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Abstract: Protein-protein interactions (PPIs) regulate crucial physiological and pathological processes. 

PPIs are considered a class of biological targets almost infeasible for small molecules because the binding 

surfaces are usually large and shallow. Peptides are molecules able to bind to these drug targets; they can 

be used as modulators and mimic one of the interaction partners. This review details the advances in in 

silico peptide design and experimental approaches for the evaluation of PPI-based peptides.   
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1. Introduction 

Within an organism, there are multiple protein connections that are crucial for cells. These cellular networks 

are known as protein interactome and can be defined as a set of physical and functional protein-protein 

interactions (PPIs). Protein interactome plays an essential role in different physiological and pathological 

processes such as signal transduction, cell proliferation, growth and apoptosis [1].  

Around 650.000 PPIs have been estimated in the human body [2], being suitable for drug development. 

However, those interacting physically have been considered almost an “unviable” class of drug targets for 

small molecules, since the interfaces are often large and shallow making difficult the small molecules 

binding [3]. Exceptions of this rule has been reported such as small-molecule NMDAR/TRPM4 interaction 

interface inhibitors [4]. 

Peptides are short aminoacid sequences (<45 aa) having the ability to bind to molecular targets. Currently, 

more than 7000 natural peptides have been identified that play crucial roles in human physiology as 

oncological regulators, hormones, antimicrobials, growth factors, ion channel ligands among others [5–9]. 

They are promising ligands for modulation of PPIs [10–12]. Larger in size than small molecules, peptides 

are able to cover wider binding sites being ideal candidates for interacting with these therapeutic targets. 

As ligands, peptides have great therapeutic potential due to their high specificity and activity [13]. 

Peptides derived from specific protein domains can be used as modulators and mimic one of the participants 

in PPIs, disrupting the protein-protein binding [14]. A peptide could compete for binding at the interaction 
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site in solution, where they should have stronger bonds, enhancing binding stability [8]. They are known as 

competitive peptides.  

This article presents a review of the advances in in silico peptide design and experimental approaches for 

the evaluation of PPI-based peptides.  

2. Peptides as drugs 

The use of peptides as therapeutic agents dates from the first half of the 20th century, since the isolation 

and first application of insulin, a polypeptide hormone. Insulin is utilized in patients with diabetes who do 

not produce sufficient amounts of the hormone to maintain normal blood glucose levels [15]. Since then, 

new techniques have been developed to generate new peptides targeting proteins associated diseases. In 

fact, there are currently about 400 peptide drugs in clinical development worldwide and more than 60 

approved for medical use in USA, Europe and Japan [16]. The fundamental nature of peptides, as small 

parts of proteins, allows their in vitro synthesis. They mimic proteins to regulate specific cellular functions, 

enabling or blocking biochemical processes in the organism [17]. Latest research has shown the importance 

of peptides as promising immunotherapeutic agents for the treatment of malignant cancers [18,19].  

Peptides as drugs have demonstrated great pharmacological potential for the development of competitive 

inhibitors that can destabilize the binding of two proteins and/or potentiate the action between them [13]. 

PPIs have proved their value as target candidates for clinical testing with an average of 20 clinical trials per 

year. In 2023, 119 approved peptides are reported in PepTherDia, a database that contains a complete profile 

of physicochemical characteristics and diagnostic and therapeutic peptides for human use [20].  

 

However, today the therapeutic use of peptides has limitations. There are enzymes and biological processes 

capable of decreasing the half-time of peptides such as peptidases and excretory mechanisms. Also, 

digestive enzymes are capable of cleaving peptide bonds and the high polarity and molecular weight of 

peptides severely limits intestinal permeability [21]. Different approaches for the rational design of peptides 

based on PPIs have been studied. They have been shown that the susceptibility to proteolysis and stability 

of the active conformation could be improved by structural modifications. Two types of structural 

modifications can be performed: cyclization and modifications of the peptide backbone (See more in 3.3 

section). In addition, aminoacid composition affects the physicochemical properties of peptides, such as 

solubility, stability and reactivity. The presence of hydrophilic aminoacids and charged groups in peptides 

generates hydrophilicity, which creates obstacles in permeability across biological membranes. Hence, 

several techniques are used to increase the cell permeability of the peptides while preserving their biological 

activity [22]. 

3. In silico tools for competitive peptides design 

Advances in protein crystallography, the development of protein fragment libraries and the use of molecular 
simulation have enabled rational peptide recognition and design. In silico methods have been widely used 
in various aspects of different biological studies [23–25]. The advantage of computational methods over 
empirical methods is their low cost, high processing speed and the ease and reliability of PPI target selection 
using peptides. Through the use of different bioinformatics tools, it is possible to develop a methodology 
for the design, evaluation and improvement of competitive peptides for research and/or therapeutic 
purposes. Competitive peptide design could be divided into 3 main stages: (I) characterization of protein-
protein interaction, (II) the design of peptide based on one of the interaction partners and (III) to validate 
the peptide interactions and evaluation of its activity. 
In this section, different approaches for the construction of peptides based on protein-protein interactions 
through in silico methods will be discussed. 
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3.1. Characterization of protein-protein interactions 

