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Abstract  29 

The heterogeneous continuous flow hydrogenation is pivotal in chemical research and 30 

production, yet its reaction optimization has historically been intricate and labor-31 

intensive. This study introduces a heterogeneous continuous flow hydrogenation 32 

system specifically designed for the preparation of 2-amino-3-methylbenzoic acid 33 

(AMA), employing FTIR inline analysis coupled with an artificial neural network 34 

model for monitoring. We explored two distinct reaction optimization strategies: multi-35 

objective Bayesian optimization (MOBO) and intrinsic kinetic modeling, executed in 36 

parallel to optimize the reaction conditions. Remarkably, the MOBO approach achieved 37 

an optimal AMA yield of 99% and a productivity of 0.64 g/hour within a limited 38 

number of iterations. Conversely, despite requiring extensive experimental data 39 

collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar 40 

optimal AMA yield but a higher productivity of 1.13 g/hour, attributed to increased 41 

catalyst usage. Our findings indicate that while MOBO offers a more efficient route 42 

with fewer required experiments, kinetic modeling provides deeper insights into the 43 

reaction optimization landscape but is limited by its assumptions. 44 

 45 
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Introduction 49 

Heterogeneous catalytic hydrogenation is pivotal in organic synthetic chemistry, with 50 

broad applications across the dye, pharmaceutical, and fine chemical industries.[1-3] 51 

Traditional intermittent hydrogenation processes, however, are constrained by critical 52 

safety concerns associated with reaction temperature and pressure, prompting a shift 53 

towards continuous flow hydrogenation as a safer and more efficient alternative.[4, 5] 54 

The reaction optimization within these continuous flow systems has emerged as a 55 

research focus.[6, 7] Historically, the reaction optimization process predominantly 56 

employed the one factor at a time (OFAT) method [8], which relies on a sequential, 57 

factor-based optimization guided by chemical intuition[9-12]. Despite its widespread 58 

use, the OFAT approach is often criticized for its inefficiency and inaccuracy, primarily 59 

due to its inability to account for potential synergistic effects among various factors, 60 

potentially leading to misinterpretation of the chemical processes.[13] Consequently, 61 

there is a pressing need for developing systematic approaches to reaction optimization.  62 

 63 

Kinetic modeling, grounded in a comprehensive understanding of chemical processes, 64 

represents a classical and crucial strategy for reaction optimization, especially for 65 

heterogeneous hydrogenation reactions.[14-17] For instance, Su et al. demonstrated the 66 

application of kinetic modeling in the heterogeneous flow hydrogenation of 67 

hexafluoroacetone trihydrate, revealing an adsorption-desorption mechanism with 68 

competitive adsorption of H2 dissociation.[18] Similarly, Yu et al. conducted a 69 

continuous hydrogenation study of 2-(4-nitrophenyl) butanoic acid and kinetics study 70 

in a micropacked-bed reactor, employing kinetic analysis to elucidate the impacts of 71 

internal and external diffusion, as well as salt formation.[19] Despite these advances, 72 

the application of kinetic modeling in heterogeneous catalysis is often hampered by the 73 

complexities associated with non-chemical kinetics phenomena.[20-24] 74 

 75 

Multi-objective Bayesian Optimization (MOBO) has revolutionized the optimization 76 

of continuous-flow reactions by adeptly handling competing objectives.[25-28] It 77 
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leverages the surrogate model and acquisition function to systematically explore the 78 

Pareto Front, aiming to strike an optimal balance among objectives. Using probabilistic 79 

models, MOBO predicts outcomes for specific reaction conditions, guiding the 80 

optimization process toward superior performance metrics. Recent significant 81 

implementations of MOBO include Jensen et al.'s optimization of multistep synthetic 82 

routes on an automated platform [25], Bourne et al.'s achievement of an 81% yield 83 

through the simultaneous optimization of telescoped reactions [29], and Lapkin et al.'s 84 

application of MOBO in medicinal chemistry for yield optimization [30]. Despite its 85 

advancements, MOBO’s comparison with traditional optimization methods is less 86 

studied.  87 

 88 

Inline analytical techniques, including inline FTIR, NMR, and UV/vis spectroscopy, 89 

are becoming integral to reaction optimization due to their ability to provide real-time 90 

data, which facilitates the creation of self-optimizing systems when combined with 91 

Bayesian optimization.[29, 31, 32] Kappe et al. have notably advanced this field by 92 

integrating four complementary inline analysis instruments and developing advanced 93 

data analysis models, which quantify desired products, intermediates, and impurities 94 

inline across various stages of a multi-step synthetic pathway.[33] Furthermore, they 95 

have successfully applied artificial neural networks (ANN) for processing NMR and 96 

