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Abstract

Polarizable continuum solvation models are popular in both, quantum chemistry and in biophysics,
though typically with different requirements for the numerical methods. However, the recent trend of
multiscale modeling can be expected to blur field-specific differences. In this regard, numerical methods
based on domain decomposition (dd) have been demonstrated to be sufficiently flexible to be applied all
across these levels of theory while remaining systematically accurate and efficient. In this contribution, we
present ddX, an open-source implementation of dd-methods for various solvation models, which features
a uniform interface with classical as well as quantum descriptions of the solute, or any hybrid versions
thereof. We explain the key concepts of the library design and its API, and demonstrate the use of ddX
for integrating into standard chemistry packages. Numerical tests illustrate the performance of ddX and
its interfaces.

1 Introduction
Polarizable continuum solvation models (PCSM) are powerful, simple and effective tools that are used to de-
scribe solvation effects on molecules and larger biological systems. Most commonly, such models are used by
two large communities: Quantum chemists employ them as a cost-effective model to include environmental
effects into the prediction of molecular geometries and spectroscopic observables1–6. Biophysicists use them
to study the electrostatics of large solvated biomolecules, and hence their binding properties7–9. Both com-
munities have developed PCSM independently and coded in different software and with different numerical
strategies; the models all share a common ingredient, i.e., they treat the solvent as a continuum, infinite,
structureless dielectric that is polarized by the solvent and, possibly, back-polarizes it. The electrostatic
response of the dielectric is obtained by solving either the generalized Poisson equation or, for (weakly) ionic
solutions, the (linearized) Poisson-Boltzmann equation. Despite this common theoretical background, the
numerical realizations of PCSM implemented by the two communities are indeed quite different.

In the context of quantum chemistry, PCSM have been developed to achieve quantum mechanical cal-
culations of molecules in solution at very little additional cost compared to the in vacuo setting. The most
common numerical strategy is based on a boundary element method approach, where the generalized Poisson
equation is rewritten as an integral equation for an apparent surface charge supported at the boundary of
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the molecular cavity that accommodates the solute. The resulting linear equations are usually solved by
dense linear algebra techniques, such as LU or Cholesky decomposition. This approach scales cubically and
thus in principle expensive. However, its cost is still negligible with respect to the cost associated with the
quantum mechanical treatment. On the other hand, as PCSM are typically used to compute structures and
properties, a lot of work has been done over the past decades to achieve smooth, differentiable definitions
of the solvation energy. These can be used to compute analytical derivatives of the molecular energy, e.g.
to compute response properties or derivatives with respect to the nuclear positions (forces and harmonic
frequencies). In quantum chemistry, while more sophisticated models like the linearized Poisson-Boltmann
exist10,11, the two most popular models are based either on a dielectric continuum (Polarizable Continuum
Model, PCM)2,4,12,13 or on a conductor continuum (Conductor-like Screening Model, COSMO, also known
as C-PCM)14–16. Such models have been implemented in virtually every quantum chemistry package and
are available in conjunction with most levels of theory, from semiempirical methods17–20 to sophisticated
post-Hartree-Fock ones21–25 and also with a linear scaling implementation26.

In the context of biophysics, on the other hand, modeling ionic solutions is paramount, which makes the
(linearized) Poisson-Boltzmann ((L)PB) model27–29 the de facto standard. Many numerical realizations of
such a model have been implemented and are available to the community in popular software that solve
the (L)PB equation using a variety of methods that include finite differences30–33, finite elements34–36,
and boundary elements37–47. As the modeled systems are typically large biomolecules described with a
classical force field (i.e., point charges, or sometimes more sophisticated treatments including distributed
multipoles and polarizabilities) and not with quantum mechanics, the treatment of solvation can become a
cost-dominating factor in such computations. Therefore, much attention has been given to the numerical
efficiency of the implementations, and linear scaling techniques are commonly used to afford the treatment of
very large systems. Furthermore, due to the complexity of the systems studied, the use of accurate molecular
surfaces, such as the Connolly also known as Solvent Excluded Surface (SES) to define the molecular cavity
is common, to be compared with the simpler Van der Waals or Solvent Accessible Surfaces (SAS) used in
quantum chemistry applications. On the other hand, the calculation of analytical gradients and the coupling
to quantum mechanical codes have not received the same amount of attention as the models used in quantum
chemistry.

