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ABSTRACT: Internal donors (IDs) play a decisive role in shaping the structure and 

performance of Ziegler-Natta catalyst formulations for the isotactic polypropylene production. 

Unfortunately, their diverse and intricate functions remain elusive, and rational ID discovery 

therefore is still problematic. Exploitation of artificial intelligence methods such as machine 

learning, in turn, has been hindered by the lack of training datasets with adequate quality and 

size. This study proposes an integrated high-throughput workflow encompassing catalyst 

synthesis, propylene polymerization, and polypropylene characterization. Its application to an ID 

library of 35 molecules generated a robust and consistent dataset, which highlighted important 

and intriguing quantitative structure-properties relations (QSPRs). Furthermore, by fingerprinting 

ID molecular structure in combination with feature selection, a black-box QSPR model 

correlating ID molecular structure and catalytic performance was successfully implemented. This 

study demonstrates that the combination of high-throughput experimentation and machine 

learning is a promising asset for accelerating the research and development of Ziegler-Natta 

catalysts. 

INTRODUCTION 

Moving from Natta’s initial invention, heterogeneous Ziegler-Natta (ZN) catalysts have 

dominated the industrial production of isotactic polypropylene (PP).1–4 The first two generations 

were combinations of crystalline TiCl3 in a layered modification, either pure or in mixture with 

AlCl3, and an alkyl-Al compound.3 That the addition of an organic Lewis base (e.g., an ether) 

can be beneficial for certain aspects of catalytic performance (like productivity) is known since 

the 1960s, but catalyst modification with bases became systematic only from the 1970s with the 

so-called high-yield formulations.4 These consist of (a) a solid precatalyst, where a titanium 

precursor (most typically TiCl4) is adsorbed on high-surface-area MgCl2, (b) a trialkyl-Al 
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(usually Et3Al), and (c) one or more Lewis bases, generally referred to as (electron) donors. In 

the commonly used terminology, a donor utilized at the stage of precatalyst preparation is named 

internal donor (ID), while one added in polymerization (in combination with the trialkyl-Al) is 

referred to as external donor (ED). Generally, both are necessary for optimal catalytic 

performance. ID/ED pairs for third-generation catalysts (early 1970s) were esters of benzoic 

acid, e.g., ethylbenzoate (EB), as ID and either the same EB or a para-substituted benzoate as 

ED.5,6 Donor diversification, with phthalic diester IDs (e.g., dibutylphthalate) and alkoxysilane 

EDs, marked fourth-generation catalysts (late 1970s),7,8 which still represent the workhorses of 

the PP industry. Since then, many more donors belonging in various molecular classes have been 

proposed; the discovery of novel IDs, in particular, has driven the process of PP catalyst 

evolution, as they generally have a stronger and more characteristic impact than EDs. For 

example, 1,3-dimethoxypropane (1,3-diether) IDs (ca. 1990)9 and succinate IDs (ca. 2000)10 

enabled to produce highly isotactic PP with narrow and broad molecular weight distribution, 

respectively.  

Implementing ID discovery is a highly demanding empirical task. The potential of specific 

candidate molecules is highly unpredictable, and must be assessed by means of a labor and time 

intensive process entailing custom synthesis, precatalyst preparation with proper protocols, and 

full catalyst verification in polymerization. Unfortunately, even IDs belonging in the same 

molecular class and featuring similar substitution patterns can greatly differ in performance, and 

quantitative structure-properties relations (QSPRs) are elusive. Behind this unpredictability is a 

multifaceted role: not only do IDs interact with other components of the catalyst formulation 

during precatalyst preparation and activation, potentially influencing the generation or 

elimination of byproducts, but they also affect the growth of solid MgCl2 nanostructures, e.g., 
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steering the formation of certain crystallite terminations due to preferential chemisorption.11–19 In 

polymerization, IDs modify the steric and electronic properties of the active Ti species by co-

adsorbing at adjacent surface locations,20–24 in some cases dynamically due to reaction(s) with 

the R3Al/ED cocatalyst that can liberate part of the surface for ED adsorption, ending up with 

mixed ID/ED pools.4,25–29 Also in view of the difficulty to intercept and characterize the catalytic 

species, present in low amount and extremely reactive,30,31 it is fair to acknowledge a “black 

box” character for this catalysis. 

Statistical QSPR modeling is certainly part of any “best practices” protocols for searching 

novel IDs. In principle, machine learning (ML) methods should be considered with high priority; 

in practice, however, their use is presently hampered by the unavailability of datasets with 

adequate size and quality, similar to other fields of materials science.32,33 The field of ZN 

catalysis is highly competitive, and researchers follow diverse and sometimes partly undisclosed 

procedures; even the metrics adopted for reporting the results do not conform to generally 

accepted standards. This makes it difficult or even impossible to collate and compare results 

from different sources.  

In such a context, the introduction of high-throughput experimentation (HTE) represented a 

breakthrough.34–38 Throughput intensification in organometallic catalysis is much lower than in 

pharma; yet, a 100-fold increase relative to conventional methods with similar or even higher 

quality standards is easily achieved. In our labs, we recently undertook a collaborative program 

for implementing advanced HTE tools and methods for the rapid exploration of the variables 

hyperspace in ZN PP catalysis. Our workflow permits an extensive coverage of the knowledge 

and value chains by means of unique tools for (pre)catalyst preparation and analysis,39 robust 
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protocols of catalyst screening under industrially relevant conditions,23,40–49 and high-end rapid 

polymer characterizations.50,51 Integration with ML instruments is now in progress. 

 

 

Figure 1. Workflow of high-throughput experimentation and data acquisition. 