UV/vis spectra of multiple components.[34] Besides enhancing Bayesian optimization, 97 

inline analysis is also anticipated to improve the efficiency of traditional optimization 98 

techniques, such as kinetic modeling. 99 

 100 

In this study, we focused on the synthesis of 2-amino-3-methylbenzoic acid, a key 101 

intermediate for the pesticide chlorantraniliprole, to serve a case study for optimizing 102 

heterogeneous continuous flow hydrogenation. We designed a continuous flow 103 

hydrogenation system equipped with an FTIR for inline monitoring and analysis of 104 

reaction data. Multi-objective Bayesian optimization and kinetic modeling were 105 

conducted in parallel to optimization the reaction process, allowing us to compare the 106 

advantages and limitations of these two approaches directly.  107 
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 108 

Materials and Methods 109 

Materials. 3-Methyl-2-nitrobenzoic acid (98%, MNA), 2-amino-3-methylbenzoic acid 110 

(98%, AMA), methanol (MeOH, analytical grade), and silica (100-200 mesh) were 111 

purchased from Sinopharm Chemical Reagent Co., Ltd. (SCRC) without further 112 

purification. Hydrogen (H2, 99.999%) and nitrogen (N2, 99.999%) were purchased from 113 

Hangzhou Jingong Special Gas Co., Ltd. The catalyst Pd@SBA-15 was synthesized 114 

following the method reported in our previous work.[35]  115 

 116 

Experimental setup. Metering pump (JJRZ-10004F) was purchased from Hangzhou 117 

Jingjin Technology Co., Ltd. High performance liquid chromatography (HPLC) 118 

column (5 mm in diameter and 50 mm long) was purchased from Dalian Baijia Lida 119 

Technology Co., Ltd. Check valve, T-joint mixer, temperature sensor, pressure gauge, 120 

back pressure regulator, and stainless steel tube (1/8" and 1/16" outside diameter) were 121 

purchased from Beijing Xiongchuan Technology Co., Ltd. Polytetrafluoroethylene 122 

(PTFE) tube (1/8" and 1/16" outside diameter) was purchased from Nanjing Runze 123 

Fluid Control Equipment Co., Ltd. Inline FTIR (ReactIR 702L) was purchased from 124 

Mettler Toledo Technology Co., Ltd. Mass flow controller (D07) was purchased from 125 

Beijing Sevenstar Flow Co., Ltd. Water bath was purchased from Heidolph Instruments 126 

Co., Ltd. Experimental setup was shown in Figure S1a. 127 

 128 

Heterogeneous continuous flow hydrogenation system. MNA was dissolved in 129 

MeOH and pumped into the continuous flow system through a metering pump. The 130 

flow rate and pressure of H2 involved in the hydrogenation were controlled by adjusting 131 

the mass flow controller and the pressure gauge, respectively. The gas and liquid flow 132 

tubes were fitted with check valves to avoid backflow. The hydrogen and MNA solution 133 

were mixed in a T-joint mixer and then flowed into a 1.0-meter pretreatment tube to 134 

reach hydrogenation temperature. The synthesized catalyst Pd@SBA-15 was pre-135 

loaded in an HPLC column and the remaining space was filled with silica. Then, sieve 136 
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plates were installed at the ends of the HPLC column as a micro pack-bed reactor 137 

(MPBR). The MPBR was placed vertically in a hot water bath, which facilitates full 138 

contact between the gas-liquid mixture and the catalyst. The gas-liquid mixture 139 

undergoes hydrogenation in the MPBR. The pressure of the entire system was 140 

controlled by a manual back pressure regulator. The water bath and temperature sensor 141 

accurately control the hydrogenation temperature together. The check valve and back 142 

pressure regulator ensured that the continuous flow system was isolated from air. Then, 143 

the gas-liquid mixture flowed into a 1.0-meter pretreatment tube in a cold water bath to 144 

reach 20 ˚C. Inline FTIR monitored the concentrations of MNA and AMA after the 145 

hydrogenation in real-time. The tubes for solution flow through the inline FTIR were 146 

PTFE tubes and all other tubes were stainless steel tubes. The entire heterogeneous 147 

continuous flow hydrogenation system was controlled by adjusting the reaction 148 

parameters, such as temperature, flow rate, and hydrogen pressure. 149 

 150 

Concentration determination. Concentrations of MNA and AMA in the reaction 151 

solution were monitored in real-time by inline FTIR. ANN modeling was performed as 152 

a processing approach for inline FTIR spectra data according to the reported literature 153 

(Figure S2a).[34] Several groups of MNA and AMA in methanol solution with different 154 

concentrations were prepared and their inline FTIR spectra data were collected as 155 

training set and validation set. Here the verification set is equivalent to the test set 156 