Despite the differences, there are several regions of overlap, from PCSM being applied to large systems
treated with multiscale QM/MM methods48–57, to the possibility of performing Molecular Dynamics simu-
lations in a polarizable continuum solvent58,59, that makes the possibility of bridging the gap between the
two communities interesting.

In the last decade, a new numerical paradigm for continuum solvation models has been proposed. The
new algorithm, based on Schwarz’s alternating domain decomposition (dd), has originally been proposed by
some of us for the COSMO model. The resulting algorithm, which we have named ddCOSMO60, exhibits all
the properties that make it an ideal candidate to bridge the gap between the two communities. ddCOSMO
achieves linear scaling in computational cost and memory requirements, can be used to compute analytical
gradients61 and other response properties with arbitrary accuracy, it can be used to descrive very large
systems62, and can be easily interfaced with quantum mechanical55,63 and polarizable models54,57,58. After
the initial work on ddCOSMO, the domain decomposition paradigm has been extended to the PCM64–66

and, more recently, to the LPB model67. For the latter models, a straightforward dd implementation exhibits
quadratic scaling computational cost. To overcome this difficulty, a linear scaling implementation based on
the Fast Multiple Method has further been achieved68,69. All three models have analytical gradients and are
numerically robust and accurate.

In this contribution, we present ddX, an open-source implementation of ddCOSMO, ddPCM, and ddLPB
that comes with clear APIs and is designed to be easily interfaced with both classical and quantum descrip-
tions. We believe that the ddX library, besides being the coronation of more than ten years of methodological
developments, can provide both quantum chemists and biophysicists with a unified tool to treat solvation
effects with a polarizable model. It can be used consistently for any application, ranging from the simula-
tion of electronic spectra to molecular dynamics, from quantum mechanical geometry optimizations to the
calculation of the electrostatic solvation energy of large biomolecules. The library is distributed on GitHub
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(https://github.com/ddsolvation/ddX) under the permissive LGPL v3 license and has been provided
with an automatically generated documentation, available at https://ddsolvation.github.io/ddX/. So
far we have interfaced ddX both with codes from quantum chemistry (Psi470 and adcc71) as well as classical
MD simulation (Tinker)72, which will be demonstrated below.

This paper is organized as follows: in Sec. 2 we introduce the models available in ddX and give a brief
overview on the computation of energy and the analytical derivatives. In Sec. 3, we present the layout of
the implementation of the ddX library along with some details about the fast multipole method (FMM) and
our code design. In Sec. 4, we present our interface to Tinker, Psi4 and adcc in detail. Lastly, in Sec. 5, we
test the ddX library on molecules with atoms up to 105 atoms. This paper also has an Appendix A where
we give the finer details about the matrix formulation for the three models.

2 Methods

2.1 Model Input: Solute Cavity and Density
The ddX-library considers solute cavities that can be written as a union of balls, thus including van der Waals
(vdW)- and Solvent Accessible Surface (SAS)-cavities73,74. The domain-decomposition approach for Solvent-
Excluded Surfaces (SES)-cavities has also been developed75,76, but this does not (yet) fit the ddX-framework.
We therefore consider a molecule consisting of N atoms, for each atom we assign a ball Ωj := Brj (xj),
centered at the nucleus position xj ∈ R3 with radius rj ∈ R. The region occupied by the solute molecule is
then given by

Ω =

N⋃
j=1

Ωj .