 

In the present paper, we illustrate how the workflow, as depicted in Figure 1, can be applied to 

the generation of a high-quality dataset for fast searches of novel IDs. The paper is primarily 

methodological, and the database used for exemplification is not meant for predictive 

application. This notwithstanding, the emerging picture does not fully align with conventional 
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wisdom, which in our opinion indicates there is still ample room for data-driven innovation—an 

important fact, considering the need to re-design the PP industry for a circular economy. 

 

EXPERIMENTAL SECTION 

ID library 

The library comprised 35 commercially available Lewis bases, all featuring two carbonyl 

groups. Each Lewis base molecule is labeled as X-Y#, as shown in Figure 2. Y qualifies the 

chemical class (DE for diesters; KE for ketoesters; DK for diketones; AN for anhydrides); X 

qualifies the spacer between the carbonyls (Ar for aromatic; C for cyclic; Ln for linear with n C 

atom length, between 0 (L0) and 4 (L4); no X in the case of Y = AN); # qualifies the alkyl 

substituents of the carbonyls. A (pre)catalyst featuring Lewis base X-Y# as ID was denoted as 

CAT-X-Y#. 
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Figure 2. ID library, comprising 35 commercially available Lewis bases with two carbonyl 

groups. Catalysts produced alongside these IDs are labeled as CAT-X-Y#, where X signifies the 

carbon skeleton (Ar for aromatic, C for cyclic, Ln for linear), and L0−L4 denotes the linear 

skeleton's carbon atom length. Anhydrides are coded as CAT-AN# due to uniform skeletal 

structure. Y represents the compound group (DE for diesters, KE for ketoesters, DK for 

diketones, AN for anhydrides), while # signifies alkyl substituent variations within each X-Y. 

  

Materials 

Mg powder was purchased from Merck KGaA. Ethanol (purity > 99.5%, Kanto Chemical) was 

dried over a 3Å molecular sieve. Iodine (I2, purity > 99.9%, FUJIFILM Wako Pure Chemical) 

was used as received. n-Heptane (purity > 99.5%) and toluene (purity > 99.5%) purchased from 

FUJIFILM Wako Pure Chemical were dried over a 3Å molecular sieve followed by N2 bubbling 

prior to use. Titanium tetrachloride (TiCl4, special grade) was purchased from FUJIFILM Wako 

Pure Chemical. Di-n-butyl phthalate (purity > 99%, Sigma-Aldrich), di-i-butyl phthalate (purity 

> 98%, TCI), di-n-propyl phthalate (purity > 98%, TCI), di-i-propyl phthalate (purity > 98%, 

TCI), diethyl phthalate (purity > 99%, KANTO chemical), dimethyl phthalate (purity > 99%, 

TCI), dimethyl cis-4-cyclohexene-1,2-dicarboxylate (purity > 97%, TCI), diethyl cis-4-

cyclohexene-1,2-dicarboxylate (purity > 98%, TCI), diethyl 1,2-cyclohexanedicarboxylate 

(purity > 95%, TCI), diethyl cis-1,2-cyclohexanedicarboxylate (purity > 98%, TCI), di-n-butyl 

oxalate (purity > 99%, TCI), diethyl oxalate (purity > 99%, TCI), di-n-butyl malonate (purity > 

99%, TCI), diethyl dimethylmalonate (purity > 97%, Sigma-Aldrich), diethyl di-i-butylmalonate 

(purity > 98%, Sigma-Aldrich), diethyl malonate (purity > 99%, Sigma-Aldrich), di-i-propyl 

malonate (purity > 99%, TCI), diethyl ethylmalonate (purity > 99%, Sigma-Aldrich), diethyl 
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diethylmalonate (purity > 98%, Sigma-Aldrich), diethyl di-n-propylmalonate (purity > 97%, 

TCI), di-n-butyl succinate (purity > 99%, TCI), diethyl succinate (purity > 99%, Sigma-Aldrich), 

di-i-propyl succinate (purity > 99%, TCI), di-n-butyl maleate (purity > 95%, TCI), diethyl 

glutarate (purity > 98%, TCI), di-n-butyl adipate (purity > 99%, TCI), diethyl adipate (purity > 

99%, TCI), methyl 3-oxoheptanoate (purity > 95%, TCI), methyl 4,4-dimethyl-3-oxovalerate 

(purity > 95%, TCI), dipivaloylmethane (purity > 98%, TCI), 1,3-diphenyl-1,3-propanedione 

(purity > 98%, TCI), valeric anhydride (purity > 98%, TCI), isovaleric anhydride (purity > 99%, 

TCI), pivalic anhydride (purity > 98%, TCI), and benzoic anhydride (purity > 95%, TCI) were 

used as received. 

 

Magnesium ethoxide preparation 

Magnesium ethoxide (Mg(OEt)2) as a solid catalyst precursor was synthesized from the 

reaction between Mg and ethanol using I2 as an initiator according to the previously reported 

method.52,53 To a 500 mL jacket-type three-necked flask equipped with a mechanical stirrer 

rotating at 180 rpm, 0.68 g of I2 and 35 mL of ethanol were introduced. After complete 

dissolution of I2 at the ethanol reflux temperature, 3.0 g of Mg powder and 35 mL of ethanol 

were repeatedly added for nine times with the interval time of 10 min. After the last addition, the 

mixture was kept reacted at the same temperature for 2 h. The obtained solid product was 

washed with heptane and dried under vacuum at 40 °C. 