Structural information of protein-protein complexes is critical for the rational design of PPI modulators that 
may have therapeutic properties. Protein-protein complexes available in three-dimensional structure 
databases and the use of in silico methods can help to understand the essential PPIs at the atomic level [26]. 
The comprehension of these molecular mechanisms allows to predict, manipulate and design novel protein-
peptide interactions with broad applications in biology, medicine and pharmaceutical sciences.  
Peptides as modulators of PPIs can be subdivided into two different classes depending on the binding 
interface involved (Figure 1).  PPI modulation can be accomplished by designing a peptide that binds to an 
orthosteric interface (a pocket located at the interface between the two proteins) or an allosteric pocket (a 
pocket distant from the interface of the interacting proteins) [27,28]. Orthosteric PPI modulators regulate 
protein contacts either as inhibitors (iPPI) to physically disrupt them and prevent the formation of protein 
complexes or as PPI stabilizers (sPPI), which work as "molecular glues" to connect two proteins promoting 
the function of the interaction participants [29,30]. In contrast, allosteric modulators mediate PPIs by 
binding to an allosteric pocket, inducing a conformational change of the binding proteins. The binding could 
result in the avoidance (iPPI) or enhancement (sPPI) of PPIs. Targeting allosteric pockets is attractive, as 
no large molecules are required to bind to these pockets in order to change the protein conformation, but 
this strategy remains a non-trivial task [26,30]. On the other hand, the orthosteric protein interface provides 
information about the interaction of the proteins involved that can be used to rationally design modulators 
mimicking PPIs [29]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Orthosteric and allosteric mechanisms for stabilizer (sPPI) and inhibitor (iPPI) peptides. 
Proteins are colored in green and yellow, the allosteric modulator in purple, and the orthosteric modulator 
in blue. 

Considering the knowledge about the type of modulation of PPIs and the proteins associated, different 
methodologies can be executed to study their physicochemical characteristics. Therefore, it’s important to 
perform an updated bibliographic search to gather structural information about the protein interacting 
domains and to characterize them in greater detail.  A good starting point is to search for the protein network 
associated with the molecular target in databases related to PPIs. Recognition of the interacting members 
is crucial, however, more information about the binding mechanism involved in the interaction is required. 
Different methods for the prediction of PPIs have been developed based on aminoacid sequence and/or 
three-dimensional structure. Table 1 lists different databases, servers and software related to protein-protein 
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networks, interaction prediction, allosteric pockets and others that may be useful. These methods can be a 
good approximation to the recognition of the most interacting regions in PPIs but may require more robust 
protocols for deep identification.  
 
 

Table 1. Databases (*), servers (**) and meta-search engines (***) for the identification and 
characterization of protein-protein interactions (PPIs). 

Database Description URL 

ADAN Database* 

Database containing protein-protein structural domain 

information. Contains 3505 entries with extensive 

structural and functional information available 

http://adan-embl.ibmc.umh.es/ 

AlloPred** 

AlloPred enables allosteric site prediction using 

perturbation of normal modes together with pocket 

descriptors in a machine learning approach that classifies 

pockets of a protein 

http://www.sbg.bio.ic.ac.uk/allopred/ 

ANCHOR* 

Database and tool that allows studies of binding pockets 

based on PPIs. ANCHOR includes a database of pre-

calculated anchor residues for 31.000 PDB entries with 

at least two protein chains (no DNA/RNA chains) 

http://structure.pitt.edu/anchor/ 

BioGRID* 

It’s a public database that archives and disseminates 

genetic and protein interaction data from model 

organisms and humans. BioGRID currently contains 

over 1.740.000 interactions curated from high-

throughput datasets and refering studies derived from 

over 70.000 publications in the primary literature 

https://thebiogrid.org/ 

comPPI*** 

(Compartmentalized 

protein-protein 

interaction 

database) 

Open-source database with qualitative information for 

interactions, proteins and their localizations integrated 

from multiple databases for protein-protein interaction 

network analysis 

https://comppi.linkgroup.hu/ 

DIP* (Database of 

Interacting  

Proteins) 

 

Classifies experimentally determined protein-protein 

interactions. Combines information from diverse sources 

to create a single database, a coherent set of more than 

11.000 protein-protein interactions 

https://dip.doe-mbi.ucla.edu 

 

HPRD* (The 

Human Protein 

Reference 

Database) 

Centralized platform to visually represent and integrate 

information regarding to domain architecture, post-

translational modifications, interaction networks and 

diseases association of each protein in the human 

proteome 

http://www.hprd.org/ 

IntAct* 

 

Open-source database system and analysis tools for 

molecular interaction data. Currently, there are 750.000 

interactions collected 

https://www.ebi.ac.uk/intact/ 
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3.2. Competitive peptides design 

The design of competitive peptides based on protein-protein interactions can be divided into three main 
scenarios (Figure 2), each with varying first steps and a common second step across these situations: (A) 
Using a protein-protein structure as a template: To generate the peptide based on one of the interacting 
proteins (Step 1). To produce in silico mutant versions of the peptide with a protein design algorithm while 
keeping the peptide backbone coordinates fixed (Step 2). (B) When the PPI binding site is known in both 
proteins of the complex but the structure of the complex is absent, the peptide can be modeled based on the 

MatrixDB*** 

MatrixDB is an open-access database focused on the 

interactions between extracellular matrix proteins, 

proteoglycans and polysaccharides. 

http://matrixdb.univ-lyon1.fr/ 

Mentha*** 

Meta-search engine that integrates protein interaction 

databases (MINT, IntAct, DIP, MatrixDB and BioGRID) 

and protein interaction information from published 

articles. Mentha generates each week a consistent 

interactome (graph) whit a  reliability score for each 

protein interaction taking into account all the collected 

evidence 

http://mentha.uniroma2.it/about.php 

MINT* (Molecular 

INTeraction  

Database) 

 

Database designed to store data of functional interactions 

between proteins. The library has more than 124.000 

described interactions 

https://mint.bio.uniroma2.it/ 

MIPS* 

(Mammalian 

Protein-Protein 

Interaction 

Database) 

Collection of high-quality mammalian PPI data, 

manually compiled from the scientific literature 

https://mips.helmholtz-

muenchen.de/proj/ppi/ 

STRING* 

STRING database systematically collects and integrates 

protein-protein interactions-both physical interactions as 

well as functional associations between proteins 

https://string-db.org/ 

PASSer (Protein 

Allosteric Site 

Server)** 

PASSer is a web server to predict  and identify allosteric 

sites based on trained machine learning models 
https://passer.smu.edu/ 

PINA v3*** 

Integrated platform for the construction, filtering, 

analysis, visualization and management of protein 

interaction networks. Integrates protein-protein 

interaction (PPI) data from public databases and builds a 

comprehensive protein interaction dataset 

https://omics.bjcancer.org/pina/ 

PRO-Simat** 

Simulation tool for the analysis of protein interaction 

networks, their dynamic change and pathway 

engineering. It provides GO enrichment, KEGG pathway 

analysis and network visualization from an integrated 

database of more than 8 million protein-protein 

interactions in 32 model organisms and the human 

proteome 

https://prosimat.heinzelab.de/ 
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interacting protein structures. One of them will be docked in the binding site of the second before peptide 
modeling (Step 1) [29,30]. (C) Designing a peptide while knowing only the approximate putative PPI site 
on one or both proteins, e.g., based on evidence of related domains by homology. 
 