(Table S1). Next, 5000 analog spectra are generated from a linear combination of two 157 

pure components, and Gaussian noise is added to augment the training set. Some of the 158 

data simulating the experimental process were also added to the training set and 159 

validation set. To improve the stability and performance of the ANN training phase, all 160 

spectra data were normalized. Next, during the training process, an architecture of one 161 

convolutional layer followed by dense layers was investigated. The spectra data was 162 

processed at the Conv1D convolutional layer for characteristic extraction to screen the 163 

weights of the data. Then, data dimension reduction was performed through different 164 

functions in the dense layers. Finally, the output layer outputs the predicted 165 

concentrations of MNA and AMA. Compared with the known concentration in the test 166 
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set, the predicted results of the model are basically consistent, indicating that the ANN 167 

model framework developed for this purpose is suitable (Figure S2b). The inline FTIR 168 

spectra data monitored during the experiment were used to quickly predict the 169 

concentrations of MNA and AMA through the ANN model. The conversion of the 170 

MNA (ConversionMNA), the yield of the AMA (YieldAMA), and the productivity of the 171 

AMA (ProductivityMNA) in the continuous flow hydrogenation system were calculated 172 

through Equation 1, Equation 2, and Equation 3, respectively: 173 

ConversionMNA = 1 −
𝐶MNA

𝐶MNA
0 (1) 174 

YieldAMA =
𝐶AMA

𝐶MNA
0 (2) 175 

ProductivityMNA = 𝐶AMA𝐹MNA𝑀AMA (3) 176 

where 𝐶MNA
0  was the initial concentration of the MNA in the solution; 𝐶MNA  and 177 

𝐶AMA  were the concentration of the MNA and the AMA in the collected solution, 178 

respectively; 𝐹MNA was the flow rate of the MNA solution; 𝑀AMA was the molar mass 179 

of the AMA. 180 

 181 

Multi-objective Bayesian Optimization. MOBO was performed according to the 182 

following process in general.[36, 37] The Bayesian optimizer was initialized by the 183 

design of experiments (DoE) or the random collection of initial experimental condition 184 

parameters and results. The expectation and uncertainty of each point were predicted 185 

based on a probabilistic surrogate model generated from the initial experimental results, 186 

with the trade-off between exploration and exploitation of the response space. Among 187 

them, the exploration region had high uncertainty, while the exploitation focuses on the 188 

part with high predictive expectations. New experimental condition parameters were 189 

obtained to perform new experiments after maximizing the acquisition function. The 190 

experimental dataset was then extended and reused to train a more accurate surrogate 191 

model. This process was iterated until obtaining satisfactory reaction yield and 192 

productivity.  193 

 194 

The initial sampling, the surrogate model, and the acquisition function as the three core 195 
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sections formed the MOBO model.[38, 39] Latin Hypercube Sampling (LHS) was used 196 

as the initial sampling approach to avoid the presence of excessive data aggregation in 197 

simple random sampling. The LHS divided the sampling units into different layers 198 

according to some characterization or some rules, and then extracted samples 199 

independently and randomly from the different layers. Notably, the LHS uses fewer 200 

samples than the traditional OFAT or DoE approach when the same threshold is reached, 201 

thus reducing the complexity of the calculation.  202 

 203 

MOBO was a response surface approach to uncertainty guidance, in which the 204 

performance of the surrogate model represented the predictive accuracy of the 205 

optimizer.[36] The efficiency of the surrogate model could only be recognized if its 206 

estimations of expectation and variance were close enough to the true response 207 

surface.[36] Gaussian process (GP) was an infinite-dimensional extended function 208 

distribution frequently used as the surrogate model.[39] GP allowed the construction of 209 

joint probability distributions of variables for estimating the variance and mean of the 210 

predicted data based on the available data. The Matérn class was a commonly used class 211 

of covariance functions in GP, via Equation 4:[40]  212 

𝑀Matérn(𝑥, 𝑦) =
21−𝜈𝜎2

𝛤(𝜈)
(√2𝜈‖𝑥 − 𝑦‖)

𝜈
𝐾𝜈(√2𝜈‖𝑥 − 𝑦‖) (4) 213 

Where 𝜎2 > 0 and 𝜈 > 0; 𝜈, 𝜎2, 𝛤(𝜈), ‖𝑥 − 𝑦‖, and 𝐾𝜈  were the non-negative 214 

parameter, the output variance, the gamma function, the distance between two points, 215 

and the Bessel function, respectively. 216 

 217 

Furthermore, the acquisition function was crucial for the desired optimization 218 

performance. Among them, probabilistic improvement (PI), expected improvement 219 

(EI), and upper confidence bound (UCB) are frequently used to tune hyperparameters. 220 

