selection pressure. Similar trends could be observed for the ANN classi-

fiers, all converging into the same local optimum within 100 generations. The convergence

rate however, showed a significant dependence on the thresholds. With the 20% threshold,

the local optimum was reached already after less than 20 generations, whereas with the 50%

threshold, almost 100 generations were required. At the same time, the 20% threshold lim-

ited the exploration of the chemical space as indicated by the smaller fitness ranges spanned

in the generations. With the 50% threshold, these ranges were much larger even surpass-

ing those obtained with the ANN predictor. Finally, the authors compared the number of

evaluations needed in order to reach certain fitness values (J(m) = {10, 15, 20}) for all four

variants. The model using the ANN classifier with a threshold of 20% needed the smallest

number of evaluations, and the model using the ANN predictor needed the second smallest.

The largest number of evaluations was required by the plain model, highlighting the benefit
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of the additional selection pressure introduced by the ANNs.

JANUS was furthermore tested on two more molecular benchmarks: the imitated protein

inhibition task,91 in which the objective is to generate 5000 molecules that inhibit two

different proteins (either one or both) while exhibiting high drug-likeness as measured by

the QED score86 and low synthetic accessibility penalty as measured by the SA score,82 and

a docking task92 considering four different protein targets with the goal of finding molecules

that minimize the respective docking scores. In both benchmarks the authors found JANUS

to outperform other approaches from the literature and achieve state-of-the-art results in

terms of the fitness objective. The diversity of generated molecules however was reduced

compared to results from the literature. The authors proposed that the incorporation of a

discriminator81 may promote population diversity and alleviate this shortcoming.

The authors concluded their work by discussing the low synthetic accessibility of most of the

generated compounds in all investigated benchmarks and proposed ways of directly account-

ing for synthesizability in the molecular design process, either during structure generation or

fitness evaluation, and using multi-objective GAs that do not make use of the naive weighted

sum approach. In this regard, there are now powerful alternatives like the PL-MOGA.57 The

authors furthermore discussed plans for incorporating their previously developed discrimi-

nator for population diversity81 into the JANUS framework in order to improve the GAs

ability to escape local minima.

Modifying crossover

Constraint handling in GAs is crucial if the design objective entails certain requirements

that have to be satisfied and essentially restricts the effective search space by biasing the

search towards specific solutions. One common approach for this is to explicitly incorporate

appropriate rewards or penalties into the fitness function as a weighted sum. As highlighted

in previous works,81,88 an important constraint in the evolutionary generation of molecules
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that is commonly handled this way is the synthetic accessibility accounted for in the penalized

logP score (equation 7). This bears multiple issues however, one of which is the difficulty of

choosing appropriate weights to properly balance the optimization goal while constraining

rewards and penalties. Furthermore, the weighted sum approach dilutes the fitness value

of the actual optimization goal by mixing it with reward or penalty factors. This approach

also does not enforce constraints in a strict manner: solutions with both high fitness and

low rewards/high penalties can still perform mediocre even though the rewards/penalties

are above/below a certain cutoff.

Alternatively, Pareto-based multi-objective optimization techniques can be employed to in-

corporate the constraints as separate optimization goals. By using appropriate methods to

guide the search57 effective cutoffs for the constraints can be implemented. However, if there

are many constraints to encode or other optimization objectives to consider, optimization

efficiency and convergence speed will suffer drastically due to the curse of dimensionality.

An entirely different approach is to modify the genetic operators so that the generated off-

spring solutions satisfy the desired constraints. In this way, the fitness function remains

completely independent from the specific constraints while ensuring that all generated solu-

tions satisfy them intrinsically. Naively, this can be implemented by preselecting proposed

offspring solutions based on threshold values for the constraints to be considered.

By introducing ChemistGA (Figure 5),93 Wang and co-workers demonstrated the use of

an ANN-based crossover operation to account for synthetic accessibility during offspring

generation in the evolutionary de novo design of drug-like compounds. The optimization

goals were, in different combinations, protein activities for DRD2, JNK3, and GSK3β, drug-

likeness as measured by the QED score,86 and synthetic accessibility as measured by the SA

score.82 All molecules were represented as SMILES strings.