The appropriate scenario will depend on the characteristics and available biological information of the 
system. For example, to successfully apply protein-protein backbone peptide design (scenario A), the three-
dimensional structure of the PPI model is needed. In addition, the binding site between the two proteins 
must be characterized in order to identify the nature of the aminoacids and interactions (hydrogen bonds, 
salt bridges, etc.) that mediate the binding. The application of this approach can be seen in Zuo. et al. [31] 
who studied the interaction between GABAB and KCTD16 receptors using a peptide based on the major 
subunit of the GABAB receptor. The GABAB receptor is a G protein-coupled receptor involved in the 
activation of downstream signaling pathways. The KCTD16 protein is an auxiliary subunit that interacts 
with the GABAB receptor and disrupts the signaling kinetics of the receptor. The described peptide-protein 
interaction model can be used for the development of new ligands that can potentially modulate the 
association of GABAB and KCTD proteins. In situations where the interaction site is not known, approach 
C should be employed. However, it requires a large computational capacity to perform a proteome-wide 
assessment which is limiting in certain cases where the target has a large molecular size (e.g., ion channels). 
Molecular docking techniques can be considered attractive alternatives for the C scenario [29]. The use of 
molecular docking gives an approximation of the complex that would form between the peptide and the 
molecular target [33].  

 

Figure 2. Flowchart of scenario selection for the analysis and design of PPI-based peptides. 

A global approach combines the use of molecular target homology structures or models and molecular 
docking algorithms to design the PPI model and build peptides from the predicted interaction surface 
between both proteins. Molecular docking is one of the best-known computational methods for predicting 
binding interfaces between biological targets and molecules [34]. There are two main approaches to protein-
protein or protein-peptide docking: global docking and local docking. Global docking methods perform a 
search for both the binding site and pose of the peptide. Whereas, local docking performs the search for the 
most favorable pose for the peptide at a known, user-defined binding site [35]. In the case of scenario C, 
global docking is required to recognize the protein-protein binding interface. From the obtained coupling 
model, further analysis can be performed to robustly analyze the interaction and recognize the site of highest 
interaction (see below). It is also possible to use local docking to dock one or several peptide ligands and 
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to recognize similar binding anchor segments to generate new peptides based on these stereochemical 
features to be applied in scenario B. In conclusion, molecular docking techniques can be a great tool to 
recognize: (A) the approximate binding site and/or (B) the most favorable pose for peptide ligands. Thus, 
the accuracy of docking depends on the input information about the binding site: the more accurate, it’s 
better. The search algorithms mostly employed in docking calculations are Fast Fourier Transformation 
(FFT) correlation, geometric hashing, geometric recognition and genetic algorithms [33]. Table 2 shows 
characteristics and descriptions of the main protein-protein and peptide-protein docking tools and servers 
currently available. 

 
The top ranked docking pose is usually selected as the most likely structure, similar to the native one, and 
is used to further investigate the protein-peptide interaction interface [36]. However, scoring functions are 
constructed to be fast and informative, they do not completely correlate with biochemical affinity values. 
Futhermore, docking scores are often not fully indicative for a most likely biologically relevant structure. 
In summary, the selection of a likely binding pose based on scoring functions can be imprecise [3]. 
 
As a result, these methods are often complemented with molecular dynamics simulations (MDs) and free 
energy calculations (MM-GB(PB)SA) that can drastically speed up the process and decrease the 
computational cost of the entire therapeutic peptide design process. This approach is more accurate as it 
can be used in conjunction with experimental data to help distinguish false positive docking poses from 
native poses [24].  Molecular dynamics simulations are critical to determine how the subunits of the studied 
protein-protein complex interact or to understand how the peptide and its receptor bind through a trajectory. 
The MDs of the protein-protein and peptide-protein complexes can drive the biomolecular complex to an 
energetically stable conformations, which is more physically and biologically relevant for intermolecular 
interactions. Finally, generalized Born surface area molecular mechanics calculations (MM-GBSA) and 
Poisson-Boltzmann surface area molecular mechanics calculations (MM-PBSA) are probably the most 
widely used methods for making free energy predictions due to their high accuracy compared to most 
molecular docking score functions and require less computational power than alchemical free energy 
methods [37,38]. In the study "Improving Protein-Peptide Docking Results via Pose-Clustering and 
Rescoring with a Combined Knowledge-Based and MM-GBSA Scoring Function" it was shown that post 
docking re-evaluation with a combined knowledge-based and MM-GBSA scoring function improved 
binding mode prediction performance and RMSD correlation compared to the original docking method 
[39]. In addition, MM-GBSA and MM-PBSA calculations allow estimation of the contribution of specific 
residues by free energy decomposition analysis to identify the dominant interactions in the binding of a 
protein-ligand complex [40,41]. Among the most commonly used MDs software are NAMD [42], Desmond 
[43], AMBER [44], GROMACS [45] and LAMMPS [46]. It is important to note that the selection of a 
suitable software will depend on the structural characteristics of the studied complex.  In addition, other 
calculations can be performed to analyze the stability of the protein-peptide complex along the MDs such 
as root mean square deviation (RMSD), root mean square fluctuation (RMSF) and principal component 
analysis (PCA). 
 
 
 
 
 

Table 2. Tools and servers available to perform protein-protein and peptide-protein docking. 