The q-noisy expected hypervolume improvement (qNEHVI) function was superior to 221 

other existing acquisition functions for MOBO, for example, it enabled one-step 222 

hypervolume maximization in both noisy and noise-free environments, via Equation 223 

5:[41, 42]  224 
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𝛼𝑞NEHVI(𝜒cand|𝒫) =
1

�̃�
∑ HVI (𝑓𝑡(𝜒cand|𝒫))

�̃�

𝑡=1

(5) 225 

where �̃� , HVI, 𝑓𝑡 , 𝜒cand , and 𝒫  were the number of samples, the hypervolume 226 

improvement, the posterior sample, the candidate sample, and the Pareto boundary, 227 

respectively.  228 

 229 

In this work, the qNEHVI function was used to optimize the yield of the AMA 230 

(YieldAMA) and the productivity of the AMA (ProductivityMNA) in the continuous flow 231 

hydrogenation system.  232 

 233 

Results and discussion 234 

 235 

In this study, a continuous flow hydrogenation system (Figure 1) was constructed to 236 

perform the hydrogenation of MNA using an MPBR filled with Pd@SBA-15 catalyst. 237 

Real-time reaction monitoring was achieved through an inline FTIR instrument, the 238 

ReactIR 702L. The data collected via inline FTIR were processed using an ANN model, 239 

enabling the acquisition of real-time concentration for MNA and AMA. These data 240 

points were subsequently utilized in Bayesian optimization and kinetic modeling 241 

studies to optimize the reaction system. 242 

 243 

 244 

Figure 1. Heterogeneous continuous flow hydrogenation of MNA and its inline analysis 245 

 246 

 247 
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MOBO for reaction optimization. 248 

MOBO was applied to optimize four key reaction parameters (Figure 2): reaction 249 

temperature (𝑇bath), hydrogen pressure (𝑃H2
), initial MNA concentration (𝐶MNA

0 ), and 250 

MNA solution flow rate (𝐹MNA), to maximize yield and productivity. Initially, Latin 251 

Hypercube Sampling (LHS) was used to create four sets of experimental conditions, 252 

and the outcomes of these experiments formed the initial training data for a Gaussian 253 

Process (GP) surrogate model. Utilizing this GP model, the acquisition function known 254 

as qNEHVI [43] then recommended a new set of experimental conditions. With each 255 

new experiment conducted, the GP model was updated with the results, and qNEHVI 256 

continued to make further recommendations. This process was repeated iteratively until 257 

the desired levels of yield and productivity were reached. Ultimately, this method led 258 

to the identification of the optimal experimental parameters located on the Pareto Front, 259 

achieving a balance between yield and productivity.  260 

 261 

 262 

Figure 2. The MOBO of the continuous flow hydrogenation of MNA 263 

 264 

The parameter space for the reaction was initially delineated in Figure 2. To ensure 265 

experimental safety, the hydrogen pressure and reaction temperature were capped at 2.5 266 

MPa and 100 ˚C, respectively. The solubility of MNA in methanol dictated its 267 

concentration limit, setting the upper boundary at 0.25 mL/min. The residence time, 268 

crucial for reaction completion, was adjusted by modulating the solution’s flow rate. 269 
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An excessively high flow rate could result in undue pressure build-up within the reactor 270 

tubes, while a markedly low flow rate might increase the gas phase’s proportion, 271 

complicating the monitoring of MNA concentration. Consequently, the flow rate was 272 

confined to 0.5-1.0 mL/min to balance these factors.  273 

 274 

The MOBO results are presented in Figure 3, with Figure 3a highlighting the evolution 275 

of the Pareto Front. Initial data points, marked by black crosses, were derived from LHS. 276 

The colored dots, varying in color based on iteration count, represent the data points 277 

suggested by the acquisition function. Through operation iterations with the GP model 278 

and the qNEHVI function, the data converged to form a compact Pareto Front. The data 279 

points in the upper right corner indicate the best balance between yield and productivity, 280 

showing nearly 99% yield and 0.64 g/hour productivity. The conclusive set of 281 

experimental parameters and results, which includes three sets capable of attaining 282 

these optimal levels, is detailed in Table S2.  283 

 284 

 285 
Figure 3. Results of the MOBO campaign. (a) The Pareto Front of the yield and productivity. 286 

(b) Optimization progress: each parameter versus experiment number. (c) Parallel coordinate 287 

plot showing the interactions between experimental parameters and results. 288 
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 289 

