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Abstract 

Van der Waals (vdW) heterojunctions, consisting of two-dimensional monolayers, represent a 

recent category of materials characterized by their highly adjustable band alignment, bandgap 

energy, and bandgap transition characteristics. In this investigation, we employed density 

functional theory calculations to explore the formation of a vdW heterojunction involving 

heptazine-based graphitic carbon nitride (g-C3N4) monolayer and CoN4 (111) slab, denoted as 

g-C3N4/CoN4. This specific heterojunction holds promise as a potential catalyst for solar-driven 

photocatalysis in the water-splitting reaction. Upon the creation of the heterojunction, a type-I 

direct bandgap (Eg = 2.00 eV) is established, featuring appropriate conduction band minimum 

and valence band maximum levels in relation to the oxidation/reduction potentials for the 

water-splitting reaction. Moreover, the band alignment, bandgap energy, and transition type of 

the heterojunction can be tuned finely by applying external perpendicular electric fields (±0.5 

V/Å) and biaxial strains of (±6 %). Notably, a -2% strain induces a type-II band alignment (Eg 

= 2.1 eV, direct), while an electric field of +0.5 V/Å also results in a type-II heterostructure (Eg 

= 1.90 eV, direct). The state-of-the-art DFT study reveals a photocatalytic crossover in g-

C3N4/CoN4 from type-I to type-II in presence of bilateral strain and electric field. 

Introduction 

The worldwide attention on energy shortage and environmental pollution, driven by industrial 

development and population growth, has led to a strong desire to explore and develop clean 
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and renewable energy sources [1-12]. One of the key strategies is the conversion of solar energy 

into other valuable forms of energy through various methods, such as photocatalysis [13-16], 

solar cells [17], photoelectrochemical cells [18], and photothermal conversion [19]. Among 

these, photocatalysis stands out as the most promising approach due to its ability to use solar 

energy to produce valuable fuels like hydrogen, oxygen, methanol, methane, and ethanol [20-

24]. Graphitic carbon nitride (g-C3N4)-based materials have gained considerable interest as 

promising photocatalysts, thanks to their ease of preparation and functionalization, attractive 

electronic band structure, high physicochemical stability, and good photocatalytic performance 

[25-27]. However, despite notable progress, the photocatalytic efficiency of conventional g-

C3N4-based photocatalysts is still too low for practical applications due to rapid electron-hole 

recombination and poor light utilization efficiency [28-30]. Thus, it is crucial to explore 

advanced g-C3N4-based photocatalysts with high light utilization efficiency and effective 

electron-hole separation. 

In order to improve the photocatalytic properties of g-C3N4-based photocatalysts, various 

techniques have been proposed, such as doping [31-32], porous architectures [33-34], highly 

crystalline structures [35], metal loading [36-37], and heterojunction construction [38-39]. 

Typically, there are three types of conventional hetero-junction photocatalysts: those with a 

straggling gap (Type-I), those with a staggered gap (type-II), and those with a broken gap (type-

III) [40]. For the Type-I heterojunction photocatalyst, the conduction band (CB) and the 

valence band (VB) of semiconductor A are higher and lower, respectively, than the 

corresponding bands of semiconductor B [41]. As a result, under light irradiation, electrons 

and holes accumulate at the CB and VB levels of semiconductor B, respectively. However, 

since both electrons and holes accumulate on the same semiconductor, the electron-hole pairs 

cannot be effectively separated for the Type-I heterojunction photocatalyst. Additionally, a 

redox reaction occurs on the semiconductor with the lower redox potential, significantly 

reducing the redox ability of the heterojunction photocatalyst. On the other hand, for the type-

II heterojunction photocatalyst, the CB and VB levels of semiconductor A are higher than the 

corresponding levels of semiconductor B [42-44]. Therefore, the photogenerated electrons will 

transfer to semiconductor B, while the photogenerated holes will migrate to semiconductor A 

under light irradiation, resulting in a spatial separation of electron-hole pairs. The redox ability 

of a type-II heterojunction photocatalyst will also be reduced due to the reduction reaction 

occurring on semiconductor B with a lower reduction potential and the oxidation reaction 

occurring on semiconductor A with a lower oxidation potential.The architecture of the type-III 
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heterojunction photocatalyst is similar to that of the type-II heterojunction photocatalyst, but 

the staggered gap becomes so extreme that the bandgaps do not overlap[45-46]. Therefore, 

electron-hole migration and separation between the two semiconductors cannot occur for the 

type-III heterojunction, making it unsuitable for enhancing the separation of electron-hole 

pairs. Among the conventional heterojunctions mentioned above, the type-II heterojunction is 

the most effective conventional heterojunction for improving photocatalytic activity due to its 

suitable structure for spatially separating electron-hole pairs. In the past several decades, 

extensive efforts have been made to prepare different type-II heterojunction photocatalysts, 

such as TiO2/g-C3N4[47], BiVO4/WO3[48], g-C3N4–WO3[49], and g-C3N4–BiPO4[50], to 

enhance photocatalytic activity. Generally, type-II heterojunction photocatalysts exhibit good 

electron-hole separation efficiency, a wide light-absorption range, and fast mass transfer. 