Type Tool Algorythm URL 

Protein-

protein 

docking 

3D-Garden MCA http://www.sbg.bio.ic.ac.uk/~3dgarden/ 

ATTRACT NMA http://www.attract.ph.tum.de/services/ATTRACT/attract.html 

Autodock GA http://autodock.scripps.edu/ 

ClusPro FFT https://cluspro.org/login.php 

FireDock MC https://bioinfo3d.cs.tau.ac.il/FireDock/ 
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FFT: Fast Fourier Transform; GA: Genetic Algorithm; GH: Geometric Hashing; GSO: Glowworm Swarm 
Optimization; HMM: Hidden Markov Model; IA: Incremental Algorithm; MC: Monte Carlo; MCA: Marching Cubes 
Algorithm; MDB: Molecular dynamics based; NMA: Normal-mode Analysis; RRTA: Rapidly exploring random tree 
algorythm; SA: Simulated Annealing; SPFC: Spherical Polar Fourier Correlations; TB: Template based 

 
 

3.3. In silico peptide optimization 

In silico methods for peptide optimization have several advantages, such as low cost, reduced operational 
time and avoidance of the ethical issues of empirical analysis. MDs analyses can facilitate and indicate 
which PPI regions are most favorable for peptide design based on the stereochemical characteristics of the 
binding site. In addition, more rigorous calculations can be performed for the identification of the most 
important residues for interaction (hotspots) [47,48]. Hotspot recognition is essential for the peptide 
refinement stage in order to recognize those aminoacids that do not contribute to the binding interface and 
that can be modified to generate new variants of the peptide. In addition to residue-based energy 
decomposition via MMGB(PB)SA to detect hotspots, methods such as site-directed mutation, alanine 
scanning and sequence analysis can be used to look for the most conserved aminoacids within the protein 
family associated with the molecular targets. There are several alternatives to increase the binding energy 

FiberDock NMA https://bioinfo3d.cs.tau.ac.il/FiberDock/ 

FroDock FFT http://frodock.chaconlab.org/ 

HADDOCK SA https://wenmr.science.uu.nl/haddock2.4/ 

Hex SPFC http://hexserver.loria.fr/ 

InterEVDock v2 FFT 
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-

bin/portal.py#forms::InterEvDock2 

LZerD GH https://kiharalab.org/proteindocking/lzerd.php 

LightDock GSO https://lightdock.org/ 

MegaDOCK 4.0 FFT http://www.bi.cs.titech.ac.jp/megadock/ 

Piper FFT https://www.schrodinger.com/products/piper 

pyDock FFT https://life.bsc.es/pid/pydock/ 

SmoothDock FFT http://smoothdock.ccbb.pitt.edu/ 

UDock FFT http://udock.fr/ 

Protein-

peptide 

docking 

AnchorDock MC N/A 

CABSDock MC http://biocomp.chem.uw.edu.pl/CABSdock 

ClusPro 

PeptiDock 
FFT https://cluspro.bu.edu/ 

Dinc 2.0 IA http://dinc.kavrakilab.org/ 

FlexPepDock MC http://flexpepdock.furmanlab.cs.huji.ac.il/ 

GalaxyPepDock TB http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=DOCK 

   

HPEPDOCK TB http://huanglab.phys.hust.edu.cn/hpepdock/ 

pepATTRACT MDB https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/ 

PepCrawler RRTA http://bioinfo3d.cs.tau.ac.il/PepCrawler/ 

Pep-Fold 3 HMM https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/ 

PIPERFlexPepD

ock 
FFT http://piperfpd.furmanlab.cs.huji.ac.il/ 

Rosetta 

FlexPepDock 

MDB 
https://new.rosettacommons.org/docs/latest/application_documenta

tion/docking/flex-pep-dock 

SurflexDock MC https://htpsurflexdock.biocomp.uenf.br/ 
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and/or physiological stability of the peptide in the organism based on hotspot information; among the most 
used are modification and cyclization methods (backbone modifications or cyclic linkers).  
 
The first approach is based on performing modifications to the peptide structure to enhance its activity 

and/or facilitate cell permeability. Among the strategies employed are variation of the stereochemistry, 

modification of the sidechains or addition/substitution of D-aminoacids forming hybrid peptides 

(containing D and L aminoacids) or D-peptides (containing only D aminoacids) (Figure 3A). Other 

modification is the displacement of the sidechains towards nitrogen atoms (peptoids) (Figure 3B). On the 

other hand, β-peptides are formed by β-aminoacids that differ from common residues because the amino 

group is attached to the beta carbon (Figure 3C). AApeptides are based on the chiral peptide nucleic acid 

(PNA) backbone.  The nucleic acid bases are replaced by aminoacid side chains. They can have at least two 

subclasses, α-AApeptides and γ-AApeptides, based on the positions of their chiral aminoacid side chains 

along the peptide backbone (Figure 3D) [49]. 