 

(Pre)catalyst synthesis 

Catalyst samples were synthesized in high-throughput mode using a custom-designed parallel 

reactor system.39 The system comprises three main components: reaction vessels, a unit for 
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temperature control and mixing, and a feeder. The reaction vessel is a 50 mL glass bottle sealed 

with a custom-designed Teflon cap with the aid of O-ring. The cap is integrated with a magnetic 

suspended stir bar to facilitate mixing without destructing catalyst macroparticles. It also equips 

two small open ports: one is used for maintaining the N2 atmosphere, and the other for 

introducing reagents into the vessel or extracting the supernatant for decantation. The 

temperature control and mixing unit integrates a closed oil circulation bath featured with twelve 

holes for placing the reaction vessels in the upper section, and a belt-drive magnetic stirring 

system in the lower section. The temperature control is achieved by circulating oil from a 

separate heating/cooling unit, allowing precise control within the range of −20 °C to 150 °C. The 

feeder utilizes a peristaltic pump (Masterflex L/S, Cole Parmer) with twelve cartridges for 

feeding a TiCl4 solution to twelve reaction vessels at a controlled flow rate.  

High-throughput catalyst synthesis was implemented as follows: in a N2 glove bag, 2.0 g of 

Mg(OEt)2 was added to each reaction vessel, which was then sealed with a Teflon cap and 

connected to a N2 line. The vessel was placed onto the temperature control and mixing system. 

After introducing 14 mL of toluene, the suspension was cooled down to −5 °C under stirring, and 

8.0 mL of a TiCl4 solution in toluene (1/1 v/v) was fed with a peristaltic pump. Thereafter, the 

mixture was gradually heated to 90 °C, followed by the addition of 2.07 mmol of an ID. The 

mixture was further heated to 110 °C and held at this temperature for 2 h. The solid product was 

washed with toluene twice by decantation, and further treated with 4.0 mL of TiCl4 in 18 mL of 

toluene at 110 °C for another 2 h. The resultant catalyst was repetitively washed with toluene and 

heptane, and dried under vacuum. The protocol was performed on 12 vessels in parallel, where 

only the ID was swapped. 
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Catalyst characterization 

The catalysts synthesized were subjected to a standard set of characterizations. The Ti content 

was determined using a colorimetric method with a UV-vis spectrometer (V-670, JASCO). A 50 

mg sample was dissolved in an aqueous solution of HCl/H2SO4, followed by the addition of 

H2O2 to form a titanium peroxo complex. The Ti concentration was calculated from the 

absorption intensity of the band at 410 nm based on external calibration. Organic contents were 

analyzed using 1H NMR on a Bruker AVANCE III 400 MHz spectrometer, following a 

previously reported procedure.54 A sample (10–30 mg) was dissolved in 0.7 mL of DMSO-d6 

containing 40 µg of 1,1,2,2-tetrachloroethane as an internal standard. The protons of the 

aromatic/aliphatic spacers were used to confirm the inclusion of IDs in the catalyst samples, 

except for oxalates and anhydrides, whose inclusion was verified using the protons of the side 

groups. All forms of IDs, including primary and secondary forms, were analyzed when side 

reactions occurred: transesterification for diesters and ketoesters, isomerization or 

tautomerization for diketones and ketoesters, and esterification for anhydrides. The protons of –

OCH2– at 3.4 ppm were utilized to quantify the OEt group associated with TiClx(OEt)4–x species. 

N2 adsorption and desorption experiments were performed at 77 K using a BELSORP−max 

instrument (BEL JAPAN, Inc.). A sample was outgassed at 80 °C for 3 h in vacuum prior to the 

measurement. The pore volume and pore size distribution were determined based on the non-

local density functional theory (NLDFT) method. 

 

Propylene polymerization 

Polymerization experiments were carried out using a HTE platform (Freeslate Parallel Pressure 

Reactor). This setup, integrally contained in a triple MBraun LabMaster glovebox, features 48 
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reaction cells arrayed in 6 eight-cell modules. Polymerization reactions are run in a semi-

continuous mode. The injection system consists of a dual-arm robot adopting different 

technologies for catalyst solutions and slurries, with specialized needles and injectors. The slurry 

needle, in particular, is designed to penetrate the gas cap of the reaction cells and dispense the 

catalyst slurry directly into the liquid phase, ensuring highly accurate and precise dosing. The 

PPR software allows the operator to modify the design of experiment (DoE) for the planned set 

of 48 polymerization experiments during execution.  

The polymerization experiments were performed based on a common protocol. In brief, 

polymerization conditions were as follows: heptane slurry, Tp = 70 °C; p(C3H6) = 4.5 bar; p(H2) = 

0.20 bar; [Al]/[Ti] = 160; [ED]/[Al] = 0.10; ED = diisopropyldimethoxysilane. The reactions 

were left to proceed under stirring (800 rpm) at constant temperature and pressure with a 

continuous feed of propylene for a desired time (usually 30 or 60 min), and quenched by over-

pressurizing the cell with dry air. Once all cells were quenched, the modules were cooled down 

and vented, the stir-tops were removed, and the glass inserts containing the reaction phase were 

taken out and transferred to a Martin Christ RVC 2-33 CDplus centrifugal evaporator, where all 

volatiles were distilled out and the polymers were thoroughly dried overnight. Reaction yields 

were double-checked against on-line monomer conversion measurements by robotically 

weighing the dry polymers while still in the reaction vials, subtracting the pre-recorded tare. 

