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Abstract

An ongoing challenge to chemists is the analysis of pathways and kinetics for chem-

ical reactions–including transient structures between the reactants and products that

are difficult to resolve using laboratory experiments. Here, we enabled direct molecular

dynamics simulations of a textbook series of chemical reactions on the hundreds of ns

to µs timescale using the weighted ensemble (WE) path sampling strategy with hybrid

quantum mechanical/molecular mechanical (QM/MM) models. We focused on azide-

clock reactions involving addition of azide anion to each of three long-lived trityl cations

in an acetonitrile-water solvent mixture. Azide additions are common click-chemistry

reactions of great interest to synthetic chemists. Results reveal a two-step mechanism:

(1) diffusional collision of reactants to form an ion-pair intermediate, (2) “activation”,

or rearrangement of the intermediate to the product. Our simulations not only yield

reaction rates that are within error of experiment, but also rates for individual steps,

indicating the activation step as rate-limiting for all three cations. Further, the trend
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in reaction rates is due to differing extents of the azide anion “crawling” along the

cation’s phenyl-ring “propellers” during the activation step. Our study demonstrates

the power of analyzing pathways and kinetics to gain insights on reaction mechanisms,

underscoring the value of including WE and other related path sampling strategies in

the modern toolbox for chemists.

Introduction

Dynamical effects on chemical reactions–involving the atomic motions and associated ki-

netics–have been increasingly recognized as important features of reaction mechanisms.1 Of

great interest is therefore the generation of complete atomically detailed pathways from the

reactants to the products. While spectroscopy experiments can detect product formation

and measure the rate constant for the overall reaction, such experiments are unable to di-

rectly provide rate constants of individual steps or atomic structures of transient states. On

the other hand, high-level quantum mechanical calculations have been widely used to model

the structures of transition states, metastable states (intermediates), and stable states (reac-

tants, products). The state-of-the-art in accounting for solvent effects in such calculations is

to run ab initio molecular dynamics (AIMD) simulations with explicit solvent molecules.2,3

However, AIMD simulations are too computationally intensive for generating a diverse en-

semble of reaction pathways with rigorous kinetics.

In principle, complete reaction pathways–including transient states that are too fleeting

to be captured by experiments–can be generated at femtosecond resolution by physics-based

simulations with hybrid quantum mechanical/molecular mechanics (QM/MM) models in

which the reacting region of the system is modeled quantum mechanically and the remainder

of the system is represented using classical molecular mechanics models. Furthermore, such

simulations can complement experiment by providing direct estimates of rate constants for

forming any arbitrary state of the reaction. While hybrid QM/MM molecular dynamics

simulations are less computationally intensive than AIMD simulations, the generation of
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unbiased reaction pathways has been a challenge, often requiring either the application of

external biasing forces or modification of the free energy landscape.4

One promising class of approaches for enhancing the sampling of complete, unbiased re-

action pathways is path sampling, particularly ones that generate continuous pathways (e.g.

transition path sampling5,6 and weighted ensemble sampling7,8). These approaches focus

computing power on the functional transitions between stable states rather than the stable

states themselves,9 exploiting the fact that the transition time over the effective free energy

barrier can be orders of magnitude faster than the waiting time in the initial stable state. For

example, transition path sampling has been used to generate pathways for enzyme-catalyzed

reactions,10,11 and pathways along with rate constants for both chemical reactions in so-

lution12 and enzyme-catalyzed reactions.13 While weighted ensemble sampling has not yet

been applied to simulations of chemical reactions–until now–the strategy has been demon-

strated to be orders of magnitude more efficient than conventional simulations in generating

pathways and/or rate constants for complex processes that range from microseconds (e.g.

binding processes of proteins14,15 and DNA16) to milliseconds (e.g. protein folding)17 to

seconds (e.g. large-scale conformational switching in proteins)18,19 and beyond (e.g. protein-

ligand unbinding).20

Here we applied the weighted ensemble (WE) strategy to enable hybrid QM/MM simu-

lations of textbook azide-clock reactions in a 1:2 v/v acetonitrile:water mixture of explicit

solvent molecules (Figure 1A). These reactions each involve addition of azide anion to a

long-lived cation and are generally assumed to occur at the diffusion limit (5⇥109 M-1 s-1)21

such that the azide functions as a “clock” for the lifetimes of the cations.21,22 Azide addition

is commonly used in click chemistry reactions.23 We simulated azide addition to each of

three “propeller-shaped” trityl cations (Figure 1B): the unsubstituted cation (T+), a cation

with an electron-donating, methoxy substituent (4-OCH3-T+), and a cation with an electron-

withdrawing, trifluoromethyl substituent (4-CF3-T+). As measured by laser flash photolysis,

the rate constants for these reactions span an order of magnitude, ranging in timescale from
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hundreds of ns to µs.21 Our simulations not only yielded ensembles of reaction pathways,

but also direct calculations of rate constants.