Figure 3b demonstrates the evolution of four optimization parameters—reaction 290 

temperature, concentration, flow rate, and hydrogen pressure—throughout the 291 

optimization process. It is observed that the reaction temperature, concentration, and 292 

flow rate values gradually stabilize, indicating that the MOBO successfully identified 293 

their optimal levels. In contrast, hydrogen pressure displayed continuous fluctuations, 294 

implying uncertainty regarding its impact on the optimization goals. 295 

 296 

Further insights are provided by a parallel coordinate plot (Figure 3c), which delineates 297 

the preferred reaction parameter values as determined by MOBO for enhancing both 298 

yield and productivity. Notably, optimal reaction temperatures are concentrated around 299 

the upper boundary of 100 ˚C, suggesting a preference for higher temperatures to 300 

maximize yield and productivity while minimizing by-product formation. This 301 

observation highlights the advantage of multi-objective optimization, demonstrating 302 

that a 99% yield is attainable at various temperatures when yield is the sole 303 

consideration. Moreover, the plot shows that the optimal concentration and flow rate 304 

settle at approximately 0.08 mol/L and 0.86 mL/min, respectively, with neither 305 

parameter reaching its maximum or minimum limit. The analysis also indicates that 306 

hydrogen pressure does not significantly influence the optimization objectives, hinting 307 

that even the minimum hydrogen pressure level might suffice for the reaction. 308 

 309 

For the later comparison with kinetic modeling which uses the response surface method 310 

for optimization, we performed another round of MOBO to fully explore the response 311 

surface surrounding the optimal points, with the three sets of optimal experimental 312 

parameters obtained in the previous round as the initial training set. The reaction 313 

temperature and hydrogen pressure were fixed at 100 ˚C and 0.5 MPa, respectively, 314 

acknowledging the positive correlation of high temperature and the optimization 315 

objectives and the negligible impact of hydrogen pressure. The exploration ranges for 316 

concentration and flow rate were narrowed to 0.0770-0.0884 mol/L and 0.8036-0.9227 317 

mL/min, aiming for a thorough investigation of this refined reaction space. After 10 318 
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iterations, the results (Table S3) show that an additional four sets of experimental 319 

parameters are able to achieve the same optimal yield and productivity as the original 320 

three sets. Mapping these seven optimal sets of experimental data onto the reaction 321 

space form a response surface with an irregular shape (Figure 4).  322 

 323 

 324 

Figure 4. 3D response surface of objective values formed through fitting the optimal 325 

experimental data underwent two rounds of MOBO. The blue points represent the three 326 

optimal data points from the first round, which were used as the initial training set for the 327 

second round. The purple points indicate all the data points gathered during the second round. 328 

 329 

Kinetic modeling for reaction optimization.  330 

Concurrently, kinetic modeling was conducted in alignment with our previously 331 

established intrinsic kinetic modeling methodology[18]. It is important to note that non-332 

chemical kinetic phenomena, such as gas-liquid interfacial area, fluid kinetics, solute 333 

diffusion, and mass transfer limitations, can significantly impact the accuracy of 334 

intrinsic kinetic modeling.[18] A comprehensive examination of reaction parameters 335 

(e.g., gas-to-liquid flow ratio, mean residence time) was performed to minimize these 336 

https://doi.org/10.26434/chemrxiv-2024-m0kf5 ORCID: https://orcid.org/0000-0002-6544-3959 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-m0kf5
https://orcid.org/0000-0002-6544-3959
https://creativecommons.org/licenses/by-nc-nd/4.0/


15 

effects, ensuring that the reaction rate data were obtained under conditions of kinetic 337 

control (see Supporting Information). Subsequently, experimental data were 338 

collected on the flow synthesis of AMA across various temperatures and mean 339 

residence times. This data formed the basis for our kinetic modeling efforts, during 340 

which the parameters across all models were estimated using the gPROMS (PSE, UK) 341 

parameter estimation tool [44]. Upon identifying the optimal model, a detailed 342 

examination of the reaction mechanism and the scope of this optimization approach was 343 

conducted (Figure 5).  344 

 345 

 346 

Figure 5. The overall approach for the kinetic modeling 347 

 348 

The Langmuir-Hinshelwood-Hougen-Watson (LHHW) methodology is widely 349 

recognized for its efficacy in the kinetic modeling of heterogeneous catalytic 350 

hydrogenation processes.[44] This approach distinctively elucidates the adsorption and 351 

dissociation stages inherent in catalytic hydrogenation, thereby aiding in the accurate 352 

derivation of the reaction mechanism. The LHHW framework is structured around three 353 

pivotal stages: the Langmuir adsorption of reactants onto the catalyst surface, the 354 

surface reaction involving the adsorbed intermediates, and the subsequent desorption 355 

of the products. Typically, the surface reaction step acts as the rate-determining phase. 356 

Based on the variations in adsorption and dissociation behaviors of the reactants, four 357 

LHHW models, each characterized by unique rate expressions ( 𝑟MNA ), have been 358 

formulated (Table 1). 359 

 360 

 361 
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Table 1. The LHHW kinetic models I-IV for MNA hydrogenation 362 