Polymer aliquots were then sent to the characterizations. A fully detailed description of the 

protocol was reported elsewhere by some of us.41,42,47  

 

PP characterization 
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The characterization of the PP samples was performed in high-throughput mode. Gel 

permeation chromatography (GPC) curves were recorded with a Freeslate Rapid GPC setup, 

equipped with a set of 2 mixed-bed Agilent PLgel 10 μm columns and a Polymer Char IR4 

detector. The upper deck of the setup includes a sample dissolution station capable of handling 

up to 48 samples in 10 mL magnetically stirred glass vials. With robotic operation, 

predetermined polymer quantities (usually 1 to 4 mg) were dissolved in specific volumes of 1,2-

dichlorobenzene with a 0.40 mg/mL concentration of 4-methyl-2,6-di-tert-butylphenol (BHT) 

stabilizer, so as to obtain solutions at a concentration of 0.5 to 1.0 mg/mL. After 2 h at 150 °C 

under gentle stirring to ensure complete dissolution, the sample array was transferred to a 

thermostated bay at 145 °C, and the samples were sequentially injected into the column line at 

145 °C and a flow rate of 1.0 mL/min. In a post-trigger delay operation mode, the analysis time 

was 12.5 min per sample. Calibration was carried out using 10 monodisperse polystyrene 

samples (Mn between 1.3 and 3700 KDa). Before and after each campaign, samples from a 

known PP batch produced with an ansa-zirconocene catalyst were analyzed for a consistency 

check. Number average molecular weight (Mn), weight average molecular weight (Mw) and 

polydispersity index (PDI; defined as Mw/Mn) of the produced polymers were collected via GPC. 

Analytical crystallization elution fractionation (A-CEF) curves were collected with a Polymer 

Char A-CEF setup, equipped with an autosampler (42 wells), an IR5 detector and a dual 

capillary viscometer detector. With robotic operation, predetermined polymer quantities 

(typically 8–16 mg) were dissolved in 1,2-dichlorobenzene containing 0.40 mg/mL of BHT 

stabilizer, so as to achieve a concentration of 2.0 mg/mL. After 90 min at 150 °C under vortexing 

in sealed vials to ensure complete dissolution, the samples were sequentially charged into the 

injection loop, where they were held at 95 °C for 5 min and then moved into the column. The 
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crystallization step entailed an 8.0 °C/min cooling ramp down to 35 °C at a flow rate of 0.24 

mL/min; 1 min after reaching 35 °C, sample elution was started, with a 4 °C/min heating ramp 

up to 150 °C at a flow rate of 1.0 mL/min. The resulting analysis time was 60 min per sample. 

For each sample, the amorphous fraction (AF) (i.e., the relative sample amount eluted at 35 °C) 

was utilized to calculate the index of isotacticity (I.I.) as I.I. = (100 – AF) wt%. 

Quantitative 13C NMR spectra were recorded with a Bruker Avance III 400 spectrometer 

operating at 100 MHz, equipped with a 5 mm high-temperature cryoprobe, and a robotic sample 

changer with a pre-heated carousel (24 positions). The NMR spectra were acquired with a 45° 

pulse, 2.7 s acquisition time, 2.0 s relaxation delay, and either 400 or 800 transients 

(corresponding to analysis times of 30 or 60 min). Broad-band proton decoupling was achieved 

using a modified WALTZ16 sequence (BI_WALTZ16_32 by Bruker). 

 

Machine learning  

A ML approach was adopted to model ID QSPRs. The experimental data (next Section, Table 

1) were used without any data preprocessing or removal. ID molecular structures were 

fingerprinted using Mordred, a software developed for calculating molecular descriptors.55 This 

software offers distinct advantages when compared to alternative tools. Notably, it excels in 

rapid calculation speeds, user-friendliness, capability to handle large molecules, and providing a 

broader array of descriptors within a lenient licensing framework. The calculations were 

performed using Python 3.7, along with the Pandas, RD-kit, and Mordred 1.0.0 packages.  

Among the total descriptors (1825), zero-variance descriptors as well as three-dimensional 

descriptors were excluded. The remaining descriptors (1138) primarily comprised 

autocorrelation (606) and Barysz Matrix (104). These descriptors are based on the atom 
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connectivity and molecular graph structures, encompassing information about parameters such as 

size, electronegativity, ionization potential, Van der Waals volume, etc.  

Thus, individual IDs were uniquely defined by their molecular descriptors and experimentally 

acquired chemical compositions and structures of the catalysts, serving as explanatory variables. 

However, the surplus of these features compared to the number of IDs necessitated feature 

selection. This was accomplished by a genetic algorithm (GA) to select a predetermined number 

of features that optimize the score of regression. Given the limited dataset size and the potential 

for outlying molecular structures, we adopted Huber regression − a robust form of multiple linear 

regression.56 The efficacy of each feature set was evaluated using the mean absolute error (MAE) 

within leave-one-out cross-validation (LOOCV). For each target variable, feature selection by 

GA, involving 800 populations and 1600 generations, was conducted three times. The feature set 

and model with the lowest MAE value across these iterations were then chosen. The calculations 

were performed on a high-performance computing (HPC) system, utilizing a custom Python 3.8 

code in conjunction with common libraries such as Pandas, Numpy, Scikit-Learn, and Shap. 

Further details are read elsewhere as part of the automatic feature engineering technique recently 

developed by some of us.57 

 

RESULTS AND DISCUSSION 

ID library, HTE dataset and classical description 

Within the constraints of commercial availability, we assembled the ID library in order to 

ensure an adequate diversity of molecular structures along with practical relevance. Although 

there exists a wide variety of organic Lewis bases, those suited as ZN IDs are quite limited: small 

molecules that can effectively bind to coordinatively unsaturated Mg2+ ions on MgCl2 surfaces 
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and do not contain active protons.58 In particular, donors featuring O-based functional groups, 

like ethers and esters, are dominant for practical use, while N- or S-containing donors are also 

possible but far less common. Moreover, molecules with two electron donating groups tend to 

outperform those with single donating groups, due to their stronger binding to the surface in the 

chelating or bridging mode; in fact, ZN catalysts from the third generation onward all contain 

bifunctional IDs. Not surprisingly, ID performance is significantly affected by electronic and 

steric factors, including (but not limited to) the distance between the two electron donating 