4-OCH3T+ T+ 4-CF3T+

krxn
(M-1s-1)

0.69 x 109 4.9 x 109 5.1 x 109

B

A

QM
MM

electron-
donating 

electron-
withdrawing

Figure 1: The azide-clock reactions in this study involved the addition of azide anion to three
different trityl cations with reaction rate constants krxn that span an order of magnitude.
(A) A cubic box containing the reactant solutes and explicit 1:2 v/v acetonitrile:water solute
mixture, with the solutes modeled quantum mechanically and the solvent represented using
classical, molecular mechanics models. (B) The three cations are shown in order of increasing
reaction rate constant krxn for addition of azide anion. The 4-OCH3-T+ cation contains
an electron-donating methoxy substituent and the 4-CF3-T+ cation contains an electron-
withdrawing tri-fluoro substituent. The krxn values shown are published from previous laser
flash photolysis experiments by others.21
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Methods

Preparation of the hybrid QM/MM model

For each reaction simulation, we used a hybrid QM/MM model in which the QM region

consisted of the reactants (azide anion and trityl cation) and the MM region consisted of the

solvent molecules (1:2 v/v acetonitrile:water mixture). The QM region was modeled using

the PM6-D semi-empirical method.24 Van der Waals parameters from the GAFF force field

were used for the azide and cations.25 The MM region was presented using TIP3P water

molecules26 and acetonitrile molecules using compatible parameters.27 Interaction energies

between the QM and MM regions were treated with electrostatic embedding and long-range

electrostatics with the particle mesh Ewald method.28

We generated starting models separately for the azide anion, the three trityl cations,

and solvent molecules (acetonitrile and water) by (i) constructing the molecular models

separately and energy-minimizing the models in vacuum using the Avogadro software and

the GAFF force field,25 and (ii) optimizing the geometry of each model at the RI-MP2 level

of theory29 with the cc-pVTZ basis set and a cc-pVDZ/C auxiliary basis set using the Orca

4.1.2 software package (see Figure S1 for the optimized geometries).30 For each of the three

cations, we positioned the geometry optimized cation and azide conformations at a 20 Å

separation distance between the central carbon of the cation and the nearest azide nitrogen

along a vector perpendicular to the plane of the cation. Next, we used the PACKMOL

package31 to solvate the reactants with a pre-equilibrated cubic box containing a 1:2 v/v

acetonitrile:water mixture of the corresponding geometry optimized molecules and a 20 Å

buffer distance between the reactants and the edges of the box. The pre-equilibrated solvent

box was previously subjected to energy minimization and 20 ps of NVT equilibration followed

by 1 ns of NPT equilibration using the AMBER 18 software package.32
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Simulation workflow

Our workflow for simulating the chemical reactions involved two stages: 1) conventional

simulations of the unassociated reactants, 2) weighted ensemble (WE) simulations of the

chemical reaction starting from configurations sampled in stage #1. Full details are provided

below.

Conventional simulations of the reactants

The solvated starting model of each pair of unassociated reactants was energy minimized

and equilibrated in two stages using a hybrid QM/MM model and position restraints on the

reactants, as implemented in the AMBER 18 software.32 In the first stage of equilibration,

the solvent of each system was equilibrated for 25 ps at constant volume and temperature

(20oC). In the second stage, the solvent was equilibrated for 1 ns at constant pressure (1

atm) and temperature (20oC).