 
The second approach is based on giving rigidity to the active conformation of a peptide. Cyclization is a 
type of peptide modification that consists of creating a "loop" structure within the peptide sequence by 
means of a "linker". In addition to their artificial synthesis, it is also possible to extract cyclic peptides from 
nature. Hepcidin is a hormone that plays an important role in the regulation of iron homeostasis. The 
structure of hepcidin consists of 25 residues and four disulfide bonds necessary for its proper folding and 
activity. The authors developed a new strategy for the synthesis of human hepcidin using a cysteine 
protecting group (S-(4,4'-dimethylsulfinylbenzhydryl)) that allows the regioselective generation of the 
peptide disulfide bonds [50]. Many naturally occurring pharmacologically active cyclic peptides have a 
head-to-tail configuration, conferring resistance to hydrolysis by exopeptidases due to the absence of N- 
and C-termini [51]. This type of modification is usually done through an amide bond between the C-
terminal carboxyl and the N-terminal amine in a head-to-tail conformation or by promoting a disulfide bond 
by mutating one of the residues of interest to cysteine.  Cyclized peptides are formed besides head-to-tail 
(Figure 3E), through head/tail to side-chain (Figure 3F), backbone to backbone (Figure 3G) and side-chain-
to-side-chain (Figure 3H) cyclization reactions [52]. In head-to-tail cyclization or also known as backbone 
cyclization the C-terminal acid or N-terminal amine polar groups are removed to reduce the impact of cell 
membrane permeability and limiting degradation [53]. Side-chain to side-chain linkages are distinguished 
by the introduction of covalent bridges knowns as “staples”[53,54]. In backbone-to-backbone different 
configurations can be used such as backbone binding through mutation by proline [55], by insertion of two 
cysteines generating a disulphide bond [56] and by using linkers to generate other configurations, such as 
proline-cysteine bonding generated by alkylation of the cysteine side chain with benzyl bromide based 
electrophilic linkers [57]. The use of cyclic peptides has shown greater cell permeability and stability than 
linear peptides [58,59]. Cyclization facilitates intramolecular hydrogen bonding within the “ring” structure, 
reducing the ability to form hydrogen bonds external to the molecule; this decreases the polarity and 
increases the membrane permeability of the peptide compared to its acyclic precursors [60]. 
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Figure 3. Structural modifications for peptides. Backbone modification (A-D) and Cyclization (E-F). 
The original peptide is in the gray box. The modifications/cyclization are shown in green. 

Peptide cyclization can be carried out using various linkages, among the most common types of links are 

disulfide and amid bonds. Disulfide bonds are the most common used to cyclize peptides. They are formed 

by the oxidation of two cysteine residues, resulting in a covalent bond between the two sulfur atoms. 

Disulfide bonds are a common covalent bond found in proteins and other naturally occurring compounds 

that confer structural stability. Thus, the specific distances suitable for two cysteines to take alpha-helical 

(i, i+7)[61] and β-sheet conformations were already known [62]. However, disulfide bonds are intrinsically 

unstable in a reducing environment. Amide bonds are a covalent bond that forms between the carboxyl 

group of one residue and an amine functional group of another aminoacid. Traditional amide bond 

formation can be challenging for head-to-tail cyclization of peptides of less than seven residues, as 

cyclodimerization and C-terminal epimerization can occur [51]. Furthermore, particular care must be taken 

at the retrosynthetic planning stage since aminoacids that have esteric hindrances to the generation of the 

amide bond may reduce yield [63]. New types of artificial linkages have been developed with new 

techniques to generate peptide cyclization. When choosing the type of linkage to use in the design of in 

silico peptides, it is important to recognize the advantages and disadvantages in terms of synthesis, 

bioavailability, solubility, toxicity, among others. Tools and servers for rational peptide design are listed in 

Table 3. Finally, it should be kept in mind that any change in the chemical structure of the peptide is likely 

to have an im-pact on its biological activity, so it should be evaluated simultaneously or subsequently 

perform wet experiments to estimate the physicochemical properties of the molecule. 
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Table 3. Useful software and servers for peptide design. 

Database Description URL 

Bioware Several tools for short linear motif discovery (2-12 

residues) and peptide characterization, as well as related 

analysis of proteomic data. 

http://bioware.ucd.ie/~compass/biowareweb/ 

CPPpred Server for cell-penetrating peptide prediction based on a 

novel N-to-1 neural network. CPPpred aims to determine 

for a set of peptides the probability that each peptide is 

cell-penetrating. Peptides can be simply entered into the 

text box, and will be ranked according to their CPPpred 

score. 

 

http://distilldeep.ucd.ie/CPPpred/ 

Cons-PPISP 

(consensus Protein-

Protein Interaction 

Site Predictor) 

It uses a consensus neural network method to predict 

protein-protein interaction sites. Through the server, the 

position-specific score matrix (PSSM), solvent 

accessibilities and spatial neighbors of each input protein 

residue can be obtained in PDB format. 

https://pipe.rcc.fsu.edu/ppisp.html 

CPPSite 2.0 Updated and easy-to-use database that provides a variety 

of information on CPPs and contains 1855 entries. This 

database provides complete information on 

experimentally tested CPPs and prediction of their 

secondary and tertiary structures to realize their structure-

function relationship. 

https://webs.iiitd.edu.in/raghava/cppsite/ 

finDr A novel web server for the computational identification 

and optimization of D-peptide ligands to any protein 

structure. finDr provides a low cost and easy-to-use 

alternative for the identification of D-peptide ligands 

against protein targets of choice without size limitation. 

https://findr.biologie.uni-freiburg.de/ 

mCSM-PPI It allows prediction of the effects of nonsense mutations 

on protein-protein affinity. The method uses an optimized 

graph-based signature approach to better assess the 

molecular mechanism of mutation by modeling the 

effects of variations in the non-covalent interaction 

network between residues using graph kernels, 

evolutionary information, networks and energy term. 

http://biosig.unimelb.edu.au/mcsm_ppi2/ 

MDockPeP Server It predicts the structures of protein-peptide complexes 

from protein structure and peptide sequence. The 

prediction process consists of three steps: (1) Modeling 

of peptide conformers; (2) Global and flexible sampling 

of protein-peptide binding modes; (3) Scoring and 

ranking of the sampled binding modes. 

https://zougrouptoolkit.missouri.edu/mdockpep/ 

neXtProt The peptide uniqueness checker. It allows scientists to 

define which peptides can be used to validate the 

existence of human proteins, i.e. uniquely mapping 

against multiplicity of human protein sequences taking 

https://www.nextprot.org/tools/peptide-uniqueness-

checker 
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Other methodologies suggest the addition of membrane permeability elements such as Cell-Penetrating 
Peptides (CPPs). CPPs are peptides with an extension of 5 to 30 residues that can be used as protein mimics 
and cargo transport vectors [64]. CPPs can be classified into: (I) cationic peptides, positively charged 
peptides that interact with the negatively charged cell membrane and facilitate the uptake of other molecules 

into account isobaric substitutions, alternative splicing 

and single amino acid variants. 