groups (often referred to as spacer length), the presence of sterically demanding substituents, the 

rigidity of the molecular structure, etc. We carefully considered all said elements when selecting 

the 35 molecules in the library, all featuring two O-based functional groups (Figure 2). Diesters 

were chosen as the major components, because they offer the desired diversity within 

commercially available compounds. The library was then augmented with some ketoesters, 

diketones, and anhydrides with comparable spacer length. A number of 35 structures may be 

regarded as inadequate for advanced ML techniques, but it can suffice when combined with 

feature engineering (see below). Moreover, it is worth noting that there are very few instances in 

the existing literature where catalyst preparation and evaluation were accomplished using a 

unified process for such a number of IDs. In this respect, the present paper represents a 

pioneering effort in establishing a consistent ID dataset by streamlining high-throughput 

experimental protocols for catalyst preparation, polymerization, and polymer analysis (Figure 1). 

Various methods are available for preparing ZN (pre)catalysts. The formation of catalyst 

particles from alcohol solutions of MgCl2 in the presence of an ID is a most commonly employed 

one, but it was not adopted in this study due to potential non-uniform morphology of the catalyst 

macroparticles depending on ID molecular structure. Instead, we opted for the chemical 
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conversion of Mg(OEt)2, another widely used method.59,60 In this approach, Mg(OEt)2 particles 

are transformed into catalyst macroparticles through TiCl4 treatment in the presence of an ID, 

while preserving their original particle morphology. Initially, we synthesized a sufficient 

quantity of Mg(OEt)2 spheroidal particles characterized by a narrow particle size distribution and 

mechanical robustness against mechanical stirring and the heat generated during catalyst 

preparation. This synthesis was carried out using a well-established set of processes and 

conditions. Subsequently, we prepared catalysts containing various IDs in parallel, using the 

same Mg(OEt)2 source as the starting material and employing the identical process and 

conditions.39 A total of 12 catalysts could be prepared in single operation of parallel preparation, 

that is, the 35 catalysts were obtained in three parallel preparations. The thus prepared catalysts 

were handled under rigorously inert atmosphere for the characterizations; the resulting dataset is 

reported in columns 2–5 of Table 1. The characteristics of the catalysts’ macroparticles are 

omitted, as they retained the morphology of Mg(OEt)2 particles regardless of the molecular 

structure of the IDs, exhibiting nearly identical shapes and size distributions (Figure S1); in other 

words, the structural features at this scale are entirely unrelated to the observed changes in 

catalytic performance. 

 

Table 1. Overall dataset of the 35 ZN catalysts prepared and screened in this work.  

Codea 
Tib 

[mmol/g] 

OEtc 

[mmol/g] 

IDc 

[mmol/g] 

Vp
d 

[cm3/g] 

Rp,rel
e
 

[%] 

Mn
f
 

[kDa] 

Mw
f
 

[kDa] 
PDIf 

mmrrmmg 

[mol%] 

rrrrrrg 

[mol%] 

Tel
h

 

[°C] 

I.I.h 

[wt%] 

CAT-Ar-DE-1 0.46 0.20 0.53 0.331 100 42 313 7.3 0.2 0.1 118.2 97 

CAT-Ar-DE-2 0.42 0.11 0.46 0.320 72 53 360 6.8 0.2 0.1 118.3 97 

CAT-Ar-DE-3 0.36 0.11 0.51 0.295 79 53 321 6.1 0.1 0.1 118.3 97 

CAT-Ar-DE-4 1.15 0.27 0.32 0.410 20 33 201 6.1 0.4 0.2 116.7 95 
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CAT-Ar-DE-5 0.38 0.16 0.61 0.484 73 53 346 6.5 0.2 0.1 118.5 98 