Following equilibration, conventional simulations of each system were run for 6 ns at

constant temperature (20oC) and pressure (1 atm) to sample different relative orientations of

the unassociated azide and cation molecules, restraining the distance between the nitrogens

of the azide and the central carbon of the cation to 20 Å. Temperature was maintained

using a weak Langevin thermostat with a collision frequency of 0.001 ps-1 and pressure was

maintained using the Monte Carlo barostat with a coupling constant of 1 ps-1. A time

step of 1 fs was used. For each chemical reaction, an ensemble of 50 unassociated reactant

conformations was generated by saving conformations every 100 ps from the last 5 ns of the

standard simulation. This ensemble of unassociated conformations was used to initiate WE

simulations of the corresponding chemical reaction as described below.
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Weighted ensemble simulations of reaction pathways

The weighted ensemble (WE) strategy involves initiating multiple weighted trajectories in

parallel and iteratively applying a resampling procedure after propagating dynamics for

a fixed resampling time interval ⌧ .7,8 Configurational space is typically divided into bins

along a progress coordinate. The resampling procedure aims to provide even coverage of

configurational space with a target number of N trajectories per bin by either replicating

trajectories that have made transitions to less-visited regions or terminating trajectories that

have not made such transitions. Importantly, trajectory weights are tracked rigorously such

that no bias is introduced into the dynamics, enabling direct estimation of rate constants. To

maintain non-equilibrium, steady-state conditions, each trajectory that reaches the target

state is “recycled”, terminating the trajectory and spawning off a new trajectory from the

initial state with the same trajectory weight.

To generate a large ensemble of continuous pathways for each azide-clock reaction, we

ran five independent WE simulations of the reaction using the open-source, highly scal-

able WESTPA 2.0 software package33 according to best practices.34 We initiated each WE

simulations by running five equally weighted trajectories and applied a resampling time

interval ⌧ (WE iteration) of 0.5 ps with a target number of 5 trajectories/bin. We used

a two-dimensional WE progress coordinate consisting of the minimum separation distance

between any nitrogen of the azide anion and (i) the central carbon of the cation, and (ii)

any carbon of the cation. This progress coordinate was binned as illustrated in Figure S2.

Trajectories were recycled when the minimum separation distance between the azide and

cation was <1.6 Å.

For each reaction, simulation convergence was assessed by examining the time-evolution

of the overall reaction rate constant (krxn), averaged over all five WE simulations (Figure

S3). Each simulation was run for 500 WE iterations of applying the resampling procedure.

As an additional verification of convergence, we first applied the weighted ensemble steady-

state (WESS) reweighting procedure35 to each WE simulation after 500 WE iterations to
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reweight trajectories for a steady state and then restarted each WE simulation with the

updated trajectory weights for an additional 100 WE iterations to ensure that the average

rate constant remained at a steady value. Reweighting using the WESS procedure was

performed using 75% of the preceding simulation data.

Dynamics of the WE simulations were propagated using the AMBER 2018 dynamics

engine.32 Since the WE strategy requires the use of stochastic dynamics–ensuring that the

dynamics of replicated trajectories diverge–we used a stochastic thermostat (i.e. a weak

Langevin thermostat with a collision frequency of 0.001 ps-1) to maintain a temperature of

20 oC. A Monte Carlo barostat with a coupling constant of 1 ps-1 was used to maintain a

pressure of 1 atm.

State definitions

For all analysis, definitions of key states were defined as follows (see also Figure S2). The

unassociated reactants state was defined as a minimum separation distance between azide

and cation of >10 Å. The target product state was defined as a minimum separation distance

<1.6 Å (as determined by RI-MP2 geometry optimizations of the products, see Figure S1).

In addition, an ion-pair intermediate state was observed at minimum azide-cation separation

distances between 5 Å to 2.25 Å.

Calculation of rate constants

Rate constants are reported as averages based on five WE simulations along with 95%

credibility regions using a Bayesian bootstrapping approach.36

For each WE simulation, unimolecular rate constants kAB (i.e., k-1 and k2) for a transition

from state A to state B were calculated using the Hill relation as follows:

kAB =
1

MFPT (A!B)
=

Flux(A!B;SS)

pA
[s�1] (1)
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where the inverse of the mean first passage time MFPT (A!B) for the A to B non-

equilibrium steady state is equal to the conditional steady-state probability flux Flux(A!B;SS)

into the target state B for trajectories most recently in the initial state A. To focus on the

unidirectional flux in the forward direction of the reaction, the Flux(A!B;SS) was nor-

malized by the steady-state population pA in state A (i.e. sum of statistical weights of

trajectories most recently in state A ). Both the Flux(A!B;SS) and pA were calculated as

running averages over the WE simulation.