Zhou et al. developed a SnO2/TiO2 type-II heterojunction photocatalyst for RhB degradation 

through an electrophoretic-deposition (EPD) and calcination method [51]. Commercial TiO2 

was deposited onto F-doped SnO2-coated glass using EPD and then calcined at various 

temperatures (200, 300, 400, 500, and 600 °C) to create crystallized SnO2/TiO2 type-II 

heterojunction photocatalyst films. All the samples showed good photocatalytic activity owing 

to the fast electron-hole separation through the type-II heterojunction between TiO2 and SnO2. 

The sample prepared at 400 °C exhibited the highest photocatalytic activity among all samples 

studied. This can be attributed to its optimal crystallinity and specific surface area, which 

reduce the number of recombination centers on the sample and provide a larger surface area 

with active sites for photocatalytic reactions. Ong et al. systematically explored the 

photocatalytic potential of two types of heterojunction photocatalysts, Type-I Ag/AgCl/g-C3N4 

and Type-II Ag/AgBr/g-C3N4, with a focus on CO2 reduction [52]. Both Ag/AgCl/g-C3N4 and 

Ag/AgBr/g-C3N4 demonstrated effective photocatalytic performance in CO2 reduction, 

particularly in CH4 production, attributed to the presence of the heterojunction, which 

improved the charge-carrier separation in these photocatalysts. Notably, Ag/AgBr/g-C3N4 

exhibited significantly superior photocatalytic CO2 reduction activity for CH4 production 

compared with Ag/AgCl/g-C3N4. This difference was attributed to the formation of a type-II 

heterojunction in Ag/AgBr/g-C3N4, as opposed to the Type-I heterojunction in Ag/AgCl/g-

C3N4. The type-II heterojunction facilitated the spatial separation of electrons and holes by 

accumulating them in the Ag/AgBr and g-C3N4 regions, respectively. This study conclusively 

demonstrated that type-II heterojunctions in photocatalysts are more effective than Type-I 

heterojunctions in enhancing their photocatalytic CO2 reduction activity. 
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We have established a heterojunction between g-C3N4 and CoN4. We extensively investigated 

the stability, transport, electronic, and optical properties of this heterojunction. Through the 

analysis of band edge potentials, we determined that the heterojunction can function as a 

photocatalyst for the water-splitting reaction. This was identified as a Type-I heterojunction. 

Because it operates as a Type-I heterojunction, the effective separation of electrons and holes 

is limited. Although g-C3N4/CoN4 is a more efficient photocatalyst than g-C3N4 for water 

splitting, it does not exhibit good photocatalytic properties. 

Enhancing the photocatalytic activity for water splitting in g-C3N4/CoN4 requires adjusting the 

band energy alignment. Mechanical strain or an external electric field offers effective and 

practical means to tune the electronic properties of a 2D semiconductor and 

heterostructures[53-54]. Bai et al. explored the effective tuning of single-layer ZnGeN2 to 

better align it with water redox potentials and enhance light absorption in the visible-light 

region under a tensile strain of 5% [55]. Edalati et al. proposed that under strain, CsTaO3 and 

LiTaO3 show optical bandgap narrowing, resulting in a 2.5-fold enhancement in photocatalytic 

hydrogen generation [56]. This finding aligns with Wang et al.'s discovery that biaxial strain 

effectively tunes the bandgap and band alignment of a 2D CdS/g-C3N4 heterostructure[57]. 

This tuning is crucial for visible-light photocatalytic water splitting, accelerating the separation 

of photogenerated carriers, and significantly improving the photocatalytic activity. 