CAT-Ar-DE-6 0.56 0.09 0.81 0.602 20 49 252 5.1 0.2 0.1 117.9 98 

CAT-C-DE-1 0.50 0.11 0.41 0.813 17 41 203 5.0 0.5 0.2 117.0 96 

CAT-C-DE-2 0.54 0.18 0.34 0.499 40 40 224 5.6 0.4 0.2 117.6 97 

CAT-C-DE-3 0.44 0.13 0.59 0.582 63 46 266 5.8 0.4 0.2 118.1 97 

CAT-C-DE-4 0.44 0.16 0.55 0.503 43 44 243 5.5 0.6 0.2 117.4 95 

CAT-L0-DE-1 1.82 0.04 0.02 0.538 15 30 176 6.0 0.6 0.5 116.0 92 

CAT-L0-DE-2 1.34 0.02 0.05 0.726 13 40 180 4.5 0.7 0.4 116.2 94 

CAT-L1-DE-1 0.52 0.16 0.60 0.756 27 32 200 6.3 0.4 0.4 117.1 94 

CAT-L1-DE-2 0.42 0.22 0.51 0.439 80 48 244 5.1 0.7 0.3 116.8 95 

CAT-L1-DE-3 0.79 0.27 0.48 0.308 103 33 163 4.9 0.8 0.2 116.0 94 

CAT-L1-DE-4 0.50 0.09 0.79 0.720 19 29 149 5.0 0.5 0.4 117.1 95 

CAT-L1-DE-5 1.61 0.20 0.27 0.676 9 35 180 5.2 0.7 0.4 115.4 94 

CAT-L1-DE-6 0.44 0.13 0.49 0.503 48 33 182 5.5 0.6 0.3 116.7 95 

CAT-L1-DE-7 0.56 0.13 0.47 0.384 49 33 199 6.0 0.6 0.3 116.9 95 

CAT-L1-DE-8 0.54 0.20 0.53 0.352 85 33 163 4.9 0.8 0.2 116.2 94 

CAT-L2-DE-1 0.50 0.07 0.49 0.639 11 41 210 5.1 0.2 0.2 117.0 97 

CAT-L2-DE-2 0.52 0.07 0.44 0.877 4 34 185 5.5 0.4 0.2 116.5 97 

CAT-L2-DE-3 1.65 0.36 0.20 0.500 8 28 146 5.2 0.9 0.4 115.2 94 

CAT-L2-DE-4 0.44 0.09 0.84 0.669 25 47 274 5.8 0.2 0.1 118.0 97 

CAT-L3-DE-1 0.38 0.02 0.72 0.840 8 42 227 5.3 0.4 0.2 117.1 96 

CAT-L4-DE-1 0.36 0.11 0.71 0.507 9 40 209 5.2 0.3 0.2 116.9 96 

CAT-L4-DE-2 0.71 0.04 0.80 0.633 2 37 180 4.9 0.3 0.2 115.7 97 

CAT-L1-KE-1 0.79 0.38 0.34 0.548 75 36 182 5.0 1.0 0.5 115.7 92 

CAT-L1-KE-2 1.11 0.36 0.21 0.480 32 22 122 5.6 1.1 0.6 114.9 89 

CAT-L1-DK-1 1.42 0.31 0.28 0.493 37 41 189 4.7 1.0 0.3 115.4 94 

CAT-L1-DK-2 1.42 0.29 0.27 0.495 42 37 154 4.2 1.2 0.4 114.9 93 

CAT-AN-1 1.21 0.40 0.47 0.299 23 37 179 4.9 0.8 0.4 115.9 93 

CAT-AN-2 1.13 0.27 0.51 0.245 21 34 185 5.4 0.9 0.5 115.9 92 

CAT-AN-3 0.67 0.38 0.40 0.336 67 32 176 5.6 1.1 0.6 115.3 91 
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CAT-AN-4 0.77 0.29 1.03 0.436 31 29 137 4.7 1.0 0.4 115.0 92 

a Corresponding to the ID code described in Figure 2. 

b Determined by UV-vis spectroscopy. 

c Determined by 1H NMR. It included not only the original form of ID but also secondary 

forms, typically derived by transesterification (for DE and KE), isomerization or tautomerization 

(for DK and KE), and esterification (for AN). 

d Obtained from a N2 adsorption isotherm at 77 K using NLDFT. 

e Relative productivity to that of CAT-Ar-DE-1. 

f Determined by high-temperature GPC. 

g Determined by 13C NMR. 

h Obtained from A-CEF. Tel and I.I. refer to the peak temperature of the elution curve and the 

weight fraction of the eluates above 35 °C, respectively. 

  

Propylene homopolymerization experiments were conducted under strictly controlled 

experimental conditions, using a state-of-the-art HTE reaction platform and thoroughly validated 

protocols (see Experimental Section). The results of these experiments (averages of 35 duplicate 

experiment pairs) and of the polymer characterizations via Rapid GPC, A-CEF, and 13C NMR 

spectroscopy are summarized in columns 6–13 of Table 1. The maximum observed error was 

15% on catalyst productivity and average MW values; for other properties, experimental 

uncertainties were within ±1 on the last significant digit. Average catalyst productivity (Rp, 

expressed in kg(PP) g(Ti) 
–1 h–1) is a convenient kinetic descriptor as long as catalyst deactivation is 

negligible—a condition met by all catalysts in the library. To facilitate comparison, relative 

values (Rp,rel) were reported as percentages (%) of the absolute Rp value measured for CAT-Ar-

DE-1, a popular fourth-generation system chosen as a reference. The 13C NMR fractions of 

mmrrmm and rrrrrr heptads (% of total methyl integral) are indicators of isolated stereodefects 

within highly isotactic and stereoblock PP chains, respectively. The amorphous fraction (AF) 
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measured by A-CEF represents the relative amount of polymer produced at poorly 

stereoselective catalytic sites. This quantity nicely correlates with the so-called xylene-soluble 

(XS) PP fraction, and was used to measure the index of isotacticity (I.I.), that is the relative 

amount of polymer produced at the highly stereoselective catalytic sites (conventionally referred 

to as “highly isotactic”). The maximum elution temperature in the A-CEF curve (Tel), in turn, is 

another way to estimate the stereoregularity of the insoluble fraction.  

The overall dataset in Table 1, which is unprecedented when considering the size and internal 

consistency, highlights a fascinating and intriguing mix of predictable and surprising QSPRs.  

- The negative correlation between Ti and ID contents (Figure S2a) can be understood as a 

result of the competitive adsorption of TiCl4 and ID on the coordinatively unsaturated 

MgCl2 surfaces.3,4,24,61,62 IDs resulting into high Ti contents included those prone to 

secondary reactions (that is, tautomerization for KE and DK; esterification with Ti-OEt 

for AN; transesterification with Ti-OEt for isopropyl DE), and oxalates (L0-DE#) that 

hardly adsorbed on MgCl2. In line with common sense, this indicates that Lewis bases 

acting effectively as IDs are chemically stable/inert and have high affinity for MgCl2.  

- Catalysts with high Ti content (i.e., low ID content) produced PP with comparatively low 

stereoregularity, as indicated consistently by the relevant polymer features, namely I.I., 

Tel (Figure S2b), mmrrmm and rrrrrr.  

- OEt groups left over from Mg(OEt)2 in the catalyst have a detrimental impact on activity 

and stereoselectivity (Figure S2c and previous literature).39,54 Residual OEt amount 

turned out to depend significantly on ID molecular structure: it was lower in general with 

diester IDs (and especially so with oxalates) than with all other ID classes.  
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- Pore volume turned out to be highly sensitive to ID molecular structure: while an overall 

trend was hard to discern, specific phthalates and malonates were found to contribute to 

the smaller pore volume. The weak negative correlation of this parameter with catalyst 

productivity (Figure S2d) suggests that fragmentation of denser particles is important for 

enhancing activity.  