Modela,b Description Initial rate expression 

I 
competitive adsorption 

dissociative adsorbed H2 
𝑟MNA =

−𝑘1𝐾H2
𝐾MNA𝐶MNA

{1 + √𝐾H2
𝑃H2

+ 𝐾MNA𝐶MNA + 𝐾AMA𝐶AMA}3
 

II 
competitive adsorption 

nondissociative adsorbed H2 
𝑟MNA =

−𝑘1𝐾H2
𝐾MNA𝐶MNA𝑃H2

{1 + 𝐾H2
𝑃H2

+ 𝐾MNA𝐶MNA + 𝐾AMA𝐶AMA}2 

III 
noncompetitive adsorption 

dissociative adsorbed H2 
𝑟MNA =

−𝑘1𝐾H2
𝐾MNA𝐶MNA𝑃H2

{1 + 𝐾MNA𝐶MNA + 𝐾AMA𝐶AMA}{1 + √𝐾H2
𝑃H2

}2
 

IV 
noncompetitive adsorption 

nondissociative adsorbed H2 
𝑟MNA =

−𝑘1𝐾H2
𝐾MNA𝐶MNA𝑃H2

{1 + 𝐾MNA𝐶MNA + 𝐾AMA𝐶AMA}{1 + 𝐾H2
𝑃H2

}
 

a𝑘1 is the reaction rate constant of 𝑟MNA; 𝐾H2
, 𝐾MNA, and 𝐾AMA are adsorption equilibrium constants of H2, 

MNA, and AMA, respectively; 𝐶MNA and 𝐶AMA are the concentration of MNA and AMA in the collected 

solution, respectively; 𝑃H2
  is the pressure of H2. bExperimental conditions for data collection: 𝐶MNA

0   (0.1 

mol/L), 𝐹MNA (0.5 mL/min), 𝐹H2
 (20 mL/min), 𝑃H2

 (0.5 MPa). 

 363 

The experimental data obtained were subsequently employed to fit these LHHW rate 364 

expressions as objective functions in MATLAB, achieved through the fmincon function 365 

with a Sequential Quadratic Programming (SQP) method. The ordinary differential 366 

equations (ODEs) were solved using the ODE45 function. We fitted the kinetic models 367 

to the experimental data obtained at the reaction temperatures of 30 ˚C (303.15 K), 40 368 

˚C (313.15 K), 50 ˚C (323.15 K), and 60 ˚C (333.15 K), with the results of these fittings 369 

shown in Figure 6 and Figure S3.  370 

 371 
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 372 
Figure 6. Fitted curves of the LHHW kinetic model I: (i) 30 ˚C, (ii) 40 ˚C, (iii) 50 ˚C, and (iv) 373 

60 ˚C. 374 

 375 

Each LHHW kinetic model was evaluated by estimating model parameters using the 376 

gPROMS parameter estimation tool. Based on these estimated parameters, various 377 

statistical indicators were calculated to assess the fitting performance of each model 378 

(see Supporting Information). The selection criteria for the optimal model included 379 

the highest value of regression coefficient (𝑅2) alongside the lowest sum of squared 380 

residuals (SSR) and mean relative error (MRE). Upon comparison of these indicators 381 

in Table 2, the LHHW kinetic model I emerged as the most fitting according to these 382 

criteria, thereby establishing it as the optimal kinetic model. Furthermore, the chosen 383 

LHHW kinetic model I was further evaluated by comparing the experimental reaction 384 

rates with those predicted by the model in Figure 7a. This alignment between 385 

experimental and predicted rates underscores the robustness of the LHHW kinetic 386 

model I in simulating the reaction kinetics under study.  387 
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 388 

Table 2. Statistical evaluations related to experimental and predicted concentrations of MNA 389 

for different LHHW kinetic models 390 

Model Stat. param. 30 ˚C 40 ˚C 50 ˚C 60 ˚C 

I 𝑅2 0.9983 0.9986 0.9986 0.9985 

 SSR × 105 0.874 0.953 1.07 1.29 

 MRE (%) 2.23 3.20 5.51 10.2 

II 𝑅2 0.9964 0.9984 0.9979 0.9983 

 SSR × 105 1.90 1.07 1.67 1.54 

 MRE (%) 4.32 4.86 6.25 11.9 

III 𝑅2 0.9967 0.9982 0.9983 0.9979 

 SSR × 105 1.72 1.18 1.32 1.89 

 MRE (%) 3.95 4.94 7.71 12.4 

IV 𝑅2 0.9969 0.9982 0.9978 0.9979 

 SSR × 105 1.64 1.19 1.72 1.88 

 MRE (%) 3.80 4.28 8.19 12.7 

 391 

 392 

Figure 7. (a) Comparison of experimental reaction rate and predicted reaction rate using the 393 