As shown in Figure 5, the first step in their architecture creates two separate parent popu-

lations by randomly drawing a number of solutions from the main population. A crossover

operation based on the Molecular Transformer94 (MT) ANN is applied to all possible pairs of
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the two parent populations. The MT is intended to solve the forward problem in synthesis

planning by modeling it as a language translation problem: based on two given reactant

SMILES, it predicts a product SMILES using a multi-head attention mechanism.95 The au-

thors observed that the predicted product inherits structural properties from both reactants

and therefore the MT could be implemented as a crossover operation in their GA architec-

ture. Furthermore, because the MT is trained on a dataset of known reactions, it implicitly

promotes the synthesizability of the generated molecules. Interesting to note is the fact that

the MT is not just a strict crossover between two input individuals since it also introduces

entirely new information into the output individuals, by building structures in an autore-

gressive manner and can therefore be considered a hybrid crossover-mutation operation. The

top-50 of all solutions generated in this way are retained and, with a 1% probability, one of

these additional mutations is applied: append/insert/delete atom, change atom type/bond

order, delete/add ring/bond. These mutations are implemented with SMARTS strings,96

which specify molecular substructures using the SMILES line notation. Furthermore, back-

crossing between offspring and parents is employed after a certain number of generations

by inserting a subset of the initial population into the current population. The purpose of

this is to prevent the GA from getting stuck in local optima. Finally, the fitness scores for

the generated offspring solutions are calculated and the best performing ones are added to

the main population, which is used in the next iteration to again create two separate parent

populations. Instead of directly using the continuous fitness values, these are discretized into

a binary representation assigning 1 when a prespecified requirement R (e.g. the SA score82

is above a certain threshold) is met or 0 otherwise. The authors claim that this increases

the diversity in the selection of individuals.

F (m) =


1 if R(m)

0 otherwise

(8)
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Figure 5: Schematic workflow of the ChemistGA algorithm. Offspring individuals are ob-
tained using the Molecular Transformer architecture, promoting synthesizability. Backcross-
ing between the parent and offspring individuals prevents the search from getting stuck in
local optima.

The authors furthermore propose an alternative architecture, R-ChemistGA, that utilizes a

random forest surrogate model for molecular property prediction in order to reduce com-

putational cost during fitness evaluation. Every fifth generation the molecular properties

are calculated using the true fitness function, and the obtained values are used to retrain

the random forest in order to improve the models predictive accuracy. While the resulting

model add noise to the evolutionary process, it is also much more appropriate for a real

world application in which property predictions are expensive and may not necessarily be

carried out freely.

In a first benchmark experiment, the authors tested their model against the graph-based

genetic algorithm (GB-GA),63 a GA architecture proposed by Jensen and co-workers,63 on

a task aimed at maximizing activity for protein targets JNK3 and GSK3β, as well as the

QED and SA scores. Almost 50% of molecules generated by ChemistGA had high activities

for both proteins, whereas GB-GA was not able to generate any. Looking at the different
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optimization goals individually, ChemistGA outperformed GB-GA with respect to all but

the SA score, for which the two models performed similarly. Further investigations revealed

that ChemistGAs crossover approach facilitated a more reasonable inheritance of molecular

patterns due to the MT preserving the parents substructures more accurately.

Next, they investigated performance in terms of synthesizability, novelty, diversity, and the

quantity of unique molecular skeleton types based on the Murcko scaffold97 for 5,000 gen-

erated molecules. Two different optimization tasks were assessed: 1) one with only DRD2

and 2) one with JNK3 and GSK3β as protein activity targets in addition to the QED and

SA scores. They benchmarked their results against GB-GA and REINVENT.98 In both

tasks, ChemistGA outperformed the other models in terms of novelty and diversity of gener-

ated molecules while achieving similar synthesizability. In terms of the number of generated

molecular scaffolds, ChemistGA slightly outperformed REINVENT but was inferior to GB-

GA in task 1). In task 2) however, ChemistGA generated more than four times as many

distinct scaffolds compared to REINVENT. Overall, the proposed architecture seemed to ex-

hibit higher capabilities of exploring the chemical search space compared to the benchmark

models.

Finally, the authors turned their attention to their alternative proposed architecture R-

ChemistGA, which uses a random forest surrogate to predict fitness values and ran it on the

same two tasks. Compared to their baseline model, ChemistGA, the number of generated

molecules with R-ChemistGA exhibiting desired properties was twice as high per evaluation

of the true fitness function. This indicates that a GA utilizing a noisy surrogate model is

still able to guide the optimization into favorable directions. In terms of synthesizability,

diversity, and number of scaffolds, R-ChemistGA performed slightly worse compared to

the baseline, though the novelty of generated molecules was the highest of all investigated

models. Using a t-SNE99 plot of the best synthesizable molecules, the authors furthermore

showed that R-ChemistGA explores larger regions of chemical space and asserted that their

architecture produced more reasonable molecules with higher synthesizability.
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Evolution in latent space

In applications to chemistry, a key aspect in the design of effective GAs is to find an ap-

propriate chromosomal representation upon which the genetic operators act (crossover and

mutation). String representations such as SMILES84 and SELFIES83 are commonly used

because they are easy to implement and offer a high degree of flexibility.35,89,100 Alternatively,

the problem can be discretized by starting from some sort of scaffold that in specific places

of the structure allows for the inclusion of molecular fragments chosen from a predefined

library.57,101,102 A potential issue with this is that the specific representations implicitly de-

fine the search space of the EL algorithm and improper choices can limit the search to only

certain parts of the chemical space. Therefore, users need domain knowledge in order to

make appropriate choices.