- Features regarding performance in polymerization are strongly intercorrelated. That this 

holds for Mn and Mw, as well as for mmrrmm, rrrrrr, Tel, and I.I., is evident and requires 

no further discussion. The fact that higher values of Mn and Mw are associated with lower 

values of mmrrmm and rrrrrr and higher values of Tel and I.I. can be traced to a low 

propensity of highly isotactic PP chains to undergo chain transfer. In particular, Mw 

shows strong negative and positive correlation with mmrrmm and PDI (Figures S2e and 

S2f), respectively. This suggests that the factors hampering stereoirregular propylene 

insertion and -H transfer to propylene monomer at the most stereoselective catalytic 

sites are synergic (possibly coincident). 

- Looking at the overall catalytic performance, the superiority of phthalate IDs, and 

especially dibutylphthalate (CAT-Ar-DE1), is outstanding. Comparable productivity was 

observed only with certain disubstituted malonate IDs, whereas diesters lacking 

substituents on the spacer generally exhibited low(er) activity. Mn, Mw, and PDI values 

were also high in general with phthalate IDs, none surpassing the reference in terms of 

PDI. DK and diethyl oxalate IDs, to the other extreme, showed notably narrow PDI 

values.  

 

Blackbox QSPR modeling by ML 
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Notwithstanding the several correlations highlighted in the previous section, the overall 

QSPRs for the ZN IDs in the library are too intricate for classical (deterministic) modeling 

attempts. Thus, we aimed to construct models that learned the response of a black box via 

supervised ML, where the molecular structure of IDs served as input, and the catalyst 

performance as output. This required fingerprinting the features of IDs (molecular structure and 

properties). Listing all relevant features based on domain knowledge was proven to be difficult. 

Hence, we generated a diverse set of features, and performed feature selection to identify crucial 

features in describing each performance metric.  

Specifically, out of 1138 features generated from the IDs' molecular structures using Mordred, 

we used a genetic algorithm-based method to select five features that minimized the MAE value 

in LOOCV with Huber regression. Huber regression, a form of multiple regression, uses Huber 

loss instead of the standard least square, offering robustness against outliers.56 Such a simple 

machine learning method was effective in preventing overfitting with a limited observation 

number—35 molecular structures in this case. The use of the cross-validation score, not the 

training score, for the feature selection also helped mitigate overfitting. 

The feature selection was performed in two cases, depending on whether experimentally 

obtained features, namely chemical composition and pore volume of the catalysts listed in Table 

1, were included or not in the feature selection. In our catalyst preparation, the only variable was 

ID molecular structure, while all other conditions, e.g., ID amount, chlorination temperature, 

purification protocol, etc., did not vary. Therefore, the aforementioned experimental features can 

be considered as consequences of ID molecular structure, and as such dependent variables that 

ideally may be omitted. Nonetheless, including those experimental features might enhance the 

model's accuracy when these features directly relate to the performance. 
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The top section of Figure 3 exhibits parity plots for the models built with Rp,rel, PDI, Tel, and 

I.I. as target variables by employing only the Mordred molecular features. The selected features, 

as well as training and cross-validation scores, are summarized in Table 2. Reasonable regression 

results were obtained without including the experimental features, irrespective of the target 

variables. The MAELOOCV values were 6.89 for Rp,rel, 0.18 for PDI, 0.21 °C for Tel, and 0.48 wt% 

for I.I., considerably smaller compared to the standard deviation (SD) of each target variable 

(28.9, 0.65, 1.06 °C, 2.13 wt%, respectively). Moreover, these values were significantly lower 

than those obtained via 10-fold feature selection with y-randomization (mean ± 2SD = 13.4 ± 

2.4, 0.27 ± 0.07, 0.47 ± 0.16 °C, 0.94 ± 0.19 wt%), indicating a very low possibility of chance 

correlation typically observed when using a large number of features. Besides, the MAE values 

were consistent between training and cross-validation, suggesting no tendency to overfitting, 

owing to the simple machine learning method involving the small number of features. 

 

Figure 3. Regression results for different metrics of catalyst performance during propylene 

polymerization. Molecular descriptors were generated from the structural formulas of IDs using 

Mordred. A genetic algorithm was used to select five features per target variable that minimize 
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the mean absolute error of leave-one-out cross validation in Huber regression. The upper and 

lower panels compare results between models involving only molecular features and those 

involving at least one experimental feature. The selected features, along with the training and 

cross-validation scores, are given in Table 2.  

 

The importance of the selected features was analyzed using Shapley Additive Explanation 

(SHAP) summary plots (Figure S3).63 These plots visually represent each feature's impact on the 

model's predictions, displaying the magnitude and direction of influence. Higher SHAP values 

denote a stronger impact, with positive values indicating an increase in the target variable, while 

negative values indicate the opposite effect. These visualizations offer a clear understanding of 

each feature's significance and directionality in shaping the model's behavior. The most 

important feature and its impact direction were identified for each target variable: lower TiC0 

(total information content index with a neighborhood symmetry of zero-order) values increase 

Rp,rel, while higher VR2_A (VR2 of the adjacency matrix) values raise PDI. Similarly, higher 

piPC8 (8-ordered pi-path count on a logarithmic scale) values and higher GATS2are (Geary 

coefficient of lag 2 weighted by Allred-Rocow electronegativity) values lead to enhancements in 

Tel and I.I., respectively. 

