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Abstract
Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written
chemical information found in traditional laboratory notebooks or for facilitating stylus-based
structure entry on tablets or smartphones. However, the inherent variability in hand-drawn
structures poses challenges for existing Optical Chemical Structure Recognition (OCSR)
software. To address this, we present an enhanced Deep lEarning for Chemical ImagE
Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural
Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical
structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from
hand-drawn images, followed by a Transformer decoder that converts the extracted features
into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained
using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical
structures with different style elements. To evaluate the model's performance, a benchmark was
performed using a real-world dataset of hand-drawn chemical structures. The results indicate
that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy
compared to other approaches.

Scientific Contribution:
The new DECIMER model presented here represents a refinement of our previous research
efforts and is currently the only open-source model tailored specifically for the recognition of
hand-drawn chemical structures. The enhanced model performs better in handling variations in
handwriting styles, line thicknesses, and background noise, making it suitable for real-world
applications. The DECIMER hand-drawn structure recognition model and its source code have
been made available as an open-source package under a permissive license.
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Graphical Abstract: Illustration of the DECIMER hand-drawn chemical structure recognition
model.
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Introduction
For most of our cultural history, humans have used hand-drawing and hand-writing to create art
and capture information. Digitising graphics is common, but capturing their deeper meaning is
much more challenging. With the advent of so-called deep learning algorithms, the interpretation
of images has seen considerable advances, ranging from the interpretation of medical images
to the annotation of personal photo collections.

A key application of deep learning methods in chemistry is the mining of printed and
hand-written documents for information on chemical compounds. Mining of past publications, for
example, can augment present open-access databases [1]. While this information can often be
found in printed literature, it is typically presented in unstructured, human-readable formats like
text and images. Manually curating and organising this information to fill the database gaps is
error-prone and time-consuming [2]. Therefore, automation is necessary to improve accuracy
and efficiency [3]. A key task is detecting and interpreting chemical structure depictions to
translate them into machine-readable formats, commonly referred to as Optical Chemical
Structure Recognition (OCSR) [4].

Over the past few years, deep learning methods have been used extensively to conduct OCSR
for detecting and converting chemical structure depictions from printed literature [4,5]. With
improvements in computer vision and language models, the field has seen a lot of development
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[6]. Molecular structures can be represented in images in various ways, using many different
drawing styles. When representations of a variety of depiction styles are included in the training
data, a data-driven deep-learning approach can be applied to reach a high degree of robustness
and flexibility. Rule-based OCSR algorithms that are not based on deep learning have been
shown to lack robustness and tend to fail when small distortions are added to the images in
common benchmark datasets [7].

In addition to mining chemical information from printed literature, information can also be found
in hand-written laboratory notebooks that were never before attempted to be digitised and
mined for chemical structure information. In these notebooks, chemical structures are typically
manually drawn, which means there is an even higher degree of diversity in the way molecular
structures are depicted. Unless the chemists choose to publish their novel findings together with
related information in a publication, these hand-drawn structures are never converted into
machine-readable formats. Recognising and interpreting hand-drawn chemical structures is
challenging due to the variety of drawing styles and the complexity of each individual's
handwriting [8,9]. It is, therefore crucial to develop accurate tools for recognising hand-drawn
chemical structures to digitise them. Digitising hand-written chemical structures enables
high-quality data-driven research and preserves information for future use.

Like hand-written text recognition, hand-drawn chemical structure recognition can be
categorised into online and offline recognition tasks [10]. Online chemical structure detection
primarily denotes converting a chemical structure drawn on a digital medium, such as a tablet or
personal computer, into a machine-readable format in real time. If the detection is inaccurate,
the user can adjust their drawing style to make the system predict the molecule correctly. In
contrast, offline chemical structure detection predominantly deals with previously drawn
chemical structure images. These images exhibit a wide array of drawing styles, making it
considerably more challenging to recognise them with high confidence [11].