Additionally, Dai et al. highlighted that ferroelectric photocatalysts could experience 

substantial improvements owing to the beneficial effects of the intrinsic internal electric field 

on the separation and migration of photogenerated carriers [58]. Exploring the potential of 2D 

ReS2 for photocatalytic water splitting through strain and electric field functionalization, Pan 

et al. utilized first-principles calculations to demonstrate the significant impact of strain on the 

bandgap and band alignment of ReS2[59]. The application of both tensile and compressive 

strains, whether axial or biaxial, results in a progressive reduction in the bandgap. This 

phenomenon is attributed to the strains inducing notable geometric distortion and causing 

charge rearrangement. While the band gap of ReS2 remains unaffected by the electric field, the 

band alignment is highly influenced by it, as the electric field exerts minimal impact on the 

crystal structure but generates an in-plane dipole moment. Consequently, ReS2 functionalized 

with a biaxial strain of 4% or an electronic field of -0.1 V A emerges as a promising candidate 

for a water-splitting photocatalyst. Chen et al explored the photocatalytic attributes of a ZnO 

monolayer under biaxial strain and an electric field [60]. This encompasses the investigation 

of parameters such as the bandgap, band edge position, and optical absorption spectra. 
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Remarkably, we identified that a ZnO monolayer subjected to 10% biaxial tensile strain 

exhibits promising characteristics as a water-splitting photocatalyst, attributable to its favorable 

bandgap, suitable band edge, and exceptional optical absorption. Concurrently, the oxidation 

capacity of the ZnO monolayer under 10% biaxial tensile strain increases, which is beneficial 

for enhancing the efficiency of the photocatalytic water splitting reaction. Rahimi et al 

investigated the modulation of electronic properties in the hg-C3N4/g-ZnO van der Waals 

(vdW) heterostructure through the application of either a perpendicular electric field or biaxial 

strain [61]. The objective was to achieve suitable bandgap type band alignment and transition 

for applications in photocatalytic water splitting. Initially, they demonstrated that the original 

hg-C3N4/g-ZnO heterostructure exhibited a Type-I indirect bandgap energy of 2.08 eV, with 

appropriate conduction band minimum (CBM) and valence band maximum (VBM) levels 

relative to the water-splitting reaction. Additionally, a substantial electrostatic potential 

difference of 11.18 eV was observed across the heterostructure, creating a sizable built-in 

electric field from hg-C3N4 to g-ZnO. This electric field facilitates the migration of 

photogenerated electrons in g-ZnO towards hg-C3N4, reducing the electron-hole 

recombination rate. Subsequently, Rahimi et al illustrated that by applying either a 

perpendicular electric field or biaxial strain, Type-I band alignment could be transformed into 

type-II or Z-scheme configurations deemed desirable for photocatalytic applications. 

In this study, we employed density functional theory (DFT) calculations to investigate the 

electronic and optical characteristics of the van der Waals (vdW) heterostructure composed of 

heptazine-g-C3N4/CoN4 under the influence of perpendicular electric fields and biaxial strain. 

Using an electric field of +0.5, +0.25, 0, -0.25 and -0.5 V/Å and biaxial strains of +6, +4, +2, 

0, -6, -4, -2%, respectively, we found that g-C3N4/CoN4 heterostructure transform from type-I 

to type-II photocatalyst for water splitting reaction. Additionally, our examination extended to 

explore the tuning of heterostructure properties, such as band alignment and the transition type 

of the bandgap, which decisively confirm its better photocatalytic activity as a type-II 

photocatalyst.  

Computational Methods: 

The spin-polarized density functional theory (DFT) implemented in Quantum Espresso 

simulation package was used for all structural and electronic properties calculations [62]. The 

exchange-correlation was accounted for by using the Perdew-Burke-Ernzerhof (PBE) 

functional in the Generalized Gradient Approximation (GGA) [63]. To address the 
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shortcomings of GGA in describing the partially filled d-orbital, we also employed the GGA+U 

method, which takes into account localized d-orbitals through coulomb and exchange 

corrections, while the s and p-orbitals are only accounted for by the GGA functional [64]. A 

value of 3.4 eV was used for Co atoms, as reported in several studies [64,65]. Ultrasoft 

pseudopotentials were used with a plane wave cutoff energy of 145 Ry for all systems, and a 

vacuum space of 30 Å was used to prevent spurious interactions in the non-periodic z-direction 

[66]. Initially, the bulk CoN4 was considered, and the most stable (111) slab was created from 

the optimized primitive unit cell of CoN4 using a k mesh of 8 x 8 x 1[67]. For the optimization 

of the g-C3N4 unit, a k mesh of 12 x 12 x 1 was used. Finally, 2 x 2 x 1 heptazine and √3 x √3 

x 1 of CoN4 (111) slab were used to form the heterojunction, which was found to have only a 