LHHW kinetic model I. (b) Fitted curves of Arrhenius equation for LHHW model I. 394 

 395 

The kinetic and thermodynamic parameters of the LHHW model I are determined and 396 

shown in Table 3. The 𝑘1 , 𝐾H2
, 𝐾MNA , and 𝐾AMA  were obtained through kinetic 397 

model fitting in MATLAB. The activation energy (𝐸) and the pre-exponential factor 398 

(𝑘0) were obtained from the Arrhenius equation (Equation 6) and its variant (Equation 399 
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7) for the surface reaction: 400 

𝑘 = 𝑘0𝑒−
𝐸

𝑅𝑇 (6) 401 

ln 𝑘 = −
𝐸

𝑅𝑇
+ ln 𝑘0 (7) 402 

where 𝑘  is the reaction rate constant; 𝑘0  is the pre-exponential factor; 𝐸  is the 403 

activation energy; 𝑅 is the universal gas constant; 𝑇 the temperature in K. 404 

 405 

Table 3. Various kinetic and thermodynamic parameters of the LHHW model I 406 

Para. 

Temperature (K)  Thermodynamic parameters 

303.15 313.15 323.15 333.15  𝐸 (kJ mol-1) 𝑘0 (mol L-1 s-1) 

𝑘1 (mol L-1 s-1) 19.290 23.072 26.972 31.590  13.740 4.503×103 

Para. 

Temperature (K)  Thermodynamic parameters 

303.15 313.15 323.15 333.15  𝐸𝑎 (kJ mol-1) 𝐾0 

𝐾MNA (L mol-1) 190.988 189.882 188.768 187.866  -0.465 158.823 (L mol-1) 

𝐾AMA (L mol-1) 107.645 105.101 102.990 100.703  -1.849 51.685 (L mol-1) 

𝐾H2
 (MPa-1) 0.0548 0.0543 0.0538 0.0533  -0.776 0.0403 (MPa-1) 

 407 

The activation energy of the surface reaction is 13.740 kJ/mol through the linear fitting 408 

method, and the adsorption heats (𝐸𝑎 ) of H2, MNA, and AMA are all negative, 409 

signifying that the adsorption process is exothermic (Figure 7b). The adsorption heat 410 

(𝐸𝑎 ) and the pre-exponential factor (𝐾0 ) were also estimated using the Arrhenius 411 

equation (Equation 8) for the adsorption process: 412 

ln 𝐾 = −
𝐸𝑎

𝑅𝑇
+ ln 𝐾0 (8) 413 

where 𝐾 is the adsorption equilibrium constant; 𝐾0 is the pre-exponential factor; 𝐸𝑎 414 

is the adsorption heat; 𝑅 is the universal gas constant; 𝑇 the temperature in K. 415 

 416 

To achieve reaction optimization via intrinsic kinetic modeling, response surfaces of 417 

the kinetic model were generated across various MNA concentrations, with yield 418 

represented on the Z axis and the productivity illustrated through a color map (Figure 419 
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8). While it is feasible to attain a yield nearing 99% at a lower concentration and reduced 420 

mean residence time, optimizing both productivity and yield simultaneously—targeting 421 

the yellow area in Figure 8—requires an increase in both the mean residence time and 422 

MNA concentration. Under these optimized conditions, it is possible to achieve both a 423 

yield and productivity of up to 99% and 1.13 g/hour, respectively. The results predicted 424 

by the kinetic model at the optimized conditions were all confirmed by experimental 425 

results (Table S4). 426 

 427 

 428 

Figure 8. 3D response surface of objective values formed through the LHHW kinetic model I 429 

 430 

Comparison of MOBO and kinetic modeling. 431 

Table 4 presents the optimal reaction parameters and results from the two optimization 432 

approaches. The MOBO achieved an optimal yield of approximately 99% and 433 

productivity of 0.64 g/hour, respectively. Conversely, kinetic modeling achieved a 434 

similar optimal yield (~99%) but attained higher productivity (1.13 g/hour). The 435 

variation in optimal productivity was attributed to the distinct strategies for 436 

manipulating the residence time of the two approaches. MOBO modulated the 437 

residence time by adjusting the solution's flow rate, keeping the catalyst mass constant 438 
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within the MPBR. This approach was favored because MOBO was implemented in an 439 

automated manner, discouraging altering the catalyst quantity in the MPBR. Manually 440 

increasing the catalyst quantity could further increase productivity. Conversely, the 441 

intrinsic kinetic modeling methodology, which presumes that non-chemical kinetics 442 

phenomena (e.g., mass transfer, solute diffusion, flow dynamics) minimally impact the 443 

reaction, does not permit free variation of the flow rate but requires adjustment of the 444 

catalyst mass to maintain a constant solution flow rate. 445 

 446 

Table 4. The optimal reaction parameters and results of MOBO and kinetic modeling 447 