Taking these considerations into account, we present an advanced deep-learning method for
accurate hand-drawn chemical structure recognition. We introduce an encoder-decoder model
that combines the EfficientNetV2 Convolutional Neural Network (CNN) with a Transformer
Decoder-only model. This combination aims to identify and transform hand-drawn chemical
structures into a machine-readable file format with higher confidence. Our approach builds upon
the DECIMER image transformer [6][12], a deep learning-based OCSR method developed for
extracting chemical structural data from printed literature. There is a growing interest in
identifying hand-drawn chemical structure depictions, as this has the potential to streamline the
automated digitisation of laboratory notebooks [13].

OCSR methods can be broadly categorized into two main groups: rule-based methods and
deep learning-based methods [4]. Rule-based approaches typically involve a systematic
sequence of processing steps, including vectorisation, atom detection, bond classification,
Optical Character Recognition (OCR) [14], graph compilation, and post-processing. Various
rule-based techniques, such as OSRA [15], Imago [16], and MolVec [17], follow a procedure
along those lines. In 2021, Clévert et al. showed that the performance of the openly available
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rule-based systems on commonly used benchmark datasets decreases drastically when slight
image distortions are introduced [7]. Apparently, the parameters in the rule-based procedures
can be overfit to specific depiction styles and do not necessarily perform well on all types of
chemical structure depictions.

In recent years, deep learning-based OCSR methods have become increasingly popular [5],
driven by advancements in computer vision and powerful hardware for training complex models.
Deep learning approaches excel in processing chemical structure depictions and can effectively
process even distorted representations [7]. This capability provides a competitive edge when
developing OCSR methods for hand-drawn chemical structures. Since deep learning algorithms
can detect more complex patterns, they are an excellent choice for OCSR applications.
Additionally, these methods can be trained with large amounts of diverse data, resulting in
improved accuracy and reliability. Deep learning methods encompass a range of both
closed-source approaches, such as MSE-DUDL [18], MICER [19], Image2SMILES [20],
ABC-Net [21], Image-to-Graph Transformers [22], IMG2SMI [23], Molecular-InChI [24], and
DeepOCSR [25]. On the other hand, several open-source deep learning algorithms have been
published, including ChemGrapher [26], DECIMER Image Transformer [12], ChemPix [11],
SwinOCSR [27], Img2Mol [7], MolScribe [28], and MolGrapher [29].

While deep learning methods were initially developed for broad applicability across various
types of chemical structure depictions, ChemPix was explicitly designed to recognise
hand-drawn chemical structure drawings. One notable constraint of ChemPix is its limited
functionality, as it exclusively handles drawings of hydrocarbons and is unsuited for other
classes of chemical structure representations. In our recently published study about the
DECIMER Image Transformer [6], we provided evidence to show that even though our deep
learning model was not explicitly trained on hand-drawn chemical structure representations, it
exhibits a (limited) capability to interpret them. When compared with ChemPix, our model is
capable of recognising various hand-drawn representations of small molecule structures that go
beyond those of hydrocarbons. Furthermore, our findings suggest that the recognition
performance of this model could be enhanced by training it on a dataset that contains a wide
range of hand-drawn chemical structure images.

This work presents a working solution for translating hand-drawn chemical structures into
SMILES representations of the depicted molecules [30]. It was specifically trained using artificial
data generated by the open-source structure depiction toolkit RanDepict [31] with its synthetic
hand-drawn feature capable of producing chemical structure representations that mimic
hand-drawn chemical structure drawings [6]. The trained model has been benchmarked against
the only available diverse hand-drawn chemical structure dataset, DECIMER hand-drawn
images [32]. The approach followed here includes no hard-coded rules and is entirely
data-driven. The model has been trained and tested only on openly available data sources.