For bimolecular rate constants (i.e., krxn and k-1), the conditional flux was divided by the

effective concentration of reactants C0 to yield rate constants in units of M-1s-1.

bimolecular kAB =
Flux(A!B;SS)

pA

✓
1

C0

◆
[M�1s�1] (2)

Effective concentrations C0 for each simulation system (3.70 mM, 3.75 mM and 3.69 mM

for the 4-OCH3-T+, T+, and 4-CF3-T+ cations, respectively) were calculated as 1
NAV where

NA is Avogadro’s number and V is the volume of the simulation box.

Calculation of percent productive collisions

Percent productive collisions for each reaction are reported as averages based on five WE

simulations along with 95% credibility regions using a Bayesian bootstrapping approach.36

These percentages were calculated according to the following equation.

% productive collisions =
Flux(reactants!products|SS)

Flux(reactants!intermediate|SS) ⇥ 100% (3)

where the numerator is the steady-state flux from the reactants to the products state

and the denominator is the steady-state flux from the reactants to an ion-pair contact state

which is defined as a distance of <5 Å between and two atoms of the reactant molecules.
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Calculation of addition-site ratios

Ratios of azide addition at various sites on the cation were calculated directly from success-

ful reaction pathway ensembles and reported relative to the addition site with the highest

amount of flux. Since each of the three para-positioned addition sites for the T+ cation are

symmetrically equivalent, the calculated ratios for those cations is the average of the total

flux corresponding to addition at all three of these sites (likewise for the symmetrically-

equivalent sites of the 4-OCH3-T+ and 4-CF3-T+ cations).

Clustering of pathways into distinct classes

To cluster reaction pathways into distinct classes, we applied our recently developed Lin-

guistics Pathway Analysis of Trajectories with Hierarchical clustering (LPATH) method.37

This method involves the three steps detailed below.

In step 1, we discretized each pathway by assigning a state label to the configuration after

each resampling time interval ⌧ of 0.5 ps. Here, the state label is the ID of the phenyl-ring

carbon atom that is nearest to the nitrogen of the azide anion.

In step 2, we quantified the similarity of each pair of discretized path sequences using a

modified version of the Gestalt Pattern Matching algorithm,38 which is used in computational

linguistics for comparing text strings of varying lengths in the detection of plagiarism. Using

this algorithm, a distance between a pair of text strings was calculated using the following

equation, which contains a correction factor in the denominator to account for pairwise

pathway comparisons in which the pathway lengths are different from each other.

distance = 1�

0

@2⇥ length (longest common subsequenceAB)

(lengthA + lengthB)�
⇣

|lengthA�lengthB |
2

⌘

1

A (4)

Finally, in step 3, we clustered the discretized path sequences into distinct pathway

classes using the pairwise distances and a combination of a hierarchical agglomerative clus-

tering algorithm and the Ward linkage method, which minimizes the variance within a given
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cluster.39 Based on the resulting tree diagram (dendrogram) of clusters, we identified distinct

classes of pathways by positioning a horizontal line that maximizes the distance separation

between nodes in the dendrogram (Figure S4).

Results and Discussion

To enable direct simulations of complete pathways for each of the three azide-clock reactions,

we applied the weighted ensemble (WE) strategy with a hybrid QM/MM model in which the

reactants were treated using quantum mechanics and the acetonitrile/water explicit solvent

using molecular mechanics. For each reaction, five independent WE simulations were run,

generating, in aggregate, thousands of pathways (1805, 8704, and 19,220 pathways for the

4-OCH3-T+, T+, and 4-CF3-T+ cations, respectively). Each WE simulation was completed

within 4 days using 280 Intel Xeon 2.6 GHz CPU cores in parallel.