The region not occupied by the solute, i.e., ΩC = R3 \ Ω, is considered to be occupied by the bulk solvent.
Note that without many changes, the method can also be applied if xj do not necessarily represent nuclear
coordinates or just a subset of those (such as is needed in coarse-grained models). The charge density of the
solute is denoted by ρ.

Within the framework of ddX, the solute molecule is entirely described by the cavity Ω and the charge
distribution ρ. As it is customary in continuum solvation models, it is assumed that the charge ρ is supported
in Ω, i.e. ρ(x) = 0 for x ∈ ΩC.

As we will see in the following, different models and thus different codes have different representations
for the charge distribution ρ. Therefore, ρ can be represented either by a sum of (partial) point-charges
or, more generally, a sum of multipoles for classical force-field models, or a sum of point-charges (nuclear
charges) in combination with the electronic density ρel for QM-based models.

In the latter case, ρel is a distribution that is assumed to be supported in Ω and is represented in terms of
basis functions arising from the interfaced QM-code. In practical calculations, however, ρel is not supported
in Ω due to the Gaussian- or Slater-type basis functions having tails that extend beyond the molecular
cavity and any electronic charge on the complement of Ω is lost, a problem known as the escaped charge
problem77. This problem has been extensively studied77–79 and has been found not to be an issue in practical
applications.

2.2 Models for Electrostatic Interaction
The ddX-library offers three levels of the theory that model the electrostatic interaction between the solute
molecule and the bulk solvent. These models differ by the physical interaction between the solute and the
bulk (implicit) solvent. We start the presentation with the physically most complex one of the three and
present the other two as its simplification:

1. LPB: Linearized Poisson-Boltzmann model27–29. In the LPB model, the (implicit) solvent is assumed
to be a homogeneous ionic continuum with relative dielectric permittivity εs < ∞ and Debye Hückel
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screening constant κs. Then, the LPB equations are given by: find the potential V that satisfies

−∇ · (ε∇V ) + κ2V = 4πρ, in R3, (1)

where

ε(x) =

{
1 if x ∈ Ω,

εs otherwise,
and κ(x) =

{
0 if x ∈ Ω,
√
εsκs otherwise.

In this simple model, we do not account for the Steric effects80 and hence do not include a Stern layer.

2. PCM: Polarizable Conducting Model2,4,12,13. The PCM is the particular case of LPB with κs = 0 and
εs < ∞. The ddPCM method relies on the following equivalent Integral Equation formulation: Find
the charge density σ and the intermediate potential Φε that satisfy

RεΦε = R∞Φ, on ∂Ω, (2)
S0σ = −Φε, on ∂Ω, (3)

where
Rε = 2π

εs + 1

εs − 1
I −D0,

and S0 and D0 denote the single and the double-layer boundary operators, respectively, with respect
to the Green’s kernel G0(r) =

1
4πr

12.

3. COSMO: COnductor-like Screening MOdel5,14–16. The COSMO is the particular case of LPB with
εs = +∞ and κs = 0, i.e., the solvent is assumed to be a perfect conductor. In consequence, V = 0 in
ΩC and the problem reduces to

−∆V = 4πρ, in Ω,

V = 0, on ∂Ω, (4)

which, for W = V − Φ, can be reformulated as

−∆W = 0, in Ω,

W = −Φ, on ∂Ω.

We are interested in the computation of the electrostatic solvation energy and the electrostatic forces of
these models. In all three models, the solvation energy Es is defined as

Es = f(εs)
1

2

∫
Ω

ρ(x)W (x) dx,

where W = V − Φ denotes the reaction potential and

f(εs) =

 1 for PCM and LPB,
εs − 1

εs + 0.5
for COSMO,

see [60]. The force-vector Fi acting on the ith atom corresponding to the solvation energy is given by

Fi = −∇xiEs. (5)
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2.3 Discrete Equations in a General Framework
After discretization of the equations using spherical harmonics and domain decomposition techniques, the
resulting linear system for all three methods can be written in the general form