Using this method, we can achieve recognition performance with high confidence in hand-drawn
chemical structure depictions. Furthermore, we improved the recognition results' accuracy by
enhancing the DECIMER Image Transformer model. To determine which encoder-decoder

https://doi.org/10.26434/chemrxiv-2024-7ch9f ORCID: https://orcid.org/0000-0003-1066-7792 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://paperpile.com/c/jk0GiZ/V4MR
https://paperpile.com/c/jk0GiZ/VtOa
https://paperpile.com/c/jk0GiZ/V4MR
https://paperpile.com/c/jk0GiZ/p3IP
https://paperpile.com/c/jk0GiZ/wopq
https://paperpile.com/c/jk0GiZ/Vyek
https://paperpile.com/c/jk0GiZ/art6
https://paperpile.com/c/jk0GiZ/aXi9
https://paperpile.com/c/jk0GiZ/pkQn
https://paperpile.com/c/jk0GiZ/mcto
https://paperpile.com/c/jk0GiZ/InU0
https://paperpile.com/c/jk0GiZ/Ce7v
https://paperpile.com/c/jk0GiZ/kq6C
https://paperpile.com/c/jk0GiZ/SxLo
https://paperpile.com/c/jk0GiZ/94ZR
https://paperpile.com/c/jk0GiZ/V4MR
https://paperpile.com/c/jk0GiZ/Nry8
https://paperpile.com/c/jk0GiZ/uqvt
https://paperpile.com/c/jk0GiZ/lHbb
https://paperpile.com/c/jk0GiZ/BiKS
https://paperpile.com/c/jk0GiZ/dEgkR
https://paperpile.com/c/jk0GiZ/lHbb
https://paperpile.com/c/jk0GiZ/EaWc
https://doi.org/10.26434/chemrxiv-2024-7ch9f
https://orcid.org/0000-0003-1066-7792
https://creativecommons.org/licenses/by/4.0/


model performs best on the same data set, three different models with different configurations of
encoder-decoder architectures have been investigated in this study. Subsequently, the
best-performing model was trained on datasets of hand-drawn-like chemical structure depictions
of four different sizes generated using RanDepict. Finally, the best-trained model was
benchmarked against other deep learning-based OCSR methods using a hand-drawn chemical
structure dataset. As compared to other openly available OCSR applications, our approach
produces better results, with an accuracy of 73.25% and a Tanimoto average of 0.94. This
approach can be used to develop accurate and robust OCSR pipelines for real-world
applications. Our hand-drawn chemical structure detection model, which we call the DECIMER
hand-drawn model, has been incorporated into the DECIMER module and made publicly
available. These resources are provided under permissive licenses and accompanied by
comprehensive documentation.

Methods
Here, we introduce an improved version of the DECIMER model designed to recognise
hand-drawn chemical structures. The model's architecture is illustrated in Figure 1. The final
model consists of an EfficientNetV2-M encoder combined with a Transformer Decoder,
specifically utilising only the decoder component of the transformer. The encoder processes the
chemical structure images to generate a 2-dimensional feature vector, while the decoder then
converts this feature vector into a SMILES string.
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Figure 1: DECIMER hand-drawn chemical structure recognition OCSR model.

Model selection
An analysis of three different encoder-decoder models is presented in this work. All models
feature a CNN encoder based on EfficientNet and a decoder based on the Transformer model
[33]. The first model uses the original implementation from our recent publication [6]. It contains
an EfficientNetV2-M [34] model as an encoder and a Transformer model as a decoder. The
second model uses an EfficientNetV1-B7 [35] encoder and a Transformer decoder. For the third
model, EfficientNetV2-M was used as the encoder. In models 2 and 3, only the decoder part of
the Transformer model was utilised, while model 1 uses the complete Transformer model. The
Transformer models used have six decoder layers, eight attention heads, and an embedding
dimension of 512 parameters. A detailed summary of these models can be seen in Table 1. All
three models were implemented using Python and TensorFlow. Among them, the
best-performing model was selected as the final model (see Table 1).
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Table 1: Configurations of the three tested DECIMER Image Transformer models.