Simulations reveal a two-step mechanism

Our simulations of each azide-clock reaction reveal a two-step reaction mechanism. In the

first step, diffusional collision of the azide anion and trityl cation forms an ion-pair inter-

mediate in which the anion and cation are within van der Waals contact, but not forming

the target N-C bond with the central carbon of the cation. In the second step, the ion-pair

intermediate “activates”, rearranging to the product. For each reaction, our calculated rate

constant krxn for the overall reaction is within error of that measured by laser flash-photolysis

experiments, reproducing the trend in reactivity of 4-OCH3-T+ < T+ < 4-CF3-T+ (Figure

2A). Consistent with this trend, the percentage of productive collisions (collisions of reac-

tants that successfully reached the product state) is lowest for the least reactive 4-OCH3-T+

cation (0.41 ± [0.21, 0.59]%) and higher for the more reactive 4-CF3-T+ (16.07 ± [5.39,

34.69]%) and T+ cations (10.22 ± [4.96, 16.25]%) (Figure 2B). The substantially larger un-

certainty in the percent productive collisions for azide addition to the 4-CF3-T+ is due to
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one of the five WE simulations yielding a particularly high percentage.

A B

simulation experiment

Figure 2: Direct simulations of reactions yield rate constants within error of experiment. (A)
Comparison of reaction rate constants calculated from simulation (blue) to those measured
by laser-flash photolysis experiments21 (gray). (B) Percent productive collisions calculated
from simulation follow the trend in reaction rate constants for azide addition to each of the
three cations. Reaction rate constants and percent productive collisions are averages from five
independent WE simulations with uncertainties that each represent 95% credibility regions,
as estimated using a Bayesian bootstrap approach (see Methods).

Reactions are activation-limited

To determine the rate-limiting step for each reaction, we directly calculated rate constants for

each individual step of the reaction (Figure 3A) from our simulations, i.e. k1 for formation

of an ion-pair intermediate, k-1 for the dissociation of the intermediate, and k2 for the

rearrangement of the intermediate to product (see Methods for state definitions). While the

k1 values for all three reactions are essentially identical, the corresponding k2 values follow the

trend in the overall reaction rate constant krxn (Figure 3B, Table S1) Due to the much more

rapid dissociation of the ion-pair intermediate relative to rearrangement of the intermediate

to the product (k-1 >> k2), the k2 step is rate-limiting for all three reactions. Thus, all three

of the reactions in the present study are activation-limited rather than diffusion-limited. In

contrast, previous fitting of data from flash photolysis experiments to a two-step mechanism
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Figure 3: Evidence of activation-controlled reactions. (A) Illustration of the azide clock
reaction as a two-step reaction involving the formation of an ion-pair intermediate and a
rate-limiting rearrangement of this intermediate to the product. (B) Direct calculations of
rate constants for the dissociation of the ion-pair intermediate (k-1) and rearrangement of the
intermediate to the product (k2) reveal that for all three cations, k-1 >> k2, which indicates
that the k2 step is rate-limiting (activation-controlled). The trend in k2 values explains the
trend in the overall reaction rate constant krxn whereas k1 values are the same for all three
reactions.

suggested that the diffusion step to be rate-limiting for the less reactive cations (e.g., 4-

OCH3-T+, T+) and the activation step to be rate-limiting for the more reactive cations

(e.g., 4-CF3-T+).21 However, these experiments monitored only the lifetime of the cation

reactant, underscoring the value of using simulations to directly calculate rate constants for

individual steps of a chemical reaction.

The activation step involves “propeller crawling”

A hallmark of WE simulations is not only the direct calculation of rates, but also ensembles

of continuous, unbiased pathways between the initial and target states (here, the reactants

and products, respectively). While each WE simulation consists of many pathways with

shared history (common trajectory segments), we were able to obtain two distinct classes of

pathways for each reaction and their corresponding probabilities by clustering the pathways

from all five WE simulations of that reaction based on the sequence of configurations visited

(see Methods).
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Our pathway analysis reveals that the activation step involves the azide anion “crawling”

among the cation’s three propellers (phenyl rings) on its journey to the cation’s central

carbon. Further, the trend in the rate constants k2 for the activation step of 4-OCH3-T+ <

T+ < 4-CF3-T+ (Figure 3B) is due to the 4-OCH3-T+ reaction involving a greater range of

"propeller crawling" relative to the T+ and 4-CF3-T+ reactions, i.e. the azide anion is more

likely to contact the ortho- (X) and para-positioned (S) carbons of the cation’s propellers

before reaching the target central carbon (T) of the cation to form the target N-C bond

(Figure 4). This greater probability is likely due to the reduced partial positive charge of the

4-OCH3-T+ cation’s central carbon relative to T+ and 4-CF3-T+. Movies of this propeller-

crawling mechanism are provided for the most probable pathway of each reaction (Movies

S1-S3).