3% lattice mismatch [68,69]. BURAI and VESTA were used for visualization and modeling 

purposes. All structural parameters were optimized using the Broyden, Fletcher, Goldfarb, 

Shanno (BFGS) algorithm and the dispersion-corrected GGA-PBE functional (Grimme-D2 

scheme was used)[70]. The lattice parameters and atomic positions were optimized until all the 

forces were less than 10-3 Ry. After optimization, the charge density difference and work 

function calculations were performed on the heterostructure. The optical properties of the 

heterojunction, as well as the g-C3N4 and CoN4 (111) slab, were calculated using the GGA-

PBE method and the Cambridge Serial Total Energy Package (CASTEP) [71]. The band 

structure and related properties were calculated using the DFT+U method, and following 

several other studies, a Hubbard parameter Ueff=3.4 eV was used for the Co atom [64]. The 

DFT+U method accurately describes the strong on-site Coulomb repulsion of the localized Co 

3d electrons using the following equation 

𝐸𝑃𝐵𝐸+𝑈 = 𝐸𝑃𝐵𝐸 +
𝑈−𝐽

2
∑ 𝑇𝑟[𝜌𝜎| − 𝜌𝜎𝜌𝜎]𝜎                         (1) 

 

Here, ρσ represents the spin-polarized on-site density matrix. The spherically averaged 

Hubbard parameter U characterizes the additional energy incurred from placing an extra 

electron at a given site, and the parameter J represents the screened exchange energy. However, 

during calculations, U and J are not considered independently; rather, their combined value, 

Ueff = U - J, is considered as necessary and meaningful because it accounts for the on-site 

Coulomb repulsion on each affected orbital. 

The work function provides information about the relative position of the Fermi level and 

evaluates the band alignment at the interface and therefore is a significant electronic property 
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of photocatalytic materials. The work function represents the energy required to extract an 

electron from the Fermi surface of a solid to a vacuum at absolute zero and represented by the 

following formula [72] 

ɸ = Evacuum - Efermi                                (2) 

Here, Efermi and Evacuum represent the energy of a stationary electron at the Fermi level and in 

the vacuum adjacent to the surface. 

We have calculated the optical properties of the systems under strain and electric field. Optical 

absorption spectrum reflects the solar energy absorption rate of photo catalyst.  

The absorption spectra can be calculated by the equation [73] 

𝐼(𝜔) = [√2𝜔√(ε(ω)1
2 + (ε(ω)2

2 - 𝜀(𝜔)1]1/2                     (3) 

𝜀(𝜔)1 is the real part and 𝜀(𝜔)2 is the imaginary part of the dielectric function. 

We have calculated the optical band gap of g-C3N4 and heterojunctions using Tauc method [74] 

(𝛼ℎ𝜈)𝑚 = 𝐴0(ℎ𝜈 − 𝐸𝑔
𝑜𝑝𝑡)                                                (4) 

α  : absorption coefficient,  

hν  : the incident photon energy 

𝐸𝑔
𝑜𝑝𝑡

 : optical band gap 

𝐴0 is a constant depending on the transition probability. 

The relationship that relates the wavelength of light (λ) to the optical band gap energy (Eg) in 

a material. This relationship is commonly expressed by the equation: 

𝜆 =
1240

𝐸𝑔
                               (5) 

 

Here, 

λ is the wavelength of light in nanometers (nm). 

𝐸𝑔 is the optical band gap. 
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The constant 1240 is a conversion factor that relates energy in electron volts to wavelength in 

nanometers. 

Results and Discussions: 

Geometry Structures and Thermodynamic Stability 

In this study, we explore the geometric structures and thermodynamic stability of pure bulk g-

C3N4. Four different connection patterns are known for g-C3N4: (a) monoclinic heptazine-based 

structure, (b) hexagonal heptazine-based structure, (c) orthorhombic triazine-based structure, 

and (d) hexagonal triazine-based structure [75]. Previous studies indicate that the hexagonal 

heptazine-based g-C3N4 is the most stable among these patterns [75]. Consequently, we focus 

exclusively on the energetically most stable graphitic phase for our investigation. 