Model

ID

Encoder Decoder
Batch

size Epochs

Average training

time per epochType Architecture Type Architecture

1

EfficientNet-

V2 M Transformer

Encoder-Deco

der 512 25 36 minutes

2

EfficientNet-

V1 B7 Transformer Decoder only 512 25 57 minutes

3

EfficientNet-

V2 M Transformer Decoder only 512 25 34 minutes

Training the models
In this study, we trained all of our models on the Google Cloud Platform using the latest Tensor
Processing Units (TPUs) - V4. TPUs were selected for this study based on our prior experience,
which demonstrated significantly faster training times when compared to in-house Graphical
Processing Units (GPUs). TensorFlow served as the backend framework, leveraging the
TensorFlow distributed training Advanced Programming Interface (API). The TPU V4 has
enabled us to train larger models with more extensive training datasets, yielding improved
results. Moreover, TPUs are more energy-efficient than GPUs, facilitating more effective
resource utilisation during training.

Testing the models
The initial models were tested using common OCSR benchmark datasets to determine which
model performed best. It was then subjected to further testing later on (see below). The models
were tested on these real-world datasets:

● JPO: a set of 450 chemical structure images from the Japanese Patent Office [36]
● CLEF: a set of 992 chemical structure images from the Conference and Labs of the

Evaluation Forum test set [37,38]
● USPTO: a set of 5,719 chemical structure depictions from the US Patent Office [36]
● UOB: the dataset of 5,740 chemical structure depictions compiled by the University of

Birmingham [39]

The models were primarily evaluated for their ability to recognise chemical structure depictions
accurately. This evaluation was based on two key metrics. First, we conducted a one-to-one
string comparison using Canonical SMILES for both the original and predicted SMILES
representations. This analysis provided insight into how effectively each model predicts
chemical structures from input images of chemical structure depictions, with even a single
character mismatch in the predicted SMILES string considered as an incorrect prediction.
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Additionally, a Tanimoto [40] similarity calculation was performed using PubChem fingerprints,
employing the Chemistry Development Kit (CDK) [41] implementation, to compare the original
and predicted molecular structures. This approach helped to assess the similarity between the
predicted chemical structure and the original one, even when the model's SMILES prediction
was inaccurate. This method is particularly valuable because not all predicted molecules
precisely match the original, and a quantitative measure aids in understanding the model's
performance in interpreting chemical structure depictions. As a result, this comprehensive
evaluation approach enhances our understanding of the model's generalisation capabilities.

Datasets
This section discusses the data sources and the generation of images and textual molecular
representations for the datasets used for training the models.

Selection of molecules for the datasets
For training and testing models 1 to 3, the latest ChEMBL-32 database was utilised. ChEMBL
[42] database version 32 was acquired in the SDF (Structure-Data File) format. The dataset was
processed using the CDK SMILES parser functionality to generate canonical SMILES
representations preserving stereochemical information. These SMILES strings and their
corresponding ChEMBL IDs were then stored in a text file. After analysing the frequency
distribution of the length of the SMILES strings, those exceeding 300 characters were removed
to eliminate rare, longer SMILES strings. The resulting dataset consisted of a total of 2,290,069
SMILES strings. To select the training and testing datasets, the RDKit [43] implementation of the
MaxMin algorithm [44] was used to pick diverse data points for cross-validation. This resulted in
training and a test dataset consisting of 2,187,669 and 102,400 molecules, respectively. From
the resulting training dataset, a subset of 1,024,000 molecules were picked to be used for
training the models in this experiment. These were used to train models 1 to 3 and later
determine which model was suitable for further experiments.

Similarly, the whole PubChem [45] dataset was processed to select nearly 100 Million molecules
for training and 100,000 data points for cross-validation. This dataset was later used to train and
test the best-performing model for hand-written structure recognition.

Training Dataset Generation

Various chemical structure depictions of the selected SMILES strings were generated using the
RanDepict toolkit [31]. The images were created with a resolution of 512 x 512 pixels per image.
Each data point was represented by two 8-bit PNG images - one with and one without any
image augmentations, excluding hand-drawn-like augmentations. The purpose of introducing
augmentation on the images is to mimic real-world scanned pages and to add more complexity.
The models were trained using a dataset consisting of 2,048,000 images. These generated
images were used as the input for the encoder, and the SMILES strings were defined as the
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desired decoder output. The SMILES strings were split into meaningful tokens using the Keras
tokenizer. The resulting tokenisation scheme splits the input after heavy atoms (such as "C" and
"O"), open and closed brackets (such as "(" and ")"), bond symbols ("=" and "#"), special
characters(“.”, “-”, ”+”, ”\”, ”/”, ”@”, ”%” and ”*”), as well as after every single-digit number. A start
token "<start>" and an end token "<end>" were added to the beginning and end of each
sequence, respectively. Additionally, each tokenised string was padded using "<pad>" tokens.