A closer examination of the propeller-crawling mechanism reveals interesting features

for each reaction. For the unsubstituted cation, the most probable pathway class involves

a greater range of propeller-crawling compared to the minor pathway class with a higher

probability of the azide anion first contacting an ortho-positioned carbon of a phenyl ring to

form the ion-pair intermediate followed by contacts with both the ortho and para positions

of phenyl rings while crawling to the central carbon of the cation. For the 4-OCH3-T+

cation, the minor pathway class (class 2) involves a high probability of the azide anion first

contacting the carbon that is directly bound to the methoxy substituent; this carbon is more

positively charged compared to the other carbons in the phenyl ring due to resonance effects

of the electron-donating methoxy substituent. For the 4-CF3-T+ reaction, azide addition

does not occur at the para carbon, which is directly bound to the partial negatively-charged

carbon of the trifluoro substituent.

Detection of azide addition at propeller sites.

Our reaction simulations captured azide addition at not just the target central carbon of

each cation, but also at the 2- or 4- positions of the cation’s phenyl-ring “propellers” (Figure
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Figure 4: Distinct classes of pathways reveal differences in mechanism among the three re-
actions. (A) Symmetry-adapted labels for carbons of the phenyl rings that are contacted by
the azide anion during its crawling to the target central carbon (T) of the cation: S is the
carbon bonded to the substituent of a substituted phenyl ring, X is the ortho-positioned car-
bon that is bonded to the substituent, O is the ortho-positioned carbon of an unsubstituted
phenyl ring, and P is the para-positioned carbon of an unsubstituted ring. (B) Probability
distributions as a function of carbon atoms contacted by the azide anion at any time during
the activation step, as considered every 0.25 ps. The azide displays more even crawling
across all carbons considered in the 4-OCH3-T+ cation.

S5). These propeller sites of addition would be expected based on the delocalization of

positive charge in resonance models of the cations; however, the corresponding addition

species result in nonaromatic rings and would therefore be too transient for detection in

the previously reported flash photolysis experiments.21 These species likely rearrange to

the expected product (involving azide addition to the cation’s central carbon) to preserve

aromaticity of the phenyl rings. While such rearrangements are beyond the target states

of our simulations, their occurrence would further contribute to the activation step being

rate-limiting for the reactions.

Outlook for simulating chemical reactions

We have demonstrated the power of the WE strategy in enabling the direct molecular simu-

lation of pathways and rate constants for chemical reactions using hybrid QM/MM models.
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Such simulations would be feasible for chemical reactions on the µs timescale with < 50

reacting atoms in the QM region using a semi-empirical level of theory. The reactions can

be either in solution or enzyme-catalyzed. The future looks bright for simulating chem-

ical reactions with more complex reactants and/or higher levels of QM theory, including

the use of GPU-accelerated dynamics engines that can greatly extend the timescales of hy-

brid QM/MM simulations (NAMD)40 and deep-learning potentials approaching the “gold

standard” of coupled-cluster accuracy at the cost of a classical force field (ANI-1ccx).41

Conclusions

We report direct molecular dynamics simulations of azide-clock reactions in explicit solvent

involving the addition of an azide anion to each of three different cations, 4-OCH3-T+, T+,

and 4-CF3-T+. These simulations were enabled by applying the WE path sampling strategy

with hybrid QM/MM model. Our simulations generated thousands of continuous pathways

for each reaction, yielding reaction rate constants that are within error of experiment. Results

revealed that each reaction involves a two-step mechanism in which the first step involves

diffusional collision of reactants to form an ion-pair intermediate and the second step involves

“activation”, or rearrangement of the intermediate to the product. In contrast to previous

assumptions, all three reactions are activation-controlled rather than diffusion-controlled.

Based on our simulated ensemble of reaction pathways, the slower activation step of the

4-OCH3-T+ reaction relative to the T+ and 4-CF3-T+ reactions is due to the ability of the

azide to “crawl” along a greater range of the cation’s three propellers (phenyl rings). Our

work not only provides the most detailed views to date of azide-clock reactions, but also

presents a rare-events sampling method that enables simulation of pathways and kinetics for

many chemical reactions, either in solution or enzyme-catalyzed.
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