The single-layered g-C3N4 sheet is obtained by cleaving the surface of the optimized bulk 

structure. We begin by considering this single-layered structure to comprehend its geometrical 

and electronic characteristics. Heptazine g-C3N4 comprises heptazine (C6N7) units arranged in 

a 2D lattice, connected via C-N bonds to form a hexagonal network (see Fig.1(a)). The unit 

cell of the hexagonal lattice consists of 14 atoms (8N + 6C), with two types of C atoms and 

three types of N atoms [76]. The optimization of the g-C3N4 unit cell is performed using 

ultrasoft pseudopotentials with a k mesh of 12 12 1 and a cutoff energy of 145 Ry. The 

optimized unit cell geometry is presented in Fig.1(a), and the lattice parameters are tabulated 

in Table 1, showing good agreement with experimental and theoretical values. 

Moving on to the CoN4 structure, we consider the same diamond-like crystal structure of bulk 

CoN4, relax it using the conventional GGA-PBE functional, and create the primitive unit cell 

geometry of CoN4 from the optimized bulk structure [65]. The calculated formation energy and 

total energies of different magnetic states confirm the stability of the CoN4 structure, with the 

ferromagnetic state being the most stable. The lattice parameters and bond lengths of CoN4 are 

consistent with reported values [65]. 

To create a realistic model system for the g-C3N4 and CoN4 heterojunction, we initiated the 

study by calculating the surface energy (γ) of the (100), (110), and (111) CoN4 slabs using the 

formula                                                            

γ = 
𝐸𝑠𝑙𝑎𝑏−𝐸𝑏𝑢𝑙𝑘

2𝐴
                                  (6) 
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Here E(slab) and E(bulk) are denoting the energies of the slab and bulk CoN4. A is the area of the 

slab. The CoN4 slab was constructed by cleaving the primitive unit cell into (100), (010), and 

(001) planes, with atomic layers separated by a vacuum space of 30 Å. The resulting surface 

energies for the (100), (110), and (111) CoN4 slabs were determined to be 0.36, 0.37, and 0.11 

J/m², respectively, as presented in Table 1. The (111) CoN4 slab, being the most stable, was 

selected for heterojunction formation and subsequent calculations. 

Table 1 - Calculated energies of the systems and surface energies of slabs. 

 

System g-C3N4 ( 2× 2×1) CoN4 bulk CoN4(111) slab 

(  √3 × √3 × 1 ) 

g-C3N4/CoN4 

Energy(Ry) -951.88 -2987.11 -2240.15 -3192.38 

Surface energy( J/m2)  (100) (110) (111)   

0.36 0.37 0.11 

 

Consistent with prior studies, we ensured lattice compatibility in the interface model system by 

aligning a 2×2×1 heptazine with √3 × √3 × 1 of CoN4 (111) slab 

The calculated lattice mismatch (δ) was approximately 3%, within a reasonable and acceptable 

range [69,77]. The lattice mismatch was determined using the equation:  

𝛿 =
𝑎(111)−𝑎(𝑔)

𝑎(111)
                                            (7) 

Here a (111) and a(g) represent the relaxed lattice parameters of CoN4 (111) and g-C3N4 

monolayer, respectively. The constructed heterojunction model consists of 86 atoms (56 

belonging to g-C3N4 and 30 to CoN4 (111)), with the optimized geometry showing a stable 

interface with a distance of 2.0 Å between g-C3N4 and CoN4 (111) units. The optimized 

geometry of the interface is depicted in Fig.1(c) and Fig.1(d). 
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Fig.1-Optimized geometric structures of (a) g-C3N4 primitive unit cell (b) CoN4 bulk (c) g-C3N4/CoN4 

heterojunction (side view) and (d) g-C3N4/CoN4 heterojunction (top view). 
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Table 2- Lattice parameters for isolated systems (g-C3N4 and CoN4) and heterojunction 

g-C3N4/CoN4 

* A.M. Silva, M.I. Rojas,Computational and Theoretical Chemistry 1098 (2016) 41–49 

**Jianjun Liu, Enda Hua,J. Phys. Chem. C 2017, 121, 25827-25835 

***Jun Deng, Ning Liu, Jiangang Guo, Xiaolong Chen, PHYSICAL REVIEW B 99, 184409 (2019) 

 

To understand the thermodynamic stability of the heterojunction as well as the interaction 

between g-C3N4 and CoN4(111), the adhesion energy was calculated using equation (8) [78].   