The generated images with their corresponding tokenised SMILES strings were then combined
and converted into small chunks of TFRecord files of about 100 MB each. They were then
moved to a Google Cloud bucket for training. Datasets were converted into TFRecord files
primarily for training on Google Cloud using Tensor Processing Units (TPUs).

Similarly, the PubChem dataset was used to generate the training dataset for the final model.
Using the selected SMILES strings, hand-drawn-like synthetic chemical structure depictions
were generated using RanDepict (see Figure 3). Again, the image size was set to 512 x 512
and the generated data and the tokenised SMILES were saved into TFRecord files and moved
to a Google Cloud bucket for training. Here, every molecule was depicted three times without
augmentations and once with augmentations.

Figure 3: Examples of hand-drawn-like synthetic chemical structure depictions created for the
Caffeine molecule through the use of RanDepict.
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Results and Discussion
This section analyses the three models that we first selected to identify which model
architecture yields the best results on all benchmark datasets. Subsequently, the
best-performing model architecture was selected and used to carry out the next experiment to
determine whether the model's accuracy could be improved with more training data.

Testing Different Model Architectures
The performance of the three models on real-world images was evaluated using the OCSR
benchmark datasets listed under testing the models. The model performance is presented in
Table 2, with 'P' representing the percentage of identical predictions and 'T' denoting the
average Tanimoto similarity calculated across all structures in a dataset. This table serves as
the basis for determining the best-performing model, which was considered a candidate for
subsequent stages of the experiment.

Table 2: DECIMER Image Transformer model performance on OCSR benchmark datasets
compared by identical predictions (P) and Tanimoto similarity (T).

JPO CLEF USPTO UOB Average

P T P T P T P T P T

Model 1 47.78% 0.86 62.00% 0.94 56.78% 0.95 78.55% 0.97 61.28% 0.93

Model 2 64.00% 0.94 60.58% 0.94 60.29% 0.97 86.17% 0.98 67.76% 0.96

Model 3 62.67% 0.94 63.51% 0.95 64.01% 0.97 86.88% 0.99 69.27% 0.96

Model 1's performance is poorer than that of Models 2 and 3: apparently, the usage of the entire
Transformer model as a decoder leads to a reduction in performance compared to the usage of
the decoder part of the Transformer architecture alone. By using only the Transformer decoder
for decoding and removing the encoder part of the transformer, we achieved much better
performance on all the OCSR benchmark datasets. Model 3 slightly outperforms Model 2. This
is due to using EfficientNetV1 in Model 2, whereas Model 3 uses an updated architecture,
EfficientNetV2. In general image recognition tasks, EfficientNetV2 outperforms EfficientNetV1
[34]. Additionally, due to the compact architecture of EfficientNet-V2, Model 3 could train
approximately 2 times faster than Model 2 (see Table 1). After assessing the performance
metrics and the training times, the model architecture of Model 3 was picked for further
experiments.

Improvement in model prediction with increasing dataset size
Here, the improvement of the accuracy of the model predictions with an increase in the training
dataset size and the introduction of hand-drawn-like images in the training data was assessed.
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With the hand-drawn-like structure depictions, the complexity of the representations of the
chemical structures was increased compared to the previously used clean depictions.

In this part of the experiment, we used the molecule datasets based on ChEMBL and PubChem
that have been described under methods in datasets. All of the images that were used for
training the models in this experiment were generated by RanDepict, which generated synthetic
hand-drawn images for training the models. The models were then tested on a dataset of
real-world images to assess their performance. The DECIMER - Hand-drawn images dataset
[16], was used to evaluate the models' performance. The dataset consists of 5088 chemical
structure drawings sketched by 23 volunteers. The drawings reflect a wide range of drawing
styles. The dataset helps us to better understand how well the model that has been exclusively
trained on artificially generated training data performs on real hand-drawn chemical structure
images.