Table 2. Results of feature selection for different target variables.a  

Target  

variable 

Selected features MAEtrain MAELOOCV 

Rp,rel AATSC4i, ZMIC3, TIC0, VR2_A, ATS7se 6.66 6.89 

PDI VR2_A, JGI7, MATS8i, MIC0, MATS4d 0.170 0.179 

Tel SMR_VSA6, AETA_eta_FL, piPC8, MATS1dv, ATSC1dv 0.201 0.210 
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I.I. GATS2c, GATS8c, VSA_EState9, GATS4c, GATS2are 0.463 0.480 

Rp,rel
b VR2_A, TIC0, ATS7se, MATS4i, Ti 7.18 7.34 

PDIb ATSC0dv, VR2_A, Vp, AATS6p, Xp-1d 0.202 0.213 

Tel
b Ti, piPC8, MATS2c, AATS7dv, AATS2d 0.198 0.221 

I.I.b OEt, MDEO-11, AATSC2d, AATSC6i, MATS5c 0.512 0.542 

a Five features were selected for each target variable to minimize the mean absolute error 

(MAE) of leave-one-out cross-validation (LOOCV) in Huber regression. The feature selection 

was carried out three times, and the selected features and scores of the best model are 

summarized. 

b Incorporating experimentally obtained catalyst compositions and structures into feature 

selection, the best model among those including at least one experimental feature is presented. 

Note that the inclusion of experimental features can result in a decrease in the regression scores. 

 

While the selected features can accurately describe the relationship between the molecular 

structure of IDs and catalyst performance, they are very intricate, primarily representing the 

chemical structure of the molecules with a convolution of properties such as the charge and 

electron count of each atom. Consequently, extracting physical insights directly from the selected 

features is challenging, indeed a practice that is rarely performed in the literature. Thus, the 

approach of selecting relevant features from all possible features can provide a high-precision 

model without relying on specific assumptions, but may sacrifice interpretability of the 

descriptors. 

The lower section of Figure 3 and Table 2 presents the optimal models, out of those including 

at least one experimental feature, for different target variables. As seen in Table 2, regardless of 

the target variables, incorporating experimental features as descriptors worsened the predictive 

power of the models, leading to higher MAELOOCV values. This fact indicates that catalyst 

chemical composition and pore volume (both known to significantly impact the performance of 

Ziegler-Natta catalysts) could be advantageously substituted by ID molecular features. 
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According to the SHAP analysis, the experimental features playing a significant role were the Ti 

content for Tel and OEt content for I.I. (Figure S3). The observed directions of the impact, i.e., 

higher Tel with lower Ti contents and lower I.I. with higher OEt contents, align with previous 

findings: a decrease in Ti content improves the effectiveness of donors in enhancing catalyst 

stereoselectivity, likely by making individual active sites isolated from each other and allowing 

neighboring surface sites occupied by donor molecules as stereo-controlling “pseudo-ligands”; 

residual Ti-OEt groups, in turn, seem to greatly increase the production of atactic PP fractions. 

In summary, this ML-aided study yielded promising results in (at least) three aspects. Firstly, it 

represents the first example of utilizing machine to successfully learn the intricate relationship 

between ID molecular structures and performance of the resulting ZN PP catalysts. The machine 

was able to accurately describe catalyst performance based on the molecular structure 

information on IDs, without explicitly describing the complex interplay due to the availability of 

a reasonably sized and consistently acquired dataset. Secondly, it was evident that high-precision 

regression is achievable solely using ID molecular features without the necessity of 

experimentally acquired features. This finding might pave the way for virtual ID screenings 

without the need for any experimentation. Combining molecular features with experimental 

features allowed to promote our understanding on the catalysis without significantly 

compromising the accuracy of regression. Last but not least, the use of a relatively limited-sized 

dataset made feature selection not-definitive. Models involving different feature combinations 

did not significantly underperform the best-performing models, indicating their similarity in 

capturing the properties of known molecular structures. However, their predictive behaviors 

could be very different for dissimilar molecules. Eliminating alternative models or “alternative 
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hypotheses” requires active learning—recursively incorporating experimental data into the 

dataset for model reinforcement, hence our future research focus. 

 

CONCLUSION 

Artificial intelligence methodologies such as machine learning (ML) are becoming 

fundamental tools in all fields of science. An important prerequisite is the availability of very 

large and robust datasets; this is much easier in certain fields (e.g., pharma) than in others, like 

classical organometallic chemistry in general, and more specifically in olefin polymerization 

catalysis.   

In this paper we introduced an integrated high-throughput experimentation (HTE) workflow 

for the rapid generation of reliable quantitative structure-properties relation (QSPR) databases in 

Ziegler-Natta polypropylene (ZN PP) catalysis, suitable for ML applications. Compared with 

previous studies, the main aspect of novelty here was the integration of parallel precatalyst 

synthesis and catalyst polymerization screening tools. In particular, a custom-made precatalyst 

preparation platform enabled us to prepare ZN precatalysts containing different internal donors 

(IDs) under otherwise identical experimental conditions, leading to catalyst particles with similar 

well-controlled morphology. This led to the implementation of a highly consistent and accurate 

database.  

In order to highlight the potential of the proposed approach, a representative training set of 35 

catalysts featuring different IDs was exploited. Application of state-of-the-art “black-box” ML 

feature selection allowed us to build QSPRs very decently interpolating catalyst polymerization 

performance. As noted in the introduction, the dataset used in the present work was rather small 

and therefore not meant for predictive application. 
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All in all, we believe that the present work represents a first step towards a more efficient 

approach to improved IDs for ZN PP catalysts. We plan to extend the training set, both in terms 

of number and structural diversity, in order to strengthen further the “black-box” ML tool, and 

possibly try “clear-box” ML variants, ultimately aiming to predict the behavior of these elusive 

catalyst formulations. 
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