PARCE-1 Protocol for Amino acid Refinement through 

Computational Evolution that implements an advanced 

and promising method for the design of peptides and 

proteins. The protocol performs a random mutation in the 

binder sequence, then samples the bound conformations 

using MD simulations, and evaluates PPIs from multiple 

scoring 

https://github.com/PARCE-project/PARCE-1 

PCPIP (Protein 

Complex 

Prediction by 

Interface 

Properties) 

It uses a classification scheme based on support vector 

machines. The server allows 2 inputs: individual and 

batch. In the individual option, a protein-protein complex 

(homo- or heterodimer) can be loaded in PDB format to 

identify whether the interaction exists and if so, whether 

they resemble interfaces extracted from native proteins. 

http://www.hpppi.iicb.res.in/pcpip/info.php 

PEPFOLD3 Uses a hidden Markov model-derived structural alphabet 

for de novo modeling of 3D conformations of peptides of 

linear and disulphide bonded cyclic peptides with 9-36 

amino acids using benchmarked peptides 

https://mobyle.rpbs.univ-paris-diderot.fr/cgi-

bin/portal.py#forms::PEP-FOLD3 

PeptideCutter Predicts potential cleavage sites cleaved by proteases or 

chemicals in a given protein sequence. Returns the query 

sequence with the potential cleavage sites mapped onto it 

and/or a table of cleavage site positions. 

https://web.expasy.org/peptide_cutter/ 

PeptideMass PeptideMass cleaves a protein sequence from the UniProt 

knowledge base (Swiss-Prot and TrEMBL) or a protein 

sequence entered by the user with a chosen enzyme, and 

calculates the masses of the generated peptides. 

https://web.expasy.org/peptide_mass/ 

PeptideMine Web server developed to identify and analyze peptides 

suitable for protein-peptide binding studies. Integrated 

GO annotations, protein-protein interaction data, peptide-

domain mapping, domain-domain interaction data and 

various peptide-related feature calculations provide a 

reliable approach. 

http://caps.ncbs.res.in/peptidemine/ 

PROVEAN 

(Protein Variation 

Effect Analyzer) 

Available as a server and as an executable. Predicts 

whether an amino acid substitution, insertion and deletion 

has an impact on the biological function of a protein. 

Uses a score-based method. 

http://provean.jcvi.org/index.php 

Signa1P 

 

The server predicts the presence of signal peptides and 

the location of their cleavage sites in proteins from 

Archaea, Gram-positive and Gram-negative Bacteria and 

Eukarya. In Bacteria and Archaea. 

https://services.healthtech.dtu.dk/services/SignalP-

5.0/ 
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into the cell. The crucial role of positively charged residues (such as lysine and arginine) of CPPs in the 
adsorption of macromolecules has been demonstrated [65,66]. Polyarginines are a well-studied group of 
CPPs. In 2007, Tünnemann et al. demonstrated that a minimum of eight arginine residues improves cell 
membrane penetration; a higher number would increase penetration efficiency [67]. Among the most 
studied CPPs are TAT (GRKKKRRQRRR) and penetratin (RQIKIWFQNRRMKWK). (II) amphipathic 
peptides (or amphiphilic) that contain in their structure alternate regions of polar (hydrophilic) aminoacids 
and non-polar (hydrophobic). Amphipathic CPPs are the most numerous subclasses of CPPs, often divided 
into two groups: primary and secondary amphipathic peptides based on their sequence, length and 
association with lipids [68]. In primary amphipathic CPP its two regions are distributed next to each other 
in the primary sequence. The secondary amphipathic CPPs form functional hydrophilic and hydrophobic 
regions after folding into α-helical and β-sheet-like structures [69]. The charge of these molecules can be 
positive, neutral or negative. 
In addition to emulating proteins to bind to a molecular target and mimic its biological function, CPPs can 
be used to transport different molecular cargoes into the cell [70]. CPPs have great potential to enhance 
cellular uptake of various molecular cargoes into the cell through the mechanism of endocytosis [64,71,72].  
There are two approaches for the adhesion of molecular cargo and CPPs: (I) Binding the CPPs vector and 
the cargo by non-covalent bonds such as electrostatic interactions. An example is the amphipathic peptide 
transporters MPG and Pep-1 which bind their molecular charges without crosslinking or chemical 
alterations [73–76]. (II) Use covalent bonds to join the two molecules. This method is the most widely used 
and has shown positive results with common delivery vectors such as penetratin, TAT and Poly-Args 
polypeptides [74,77,78]. 
 
Recently, peptides with tumor cell penetrating properties termed "tumor-homing peptides" have been 
reported. Tumour-homing CPPs are oligopeptides that consist of 30 or fewer aminoacids and can effectively 
and specifically bind to tumour cells. Multiple tumor-homing peptides have been developed (Table 4) that 
could be applied as non-invasive carriers in vivo for the detection and treatment of different oncological 
diseases. One of the most common methods for identifying tumour-homing CPPs is biopanning, using a 
peptide library based on in vivo phage display technology [70,79]. In this technique, the target cell type is 
exposed to a large combinatorial library of phages with modified envelopes that can carry peptides of 
different lengths and structures. This makes possible to discriminate which phages-associated peptides can 
bind or be internalized by tumor cells or normal cells.  The strength of this method is that cell-specific 
peptides can be isolated without the prerequisite of knowing a surface biomarker [80,81]. 
 
 

Table 4. Tumor-homing peptides recently reported. 