𝐸𝑎𝑑 = 𝐸𝑔𝐶3𝑁4 𝐶𝑜𝑁4⁄ − 𝐸𝑔𝐶3𝑁4
− 𝐸𝐶𝑜𝑁4

                             (8) 

𝐸𝑔𝐶3𝑁4 𝐶𝑜𝑁4⁄ , 𝐸𝑔𝐶3𝑁4
 and 𝐸𝐶𝑜𝑁4

 represent the total energies of the relaxed g-C3N4/CoN4 

heterostructure, g-C3N4 monolayer and CoN4(111) slab. The interface 𝐸𝑎𝑑  was calculated as -

4.7396 eV. The negative adhesion energy of the heterojunction indicates that the adsorption is 

thermodynamically stable [79]. This furthermore confirms that the process of adhesion of 

CoN4 on the g-C3N4 surface is exothermic and energetically favourable [79]   

 

Effect of biaxial strain 

To investigate the modulation of electronic and optical properties in the g-C3N4/CoN4 

heterojunction for enhanced photocatalytic efficiency, we introduced biaxial strain within a 

range spanning from -6% (compressive) to +6% (tensile). We calculated the percent applied 

biaxial strain according to[60]  

% 𝑠𝑡𝑟𝑎𝑖𝑛 =
𝑎−𝑎0

𝑎
× 100                  (9) 

System Calculated lattice 

parameters(Å) 

Reported lattice 

parameters(Å) 

a b c a b c 

g-C3N4 7.20 7.20 - 7.2* 

7.14** 

7.2* 

7.14** 

- 

CoN4 11.4 11.4 11.4 11.23*** 11.23*** 11.23**

* 

CoN4(111) slab 8.06 8.06 30 - - - 

g-C3N4/CoN4 14.32 14.32 30 - - - 
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where a and 𝑎0 are the lattice constants of the g-C3N4/CoN4 before and after the applied biaxial 

strain 

The structural relaxation along the z-axis was permitted while keeping the cell dimensions 

fixed. The schematic representation of application of strain is shown in Fig.2.  Green arrows 

represent tensile strain and red colour arrows represent compressive strain. 

 

Fig.2-Schematic illustration of tensile and compressive biaxial strain on g-C3N4/CoN4 heterojunction 

The application of significant compressive strains, such as the -6% compressive strain, poses 

experimental challenges, necessitating extremely high pressures. Nonetheless, for 

comprehensive exploration, we extended the study until the elimination of the semiconducting 

behaviour in the heterojunction was observed, particularly at the -6% compressive strain. 

The atomic positions in a relaxed state are presented in Table 3. Tensile strains had a minimal 

impact on the interlayer distance but led to a reduction in buckling in both layers. There is a 

remarkable increase in the buckling of g-C3N4 observed at +6% strain. Nevertheless, 

compressive strains significantly influenced the structure. As compressive strain increased, the 

interlayer distance decreased, but the buckling of both monolayers increased. This suggests 

that the heterostructures can withstand a range of strains, except for substantial compressive 

strains. 

 

 

 

 

Table 3- Influence of biaxial strain on the structure of the g-C3N4/CoN4 heterostructure 
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Strain [%] Heterostructure interlayer 

distance [Å] 

Buckling in hg-C3N4 [Å] 

-6 1.97 2.91 

-4 1.93 2.34 

-2 2 1.56 

0 2.05 1.2 

+2 2.03 0.76 

+4 2.05 0.7 

+6 2.05 3.6 

 

Electronic properties 

Via biaxial strain, the band gap underwent tuning. Shown in Fig. 3 is the schematic illustrating 

the adjustment of the band gap through biaxial strain. The variation of biaxial strain ranges 

from -6% to +6% in increments of 2%, where positive values represent tensile strains, and 

negative values signify compressive strains. In Fig. 3, it is evident that both tensile and 

compressive strains contribute to the reduction of the band gap. In the range from -6% to +4% 

strain, the systems exhibit half-metallic characteristics. This implies that one spin channel 

demonstrates semiconducting behaviour, while the other spin channel exhibits metallic 

behaviour. However, at +6% strain, the system transitions to metallic behaviour entirely. In 

this state, one spin channel registers 0.98 eV, while the other spin channel displays 0.27 eV. In 

the non-strained system, the highest band gap is observed, with the spin-up channel exhibiting 

a 1.81 eV band gap, while the spin-down channel displays a zero band gap. 

As depicted in the Fig.3, the bandgap transition type remains unaltered (direct) under tensile 

(positive) strains. Conversely, compressive(negative) strain induces a band gap transition. 