Training datasets
The ChEMBL and PubChem molecular structure datasets were each used to create two
additional training datasets. Table 3 summarises the dataset sizes and the number of images
with and without augmentations.

Table 3: Training dataset summary.

Dataset ID Database No of
Molecules

No of images
Without
augmentations

No of images
With
augmentations

Total
number of
images

1 ChEMBL 2,187,669 2,187,669 2,187,669 4,375,338

2 ChEMBL 2,187,669 8,750,676 4,375,338 13,126,014

3 PubChem 9,510,000 28,530,000 9,510,000 38,040,000

4 PubChem 3,8040,000 114,120,000 38,040,000 152,160,000

There was no change in the number of molecules between datasets 1 and 2; however, there
was a notable increase in the number of images depicted using each molecule. During the
transition from Dataset 2 to Dataset 3, both the quantity of molecules and the number of
depictions grew. Furthermore, as the number of molecules expanded from Dataset 3 to Dataset
4, there was a corresponding increase in the volume of depicted images.

Training implementation
The models were trained using TensorFlow version 2.13.0. The training process utilised the
model 3 implementation, consisting of an encoder with an EfficientNetV2-M model employing
default configurations and a transformer decoder with 6 layers (refer to Figure 1). These models
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underwent training for 25 epochs on a TPU V4-128 pod slice. Training employed focal loss and
the Adam optimizer, complemented by a custom schedule for the learning rate, as specified in
the original transformer paper [33]. A dropout rate of 0.1 was also used. To ensure compatibility
with the encoder's settings, the images were preprocessed to attain a size of 512 x 512 before
being fed into the encoder.

Performance on Hand-drawn Dataset
After training each model, it was tested against the DECIMER hand-drawn chemical structure
images dataset for accuracy and similarity. The number of valid predictions, i.e. the returned
SMILES string was syntactically valid and could be parsed into a molecular structure, is also
measured. Table 4 provides the final average values for overall predictions by comparing each
predicted structure with the original structure.

Table 4: Model performance with increasing dataset size against benchmark dataset.

Model ID Training Dataset
size

Percentage of
Valid predictions

Model Accuracy Average
Tanimoto
similarity

1 4,375,338 96.21% 5.09% 0.490

2 13,126,014 97.41% 26.08% 0.690

3 38,040,000 99.67% 70.34% 0.939

4 152,160,000 99.72% 73.25% 0.942

As expected, there is a significant improvement in performance by tripling the amount of training
data from Model 1 via Model 2 to Model 3, reaching a high percentage of valid predictions
above 99%, a substantial accuracy of about 70%, and an average Tanimoto similarity of 0.93,
indicating similar input and output structures. However, the next quadrupling of the training data
for Model 4 only leads to a slight improvement in performance compared to Model 3, suggesting
that the potential of the selected training data has been exhausted and that in the future the
diversity of the training data needs to be increased to address the weaknesses of the model
specifically.

Performance comparison with other available methods
The performance of the final best model on the DECIMER Hand-Drawn Molecules dataset was
compared with other available open-source OCSR methods. The tools were evaluated and
compared by executing them on real-world hand-drawn images from the DECIMER
Hand-Drawn dataset to provide valuable insights into the applicability of the available tools for
processing real hand-drawn structure depictions. The summarised results of these comparisons
are presented in Table 5. Our study incorporates both rule-based and deep-learning methods.
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Table 5: DECIMER model performance compared with all available open-source methods.