Peptide Sequence Target Molecule Cancers Reference 

Angiopep2 TFFYGGSRGKRNNFKT

EEY 

LRP1 Glioma/Glioblastom

a 

[82] 

CREKA CREKA Fibrin-fibronectin complex Triple negative 

breast cancer 

[83] 

DWVAP WVAP (D-amino acids) GRP78 Glioblastoma [84] 

EETI 2.5F GCPRPRGDNPPLTCKQ

DSDCLAGCVCGPNGF

CG 

α/β Integrin Various lineage 

tumors 

[85] 
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Once the peptide has been designed and optimized, using the techniques mentioned above, it is necessary 
to produce it in large quantities to evaluate the biological activity in vitro or in vivo. Considering that PPIs 
are peptides, it is more complicated to use traditional molecular biology techniques for protein expression, 
for example using cell-free gene expression systems such as Escherichia coli [94]. For the synthesis of 
smaller proteins or peptides, chemical techniques are used, mainly solid phase peptide synthesis (SPPS) 
and solution phase synthesis (SPS). In both methods, the process involves the directed and selective 
formation of a peptide bond. Contrasting ribosome protein synthesis, synthetic peptides are connected in 
the C to N direction, where the C-terminus of the aminoacid is attached to a resin. In summary, the free N-
terminal amine group is coupled to a single N-protected aminoacid. This new aminoacid is then deprotected, 
revealing a new N-terminal amine group to which another aminoacid may be attached, thus the peptide 
increases in size [95]. 

 
SPS was the first method used for peptide synthesis. During SPS, the peptide chain elongation can be carried 
out by the segment condensation method. The segment condensation technique uses short fragments of a 
particular peptide previously synthesized and then are coupled together to form a longer peptide. The prime 
advantage of SPS for peptide synthesis is for large-scale synthesis of short peptides because SPPS can be 
expensive. Examples of peptides synthetized using SPS are Biphalin, an opioid agonist, and Oxytocin, a 
hormone used to facilitate childbirth [96,97]. However, a disadvantage of SPS is the long reaction time 
[95,98]. 

 
In contrast to SPS, the SPPS use a resin as a support to anchor the peptide growing chain. SPPS use t-Boc 
and Fmoc chemistry methods to produce synthetic peptides. However, t-Boc SPPS is used only for specific 

iNGR - CD13/NRP-1 Triple negative 

breast cancer 

[86] 

iRGD CRGDK/RGPD/EC αvβ3 integrin/NRP-1 Prostate cancer, 

breast cancer, lung 

cancer 

[87] 

Lin TT1 AKRGARSTA p32 Murine breast cancer [88] 

LN-1 CTGTPARQC Unidentified Prostate cancer [89] 

LyP-1 CGNKRTRGC p32 Breast cancer,  [90] 

PL1 PPRRGLIKLKTS Fibronectin/tenascin-C Glioblastoma, 

prostate cancer 

 

[91] 

PL3 AGRGRLVR Tenascin-C Glioblastoma, 

prostate 

cancer 

[92] 

UNO CSPGAKVRC CD206 Breast cancer, 

glioblastoma, 

metastatic 

melanoma, 

peritoneal 

carcinomas 

[93] 
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applications being the Fmoc now used as the main way to synthesize peptides because it needs fewer 
corrosive reagents and can be automatized [99]. During SPPS synthesis, after the peptide formation, the 
protection group of the aminoacid must be removed, and the resin washed preceding the addition of the 
next aminoacid. This process is repeated until the peptide is fully accomplished, then the peptide is cleaved 
from the resin [100]. However, the synthesis of peptides sometimes can be challenging, for example, long 
or hydrophobic peptides, the introduction of unconventional aminoacid or cyclization. To address these 
limitations several strategies have been developed such as native chemical ligation (NCL), click chemistry 
or microwave assisted SPPS [98,101–104]. The broad application of peptides for biomedical purposes has 
promoted advances in synthetic peptide methods, researchers focused on improving the different techniques 
are rising trying to develop easier and faster techniques to produce synthetic peptides to fulfil the 
pharmaceutical industry demand [98,105–107] 

4. Experimental analysis for the evaluation of peptides in vitro 

Protein-protein interactions (PPIs) are critical in numerous biological processes, including signal 
transduction, metabolic regulation, and gene expression [108]. Understanding these interactions is essential 
for elucidating the molecular mechanisms underlying these processes and for identifying potential 
therapeutic targets. This section provides an overview of the widely used methodologies employed for 
assessing protein-protein interactions, including co-immunoprecipitation (Co-IP), yeast two-hybrid (Y2H), 
affinity purification-mass spectrometry (AP-MS), proximity-based labeling (PL), Förster resonance energy 
transfer (FRET) and bioluminescence resonance energy transfer (BRET). Each method has its advantages 
and limitations, and the method of choice depends on the specific experimental requirements. Often multi-
methodological approaches are necessary to determine PPIs reliability. In this sense, protein-protein 
interaction is usually determined using both imaging-based and biochemical-based approaches in a 
complementary manner. This section summarizes the main methodologies used to evaluate, determine and 
characterize protein-protein interaction.  

4.1 Co-immunoprecipitation 

Protein-protein interaction has been canonically evaluated by cell fractionation followed by affinity 
purification methods such as co-immunoprecipitation (Co-IP). This chromatography-based method is a 
widely used laboratory technique for studying protein-protein interactions in biological systems [109]. This 
technique allows the identification of interacting proteins and therefore helps reveal the components of 
protein complexes. Co-IP involves the selective precipitation of a target protein and its interacting partners 
using specific antibodies [110]. Despite these being shown to be an excellent approach for strong and stable 
PPIs, this is unsuitable for weak and transient PPIs interaction. In this sense, using crosslinkers, such as 
sulfur-NHS-ester and EDC crosslinkers, has been shown to stabilize those interactions [111] in order to 
overcome that limitation. 

4.2 Yeast two-hybrid 

The yeast two-hybrid (Y2H) system is another widely used genetic method for identifying and 
characterizing protein-protein interactions [112]. This technique relies on reconstitution of a functional 
transcription factor when two proteins of interest interact. The system consists of two fusion proteins: one 
containing the DNA-binding domain (BD) and the other containing a transcription factor's activation 
domain (AD). If the two proteins of interest interact, the BD and AD come into proximity, activating the 
transcription of a reporter gene. A variation of this methods allows high-throughput screening of protein 
interactions using yeast libraries [113]. In this way, this method has the potential to reveal a complete 
interactome of a protein of interest.  
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4.3 Föster resonance energy transfer-based assays 

Alternative methodologies used for PPIs validation are based on the Föster resonance energy transfer 
phenomena. Fluorescent and bioluminescence reactions have been used as alternative approaches. 
Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) 
are two widely used methods for studying protein-protein interactions (PPIs) in living cells. Both techniques 
are based on the transfer of energy between two fluorophores, with FRET utilizing fluorescent proteins and 
BRET using bioluminescent proteins. 