Data typea 𝐶𝑀𝑁𝐴
0  (mol/L) 𝐹𝑀𝑁𝐴 (mL/min) Yield (%) 

Productivity 

(g/hour) 

MOBO 

0.0770 

0.0805  

0.0884 

0.0854 

0.0868 

0.0846 

0.0817 

0.9227 

0.8763 

0.8036 

0.8547 

0.8648 

0.8741 

0.8733 

99.25 

99.99 

99.09 

99.18 

99.08 

99.99 

99.99 

0.6396 

0.6397 

0.6385 

0.6404 

0.6398 

0.6407 

0.6413 

Data typeb 𝑇bath (˚C) MRT (s) 
Yield (%) 

Productivity 

(g/hour) 
 Yield (%) 

Productivity 

(g/hour) 

Predicted data  Experimental data 

Kinetic modeling 

60 

55 

50 

45 

40 

980 

1050 

1150 

1280 

1400 

99.16  

99.02  

99.02  

99.11  

99.06 

1.1242  

1.1226  

1.1226  

1.1237  

1.1231 

 

99.98  

99.92  

99.95  

99.93  

99.91 

1.1335  

1.1328  

1.1332  

1.1329  

1.1327 

aExperimental conditions for data collection: 𝑇bath (100 ˚C), 𝑃H2
 (0.5 MPa). bExperimental conditions for 

data collection: 𝐶𝑀𝑁𝐴
0  (0.25 mol/L), 𝐹MNA (0.5 mL/min), 𝐹H2

 (20 mL/min), 𝑃H2
 (0.5 MPa). 

 448 

Regarding optimization efficiency, MOBO excels in swiftly identifying the optimal 449 

reaction space by utilizing the Pareto Front. With an additional round of optimization, 450 

it effectively narrowed down the search to the seven promising parameter combinations 451 

(Figure 4). These selected points are subsequently used to construct the response 452 

surface for the optimization objectives, effectively mapping out the optimal reaction 453 

space from a broader set of possibilities. The integration of inline FTIR with MOBO 454 

enhances its capability to optimize reactions rapidly and with high precision. In contrast, 455 
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kinetic modeling requires significant time and resources. The process involves the 456 

collection of large amounts of experimental data, the fitting of kinetic equations, and 457 

the derivation of scientific models. This approach is more labor intensive and slower 458 

than the simplified and data-saving process of MOBO. 459 

 460 

Although kinetic modeling is may not be as efficient as MOBO for reaction 461 

optimization, it offers a distinct advantage in terms of understanding reaction kinetics. 462 

While Bayesian Optimization is engineered for rapid convergence to optimal solutions, 463 

it lacks the capability to generate a comprehensive response surface across the full 464 

reaction space (Figure 4). In contrast, kinetic modeling allows for the calculation of a 465 

spectrum of optimal reaction parameters by leveraging predictions from scientific 466 

models. The response surfaces derived from kinetic modeling (Figure 8) provide 467 

valuable insights into reaction optimization by offering a visual representation of the 468 

entire reaction space, thereby highlighting trends and delineating the boundaries of 469 

optimization possibilities [7, 45].  470 

 471 

Conclusions 472 

In this work, we developed a heterogeneous continuous flow hydrogenation system 473 

enhanced with real-time inline infrared monitoring utilizing an ANN model for 474 

optimizing the synthesis of the crucial pesticide intermediate, AMA. This work 475 

systematically undertook and compared MOBO and kinetic modeling approaches to 476 

optimize the reaction process. In only 40 iterations, MOBO efficiently identified the 477 

Pareto optimal parameter combinations within the vast and intricate reaction space. The 478 

compromise between yield and productivity was impressively achieved. Conversely, 479 

intrinsic kinetic modeling revealed the activation energy of this hydrogenation reaction 480 

and characterized the hydrogen adsorption as competitive dissociative adsorption. This 481 

approach provided a comprehensive understanding of how variations in parameters 482 

affect the reaction results. Simultaneous optimization of yield and productivity was also 483 

achieved by leveraging the response surfaces generated from the kinetic model.  484 
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 485 

While MOBO is efficient and accurate in determining the optimal reaction conditions, 486 

kinetic modeling provides insight into the mechanistic details of the reaction and offers 487 

comprehensive optimization possibilities over the entire reaction space. Thus, the in-488 

depth study of heterogeneous continuous flow hydrogenation systems benefits from the 489 

synergistic application of MOBO and kinetic modeling. This dual approach enriches 490 

our understanding of reaction optimization and provides a deeper exploration of 491 

continuous-flow hydrogenation systems, offering valuable prospects for future research 492 

and development in this field. 493 
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