In the Deep Evolutionary Learning (DEL)103 framework, Grantham and co-workers made

use of an entirely different way of representing molecules in terms of latent space represen-

tations learned from autoencoder104 type ANN architectures. In particular, they employed

a modified variant of a variational autoencoder (VAE)105,106 proposed by Podda and co-

workers107 that operates on molecular fragments in terms of SMILES84 strings. Given an

input SMILES string, their FragVAE first separates it into fragments and embeds them as

tokens using Word2Vec.108 In the encoding step of the VAE, the sequence of fragment tokens

is passed through gated recurrent units,109 encoding them into a latent representation for

the full molecule. The decoding step operates in a similar fashion, beginning with a “start

of sentence” token and subsequently taking the predicted fragments as inputs to reconstruct

molecules similar to the initial input. The VAE is pretrained to minimize the reconstruc-

tion loss on an initial training data set, and fine-tuned during evolution on samples from

the population. A similar use of a simple VAE in an EL framework had been proposed

earlier by Sousa and co-workers.110 Grantham and co-workers proposed a modification to

the original VAE model, that adds an additional ANN to predict molecular properties from

the latent space, which has the effect of regularizing the representations with properties of
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interest. The EL algorithm was initialized with a random sample from a reference dataset.

At the beginning of each generation, the VAE encoder is used to project all individuals in the

current population into latent space representations upon which all genetic operators acted

directly. Parents are selected based on non-dominated ranking in a multi-objective setting,

where individuals are sorted into non-dominated Pareto frontiers. Within each frontier,

none of the individuals is better than any other individual with respect to all optimization

goals.111 Furthermore, the crowding distance, i.e. a measures of the density around a partic-

ular individual, is employed in order to promote diversity in the population. Two different

crossover operations are used: linear blending and single-point46,47 crossover. In the former

the offspring feature vectors z1 and z2 are obtained as

z1 = zp1 + r1(zp2 − zp1)

z2 = zp1 + r2(zp2 − zp1) (9)

where zp1 and zp2 denote the latent vector representations of two parents, and r1 and r2 are

defined as

r1 = −d + α1(1 + 2d)

r2 = −d + α2(1 + 2d)

α1, α2 ∼ N (0, 1)

d ≥ 0 (10)

where d is a hyperparameter that controls the trade-off between exploration and exploitation,

which was set to 0.25 following previous suggestions.112,113 The architecture of the FragVAE

model including the downstream crossover operations is shown in Figure 6. After crossover,

mutation is randomly applied to all offspring individuals with a probability of 0.01. In the

mutations, the representation of offspring individuals is changed in a random single position
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by adding a normally distributed random variable m ∼ N (0, 1). Next, the decoder part

of the VAE is used to generate actual molecular structures from the offspring latent space

representations that are then used to determine their fitness. The current population and

offspring population are merged together and survivors are subsequently selected in the same

way as parents. The new population, including the fitness values, is used to fine-tune the

VAE and the next generation is started by projecting the new population into the latent

space representations using the VAE encoder. Upon convergence, the algorithm returns the

final evolved population.

Figure 6: Schematic workflow of the FragVAE architecture that takes molecules in terms
of their constituting fragments as inputs and tries to reconstruct them with minimal error.
Crossover operations in the EL algorithm operate directly on the latent space representations.
The ANN is used to regularize the model with respect to certain properties ŷ.
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The authors benchmarked their method on a subset of the ZINC85 and PCBA114 datasets,

simultaneously optimizing the drug-likeness in terms of the QED score,86 synthetic acces-

sibility, as measured by the SA score,82 and the logarithm of the water-octanol partition

coefficient logP . Most of the generated molecules were different from the training set and

the ratio of unique structures in the final population was high, with values up to 99%.

Furthermore, it was reported that the amount of high performing individuals per genera-

tion increased along the evolutionary process. By comparing the distributions of the initial

data with the distributions over the generated samples, the authors also showed that their

approach was able to explore areas of the chemical space beyond the training data. This

property of the DEL approach was furthermore highlighted in comparisons with models from

the MOSES benchmarking framework,115 which in most cases generated distributions very

closely aligned with the respective training dataset. In benchmarks against multi-objective

Bayesian optimization methods, it was shown that DEL explored a larger hypervolume in

the chemical space while also generating molecules of higher performance.