At first, FRET occurs when the excited state energy of a donor fluorophore is transferred non-radiatively 
to an acceptor fluorophore in close proximity, resulting in emission from the acceptor fluorophore. The 
efficiency of FRET is inversely proportional to the distance between the donor and acceptor fluorophores, 
making it a highly sensitive technique for measuring molecular interactions in the spatial distance of 
nanometer (<10 nm) [114].  

In contrast, BRET relies on the transfer of energy from a bioluminescent protein, such as Renilla luciferase 
or NanoLuc luciferase, to a fluorescent protein, such as GFP or YFP, via resonance energy transfer [115]. 
Unlike FRET, BRET is a luminescent phenomenon and therefore does not require excitation by an external 
light source. This allows for non-invasive and real-time PPI monitoring in living cells [116]. 

Both FRET and BRET have been widely used to study PPIs in various cellular contexts, including signal 
transduction pathways, protein trafficking, and protein-protein interactions involved in disease pathways 
[116]. In recent years, improvements in the design and sensitivity of both FRET and BRET sensors have 
enabled more accurate and quantitative measurement of PPIs in living cells [117,118]. 

Overall, both FRET and BRET are useful tools for investigating the dynamics and regulation of PPIs in 
living cells. Their unique properties make them complementary techniques for measuring protein-protein 
interactions in different biological contexts, and they continue to be widely used in both basic and 
translational research. 

4.4 Split-fluorescent protein assays 

Similarly to FRET and BRET assays, the use of complementation of split-fluorescent proteins allows the 
determination of PPIs in living cells. This method has been probed successfully on multiple protein-protein 
interactions using bi (biFC) [119] or tri-molecular (triFC) fluorescent complementation [120]. Both 
approaches are based on the principle of complementation, which occurs when two or three fragments, 
respectively of a protein are brought into close proximity, allowing them to reconstitute a functional 
fluorescent protein. In biFC, the protein of interest is fused to two non-fluorescent fragments of a fluorescent 
protein, such as yellow fluorescent protein (YFP) or green fluorescent protein (GFP). The fragments are 
typically the N-terminus and C-terminus of the fluorescent protein. The biFC and triFC assays have several 
advantages over other methods for detecting PPIs, including their ability to detect weak or transient 
interactions and their compatibility with live-cell imaging [121]. Additionally, biFC can be used to study 
the subcellular localization of protein complexes [121]. 

One potential limitation of the complementation of split-fluorescent proteins is that the fusion of the 
fluorescent protein fragments to the proteins of interest may interfere with their normal function. However, 
this can be minimized by careful selection of fusion sites and controls [122][122]. 

4.5 Mass spectrometry-based approaches 

High-throughput methodologies have allowed the identification and characterization of protein-protein 
networks (popularly known as interactomes). In this context, there are multiple mass-spectrometry 
approaches to determine those interaction networks. Affinity purification coupled mass-spectrometry (AP-
MS) is a widely used method for the identification of protein complexes and the determination of protein-
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protein interactions. In this method, a protein of interest is expressed as a fusion protein with an affinity tag 
(e.g., FLAG or His-tag) or by assessing Co-IP. The protein complex is then purified using affinity 
chromatography, and the interacting partners are identified using mass spectrometry. AP-MS provides high 
specificity, but its sensitivity may be limited by the abundance of proteins and the strength of the 
interactions [123]. On the other hand, for weak and transient PPIs interaction, using crosslinkers in the 
sample preparation has been shown useful to overcome that limitation [124].  

Since the past decade, proximity-based labeling (PL-MS) has emerged as a novel methodology to improve 
the identification of weak and transient PPIs. This approach relies on using genetically encoded enzymes, 
known as proximity labeling enzymes, such as APEX or BioID, which are fused to a protein of interest. 

A specific small molecule or light activates the proximity labeling enzyme and could then covalently attach 
biotin to proteins that are in proximity [125,126]. Biotin is a small molecule that might be easily isolated 
and identified using mass spectrometry. By identifying the biotinylated proteins, it might be determined the 
proteins that are near the protein of interest, which might provide valuable information about protein-protein 
interactions in the cell. 

The PL-MS technique has several advantages over traditional protein-protein interaction assays. This can 
be used in live cells, allowing the study of interactions in their natural environment [127]. Despite the 
described methodologies being high-throughput and powerful tools, the results often require interaction 
validation by other methodologies, such as the aforementioned.  

5. Final Considerations  

The use of protein-protein interactions as precursors of suppressor or stabilizing peptides allows us to 
mediate protein networks involved in different pathologies. In addition, the use of in silico techniques can 
facilitate the development and cost of these molecules. Undoubtedly, the addition of computational methods 
to traditional methodologies allowed a breakthrough in the development of new therapies. New 
developments should focus on the rational design of peptides with the goal that they can be manipulated 
and thoroughly modified to increase their activity and/or cell permeability. The development of customized 
peptide databases based on PPIs to assess interaction sites and mold peptides based on binding pocket 
characteristics could be successful customization strategies that would allow comprehensive interaction 
mapping [128]. Also, the breakthrough of machine learning and artificial intelligence methods could be a 
useful application for peptide design, allowing the characterization of the binding site based on an algorithm 
that predicts the most favorable residues for the design of a peptide based on the interaction pocket. 

These approaches could contribute to a better performance and optimization of the usual methods used in 
structural bioinformatics; which in turn, increases the possibility of generating novel in silico compounds 
with better performance to be evaluated in in vitro assays. Finally, we expected that this review can 
contribute as a quick guide of considerations to evaluate for the design of PPI-based peptides. 
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