MX = F, (6)

where F is a given vector, X is the vector of unknown degrees of freedom, and M is the given solution
matrix. In all three cases, the entries of X allows to represent the (approximate) reaction potential W and
can be used to compute the (approximate) electrostatic solvation energy that is of the form

Es =
1

2
⟨Ψ,X⟩ , (7)

where ⟨·, ·⟩ denotes the scalar product of the two enclosed vectors and Ψ is related to the discretization of ρ.
For brevity, we do not provide the matrix and vector entries of M and Ψ for each method here, and refer

to Appendix for a brief overview. For a detailed derivation and discussion on this topic, we refer to [61,
Section 2], [64, Section III], and [67, Section 6.2.2] for the ddCOSMO, ddPCM, and the ddLPB method,
respectively.

2.4 Force Computations and Derivatives
For the computation of the electrostatic forces, one needs the computation of gradients as seen by (5). The
derivative of the energy with respect to any parameter λ, such as the position of xk of the kth atom, is given
by

Eλ
s :=

∂Es

∂λ
=

1

2

〈
Ψλ,X

〉
+

1

2

〈
Ψ,Xλ

〉
=

1

2

〈
Ψλ,X

〉
+

1

2

〈
Xadj,F

λ −MλX
〉

(8)

where Xadj is solution to the adjoint linear system

M∗Xadj = Ψ, (9)

and M∗ is the adjoint of M. Due to the role of Ψ in eq. 9, we will refer to it also as “adjoint RHS”.
For the three models, the RHS F is written as the product of a term which is specific to the solute and a

term which is merely geometric. This allows the factorization (due to the product rule) of its derivative in a
term that does not depend on the nature of the solute and a term that has different expressions depending
on the nature of ρ. Hence the derivative is written as Fλ = Fλ

solvent + Fλ
solute, and we can further write Eλ

s

as

Eλ
s =

1

2

〈
Ψλ,X

〉
+

1

2

〈
Xadj,F

λ
solute

〉
+

1

2

〈
Xadj,F

λ
solvent

〉
− 1

2

〈
Xadj,M

λX
〉
= Eλ

s,solute + Eλ
s,solvent. (10)

Where Eλ
s,solute collects the first two derivative terms and Eλ

s,solvent collects the remaining two.
Detailed matrix entries for the derivatives can be found in [61, Section 3], [65, Appendix C], and [69,

Section A] for the ddCOSMO, ddPCM, and ddLPB method, respectively.

3 Implementation
With the ddX library, we present a uniform implementation of domain decomposition solvation methods.
While the main parts of the library are written in Fortran 2008 making use of the high-performance
features of the language for scientific computation, convenient interfaces to C as well as Python are available
as well. Based on this multi-language application program interface (API) a seamless interfacing to a variety
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of common quantum chemistry software is possible, which will be demonstrated in Section 4 for both the
case of classical and QM codes and employing both our Fortran and our Python API.

In this section, we will provide an overview of the design of ddX and its API, following along the steps of a
typical ddX calculation. Afterward we provide some notes on the specific fast multipole (FMM) acceleration,
which enabled us to achieve linear scaling for all implemented solvation models, as well as some notes on our
means of distributing ddX.

3.1 Steps of a Calculation
The typical steps of a ddX calculation for computing the energy and generic analytical derivatives is as
follows:

1. Initialize the library.

2. Compute the primal and adjoint RHSs F and Ψ.

3. Solve the problem

(a) Setup the problem by loading the RHSs F and Ψ.

(b) Generate a guess for X and then solve the primal linear system to get X (eq. 6).

(c) Compute the energy as Es =
1
2 ⟨Ψ,X⟩ (eq. 7).

(d) If the calculation of an analytical derivative is requested, generate a guess for Xadj and then solve
the adjoint linear system to get Xadj (eq. 9).

(e) Compute the solvation contribution to the derivative using X, Xadj, Fλ
solvent and Mλ (last two

terms eq. 10).