In closing, the authors discussed the scalability and general applicability of their method and

proposed the integration of geometric deep learning models to better represent molecules in

terms of their 3D structures.

Abouchekeir and co-workers116 adapted this approach by replacing the VAE with an ad-

versarial autoencoder (AAE)117 that aims at decoding latent space vectors into molecular

structures indistinguishable from the training data distribution. Benchmarked on the same

datasets and optimization goals, their method produced better candidates in the final pop-

ulation and explored a larger hypervolume in chemical space compared to the original DEL

approach. The authors attributed this to the more organized latent space produced by the

AAE.
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Summary and outlook

The combination of ML methods and EL strategies for the de novo design of molecules and

materials is an incipient research topic. However, the here presented studies show that the

synergistic interplay of the two paradigms can lead to significant increases in performance.

The majority of research in this field seems to focus on surrogate fitness functions that can

reduce computational costs by employing ML models to predict fitness values instead of uti-

lizing an expensive reference function. A key technology for the robust exploration of massive

chemical spaces are surrogate fitness functions based on Bayesian ML that can acquire new

data points on-the-fly. While most efforts so far have focused on Gaussian process regression,

future work should explore the applicability of other methods such as Bayesian ANNs.118–120

This will allow the research community to more efficiently and accurately explore massive

chemical spaces, identifying interesting regions property-wise.

Besides the fitness function, other uses of ML methods in EL seem to be less explored in

the literature. However, the works reviewed here for maintaining population diversity81

and facilitating constrained crossovers93 showed promising results. The proposed models

outperformed the GAs that were not augmented with ML, indicating their superior efficiency

compared to traditional methods. However, their behavior needs to be further explored on

more diverse benchmarks and improved architectures should be derived based on the findings

of these investigations.

Most works discussed here only consider single-objective optimization problems or employ

some sort of weighted sum approach to condense different optimization goals into one objec-

tive. Research on multi-objective GAs that make use of ML surrogate fitness functions seems

to be largely unexplored. However, multi-objective evolutionary optimization in chemistry

and materials science has many interesting applications with the common goal of efficiently

sampling the Pareto front spanned by multiple properties.57 Being able to employ surro-

gate fitness functions in multi-objective settings will also be crucial for enabling the ML-

accelerated study of these problems. A fundamental question therein is to define the way
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predictions are facilitated: using a single surrogate model for all objectives or using sepa-

rate surrogate models, one for each objective. The comprehensive benchmarking of their

respective performance in terms of prediction quality and computational cost will contribute

to advancing the field, providing researchers with guidelines for choosing the most effective

approach to their specific applications.

Another interesting ML-based modification of GAs that has not been addressed in the liter-

ature, are the so-called ∆-ML approaches for fitness surrogate functions. In ∆-ML, instead

of directly trying to predict the ground truth, a correction term to a cheap approximation

to the reference method is learned. The final prediction can then be obtained with

yref = yapprox + ∆ (11)

where yref denotes the ground truth as defined by the reference method, yapprox denotes an

approximation to the ground truth, and ∆ denotes the learned correction between both.

Because this approach requires the additional evaluation of an approximation method, it

is has a higher computational cost than standard ML. However, ∆-ML approaches bear

the advantage that the features used to predict the correction term can come from the

approximation method. These features might contain more relevant information that can be

leveraged in the ML model to reduce errors. Overall, research suggests a significant increase

in predictive performance.121–123

In chemistry and materials science, an interesting application for ∆-ML is the prediction

of corrections for energies and properties from semiempirical approximations124–126 such as

GFN2-xTB127 to ab initio methods such as DFT. In evolutionary molecule design, fitness

functions based on ab initio calculations are often times associated with prohibitively high

computational costs, whereas semiempirical approximations are usually feasible. The use of

∆-ML in EL applications as a cheap yet accurate fitness function can potentially lead to

better convergence properties and increase the quality of the solutions evolved.
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Finally, the complex nature of such synergistic architectures requires users to have exten-

sive knowledge of evolutionary and machine learning, rendering them difficult to use by

non-experts. Efforts should go into the development of general frameworks that make these

methods more easily accessible by a larger community, in order to enable their application to

interesting problems within the fields of chemistry and materials science. For this, a culture

of open code and data is crucial in which support for command line usage and compre-

hensive documentation facilitate the use and adaptation of existing methods. Furthermore,

promoting avid exchange between method developers and users, as well as in between the

theoretical and experimental communities, will help to increase the scientific impact of these

methods.
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