OCSR tool Method Percentage of
Valid predictions

Model Accuracy Average
Tanimoto
similarity

OSRA Rule-based 54.66% 0.57% 0.17

Imago Rule-based 43.14% 2.99% 0.22

MolVec Rule-based 71.86% 1.30% 0.23

ChemGrapher Deep Learning 69.56% 0.0% 0.09

Img2Mol Deep Learning 98.96% 5.25% 0.52

SwinOCSR Deep Learning 97.37% 5.11% 0.64

MolScribe Deep Learning 95.66% 7.65% 0.59

MolGrapher Deep Learning 99.94% 10.81% 0.51

DECIMER Deep Learning 99.72% 73.25% 0.94

As can be seen from the above results, the DECIMER model overall performs much better than
other deep learning models. According to the results, the rule-based methods perform
significantly worse than all the currently available deep learning methods. It is primarily due to
the handcrafted rules that were developed for chemical structure representations found in
printed literature, as when we deployed them on a hand-drawn dataset, they were not able to
function properly since they are not as flexible as the deep learning tools when it comes to
processing hand-drawn chemical structures. While deep learning models tend to display a
higher level of robustness on this dataset, the number of valid predictions generated by these
models is significantly higher than those generated by rule-based methods since deep learning
models are likely to pick up on patterns, contexts and subtleties in the hand-drawn structures
since they are more robust to noise and variability because they learn the patterns directly from
the training data rather than having hardcoded rules. As a result, they can take advantage of a
lot more contextual data in the input to make predictions.

Confidence score and prediction analysis
It is difficult to estimate the quality of a result returned by the DECIMER Image Transformer in a
real-world application without a manual assessment. Users have to re-depict the molecule
represented by a predicted SMILES string and compare it to the molecule depicted in the
original image. As this is a time-consuming and potentially error-prone procedure, an automated
estimation of the quality of the generated SMILES string is highly desirable.
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The DECIMER Image Transformer now includes a feature for extracting token-level confidence
scores from the model's output. The final layer of the Transformer decoder generates a value for
each token within the output vocabulary. These values are then normalised to sum up to 1 using
a Softmax activation function. During each prediction step, the token associated with the highest
value is selected, and the value itself is regarded as a measure of confidence. This process
bears similarity to the methodology used for determining confidence scores in MolScribe, as
previously described by Qian et al. [28]. The token-level scores can then be averaged to yield
one score for the whole predicted SMILES string. This confidence score allows us to determine
how well the model can interpret a given hand-drawn chemical structure image (see Figure 4).

Figure 4: A hand-drawn representation of a Caffeine molecule was processed using the
DECIMER hand-drawn model, and the resulting SMILES string, accompanied by associated
confidence values, is presented. The predicted SMILES string serves as the basis for the
re-depicted Caffeine structure.

The model's improvement was first assessed using the benchmark dataset. With each iteration
of expanding the training dataset, we analysed the model's performance on the same
benchmark data. To understand the extent to which the model improves with the increasing
training dataset size, we examined the predicted SMILES and their associated confidence
scores, as detailed above. Figure 5 shows that the model keeps improving its overall
performance with the increasing training dataset size. Also, the confidence score increases.

Figure 5: The DECIMER hand-drawn model performance on the same test image along with its
Tanimoto Similarity value calculated using the original structure and the calculated confidence
value. The columns represent increasing training set sizes used to train the presented model.

https://doi.org/10.26434/chemrxiv-2024-7ch9f ORCID: https://orcid.org/0000-0003-1066-7792 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://paperpile.com/c/jk0GiZ/Nry8
https://doi.org/10.26434/chemrxiv-2024-7ch9f
https://orcid.org/0000-0003-1066-7792
https://creativecommons.org/licenses/by/4.0/


Conclusion
This study introduces an enhanced encoder-decoder model designed to recognise hand-drawn
chemical structures. Leveraging recent advancements in computer vision and natural language
processing, our model demonstrates significantly improved accuracy, particularly when trained
on extensive datasets which contain synthetic hand-drawn images generated using RanDepict.
Comparative analysis with already available open-source methods exhibits highly competitive
performance when converting hand-drawn chemical structure depictions into computer-readable
file format.

The DECIMER model for hand-drawn chemical structure recognition is now seamlessly
integrated within the DECIMER modules and will also be available to use in the Decimer.ai
platform soon. Our intent in providing both the model and its source code to the broader public
is to make a substantial contribution to the field of chemical data mining. Furthermore, it will
facilitate the development of innovative applications and tools for extracting valuable information
from laboratory notebooks.
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