Specifically, as the strain increases from +2% to +6%, the direct band gap transforms into an 

indirect band gap. Upon exposure to solar irradiation on the surface of the g-C3N4/CoN4 

monolayer, electrons in the valence band undergo direct transitions to the conduction band, a 

process facilitated more easily than an indirect transition. Tensile(positive) and 

compressive(negative) strains transform the type 1 heterojunction into a type 2 heterojunction.  
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Fig.3-Electronic band structures of the g-C3N4/CoN4 heterojunction under biaxial strain 

 

Optical properties 

Optical absorption spectrum reflects the solar energy absorption rate of photo catalyst. To investigate 

the effect of strain on the optical absorption of g-C3N4/CoN4, the visible light absorption spectra of 

g-C3N4/CoN4 heterojunction under different strains are plotted in Fig.4. In the range from 1.5 eV to 

3.5 eV, the optical absorption is enhanced under both 2% tensile and 2% compressive strains 

compared to the non-strained system. 

To analyse the absorption maxima we have also calculated optical band gap by tauc method, 

which is shown in equation (4). The optical band gaps of strained systems given in table 4. 

Systems with +2% tensile strain, -2% compressive strain, and non-strained conditions act as 

effective photocatalysts due to their absorption maxima occurring at longer wavelengths. 

 

Fig.4-Optical absorption spectra of the g-C3N4/CoN4 heterojunction under biaxial strain 

 

Photocatalytic water splitting 

The determination of the strength of the redox reaction and the potential application of the g-

C3N4/CoN4 heterostructure for water splitting relies on the accurate detection of band 

alignment. Ideally, for efficient water splitting, the VBM band position should be higher than 

the O2/H2O potential (0 V vs. NHE), and the CBM band position should be lower than the 

H+/H2 potential (1.23 V vs NHE). However, due to the inherent challenge of obtaining the 
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VBM and CBM on an absolute scale using DFT, this study examines the band-edge positions 

of the heterojunction relative to the Normal Hydrogen Electrode. The positions of the vacuum 

level were set at zero, and the VBM and CBM positions were determined with respect to the 

vacuum level using the GGA+U method. The band-edge potentials of the proposed system are 

illustrated in Fig. 5. The calculated O2/H2O reduction potential with respect to vacuum energy 

is -4.5 eV, and the H+/H2 oxidation potential with respect to vacuum energy is -5.73 eV. We 

have analysed the band-edge potentials of the systems. Tensile-strained systems at +4% and 

+6% cannot be utilized for water splitting reactions. However, all other systems are suitable 

for water splitting reactions. 

 

Fig.5- Effect of the biaxial strain on the band edge position of the g-C3N4/CoN4 heterojunction  

 

Table 4- Influence of biaxial strain on the electronic and optical properties g-C3N4/CoN4 

heterostructure 

 

Strain Optical band 

gap (eV) 

Electronic band 

gap(eV) 

Type of 

heterojunction 

Possibility of 

water splitting 

Direct or 

indirect 

band gap 

+6 2.43 0.98 spin up 

0.27 spin down 

Type 11 Not possible Direct 

+4 2.42  1.36  Type 11 Not possible Direct 

+2 2.1  1.72  Type 1 possible Direct 

0 2.0  1.8 1 Type 1 possible Direct 

-2(good 

photocatalyst) 

2.1  1.52  Type 11 possible Direct 

-4 2.3  1.55  Type 11 possible Direct 

-6 2.4  1.48  Type 11 possible Indirect 
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Improving photocatalytic performance with band gap tuning via external 

electric field 

In our effort to adjust the band gap of g-C3N4/CoN4, we varied the external electric field. As 

illustrated in Fig.6, the electric field was applied along the Z-axis direction. The external 

electric field was systematically altered, ranging from -0.5 V/Å to 0.5 V/Å in increments of 

0.25 V/Å. 

 

Fig.6-Schematic illustration of tensile and compressive biaxial strain on g-C3N4/CoN4 heterojunction 

 

Electronic properties 

When applying the electric field in both directions, the band gap decreases. However, the 

nature of the band gap does not change with an electric field; all band gaps remain direct 

band gaps at the Г position. The heterojunction's nature changes when an electric field is 

applied. Specifically, a type 1 heterojunction transforms into a type 2 heterojunction under 
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the influence of an electric field. 

 

Fig.3-Electronic band structures of the g-C3N4/CoN4 heterojunction under electric field 

 

Optical properties 

We did not observe a significant change in the optical properties of the system when applying 

an electric field. However, a slight enhancement in optical absorption, ranging from 1.75 eV 
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to 2.5 eV, was observed when applying electric fields of 0.5 V/Å and -0.5 V/Å. 

 

Fig.8-Optical absorption spectra of the g-C3N4/CoN4 heterojunction under biaxial electric field 

 

Possibility of water splitting 

We have analysed the band-edge potentials of the systems. Systems subjected to an electric 

field at 0.25 V/Å and -0.25 V/Å cannot be utilized for water-splitting reactions. However, all 

other systems are suitable for water-splitting reactions. 

 

Fig.9- Effect of the biaxial strain on the band edge position of the g-C3N4/CoN4 heterojunction  
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Table 4- Influence of electric field on the electronic and optical properties g-C3N4/CoN4 

heterostructure 

 

Mechanism of photocatalytic water splitting 

Commonly, there are three categories of traditional heterojunction photocatalysts: those 

exhibiting a straggling gap (Type-I), those featuring a staggered gap (Type-II), and those with 

a broken gap (Type-III) [40]. In the case of a Type-I heterojunction photocatalyst, 

semiconductor A's conduction band (CB) and valence band (VB) are higher and lower, 

respectively, than those of semiconductor B [41]. Consequently, when exposed to light, 

electrons and holes accumulate at the CB and VB levels of semiconductor B, respectively. 

However, since both electron-hole pairs accumulate within the same semiconductor, effective 

separation is hindered for the Type-I heterojunction photocatalyst. Moreover, a redox reaction 

takes place on the semiconductor with the lower redox potential, significantly diminishing the 

heterojunction photocatalyst's redox capability. 

On the contrary, for the Type-II heterojunction photocatalyst, semiconductor A's CB and VB 

levels are higher than those of semiconductor B [42-44]. Consequently, photogenerated 

electrons migrate to semiconductor B, while photogenerated holes move to semiconductor A 

under light irradiation, leading to spatial separation of electron-hole pairs. The redox ability of 

a Type-II heterojunction photocatalyst is also diminished due to the reduction reaction 

occurring on semiconductor B with a lower reduction potential and the oxidation reaction 

taking place on semiconductor A with a lower oxidation potential. 

The architecture of the Type-III heterojunction photocatalyst is akin to that of the Type-II 

heterojunction photocatalyst, but the staggered gap is so extreme that the bandgaps do not 

overlap [45-46]. Consequently, electron-hole migration and separation between the two 

semiconductors are impeded for the Type-III heterojunction, rendering it unsuitable for 

Electric field 

(V/Å) 

Optical 

band 

gap(eV) 

Electronic band 

gap(eV) 

Type of 

heterojunction 

Possibility of 

water splitting 

Direct or 

indirect band 

gap 

-0.5  1.88  1.53  Type 11 possible Direct 

-0.25 1.9  1.4  Type 11 Not possible Direct 

0 2  1.81  Type 1 possible Direct 

+0.25 1.94  1.45  Type 11 Not possible Direct 

+0.5 1.9  1.8  Type 11 possible Direct 
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enhancing the separation of electron-hole pairs. Among the mentioned conventional 

heterojunctions, the Type-II heterojunction stands out as the most effective for improving 

photocatalytic activity due to its structure conducive to spatially separating electron-hole pairs. 

Tensile(positive), compressive(negative) strains and external electric field transform the type 

1 heterojunction into a type 2 heterojunction. On applying strain and electric field the 

photocatalytic activity of the heterojunction increases. 
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  Heterojunction under a compressive strain of 2%          Original heterojunction 

Fig.10- Band edge positions and possible mechanism of water splitting of heterojunction under a 

compressive strain of 2% and Original heterojunction 

 

Conclusion 

Van der Waals (vdW) heterojunctions, composed of two-dimensional monolayers, represent a 

recent class of materials known for their highly adaptable band alignment, bandgap energy, 

and bandgap transition characteristics. In this study, we utilized density functional theory 

calculations to investigate the formation of a vdW heterojunction involving a monolayer of 

heptazine-based graphitic carbon nitride (g-C3N4) and a CoN4 (111) slab, denoted as g-

C3N4/CoN4. This particular heterojunction shows potential as a catalyst for solar-driven 

photocatalysis in the water-splitting reaction. 

Upon the establishment of the heterojunction, a type-I direct bandgap (Eg = 2.00 eV) is 

achieved, featuring appropriate conduction band minimum and valence band maximum levels 

in relation to the oxidation/reduction potentials for the water-splitting reaction. Furthermore, 

the band alignment, bandgap energy, and transition type of the heterojunction can be adjusted 

by applying external perpendicular electric fields and biaxial strains. Notably, a -2% strain 
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induces a type-II band alignment (Eg = 2.1 eV, direct), while an electric field of 0.5 V/Å also 

leads to a type-II heterostructure (Eg = 1.90 eV, direct). Both configurations demonstrate 

advantages for efficient water-splitting photocatalysis. 
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