4. Compute the solute contribution to the derivative using Ψλ, Fλ
solute and Xadj (first two terms eq. 10).

5. Finalize the library.

Notably, the steps 3d, 3e, and 4 are specific for the computation of analytical derivatives. Moreover, step
3e is non-zero only if λ is a parameter on which the continuum model explicitly depends, and specifically
the most relevant case is when λ are the nuclear positions. Let us illustrate the various steps in three cases:

• In a plain energy calculation for a classical solute, no analytical derivative needs to be computed, thus
none of the steps 3d, 3e and 4 are required.

• A QM/ddX calculation requires the Fock matrix to solve the self-consistent field equations. This is
the derivative of the energy with respect to the density matrix elements Pµν , thus steps 3d and 4 are
required. However, step 3e is not required, as the density matrix elements are not a parameter of the
continuum solvation model, and E

Pµν

s,solvent =
∂Es,solvent

∂Pµν
= 0.

• Finally, an energy and force calculation for a classical solute, requires all the steps 3d, 3e and 4.

Depending on the nature of the solute density the details of the computation in steps 2 and 4 differs;
for example for solutes consisting of point charges, point dipoles or a quantum density each have different
expressions to obtain F or Ψ in step 2 or the respective derivative contributions from the solute.

In ddX we provide implementations for these two steps only in the case of solute densities based on
point multipoles. This choice was mainly motivated by three factors: i) point multipoles cover a wide range
of use cases, for example classical solutes described by a force field, or the nuclear point charges of QM
solutes, ii) point multipoles of arbitrary order can be treated in a common mathematical formalism, iii) in
ddX we have a tailored implementation of the FMM which can deal with spherical harmonics or multipoles
of any order, which can thus be seamlessly employed to accelerate computation in this step. We remark
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Figure 1: Interactions between a host code and the ddX library. Left: case of a point multipolar solute
density in the calculation of energy Es and forces ∇Es,solute and ∇Es,solvent. Right: case of a quantum
mechanical density in the calculation of energy Es and Fock matrix elements Eµν

s,solute Each quantity in the
host code represents a variable, and each box in ddX represents a call to an API function. Arrows show the
arguments passed to the functions and the return values. The variables model and state are passed to all
subsequent functions, but this is not represented graphically for clarity. Note also that the solutions of the
linear systems and many intermediate quantities are stored in the state variables, so an explicit return is
missing.

that providing general implementations for other solute densities is more involved, especially for the case of
quantum mechanical solutes, the expressions require the evaluation of electronic integrals and are basis set
dependent, see the discussion in Section 4.2. As a result, these are strongly dependent on the host code, and
we have opted to not treat this step inside ddX.

The following three sections provide details on how the main steps of ddX calculations are handled in the
implementations. The discussion will refer to the high level API of ddX, which are reported in table 1. See
Figure 1 for a graphical representation of external codes using ddX. Both the case of a classical solute in a
calculation of energy and force, and of a QM solute in a calculation of energy and Fock matrix is reported.
To make the following discussion more concise, we will only mention the function names in Fortran. Table 1
can be used to infer the correspondent function names in C and in Python.

Purpose Fortran C Python

Housekeeping

ddinit ddx_allocate_model Model
allocate_state ddx_allocate_state State

deallocate_model ddx_deallocate_model —
deallocate_state ddx_deallocate_state —

Functionality
for multipoles

allocate_electrostatics ddx_allocate_electrostatics —
multipole_electrostatics ddx_multipole_electrostatics Model.multipole_electrostatics
deallocate_electrostatics ddx_deallocate_electrostatics —

multipole_psi ddx_multipole_psi Model.multipole_psi
multipole_force_terms ddx_multipole_force_terms State.multipole_force_terms

Solving
the problem ddrun ddx_ddrun State.ddrun

Table 1: API functions in Fortran, C, and Python. Note, that we use “—” to indicate operations, which are
automatic in the Python interface, such that no explicit function call is needed
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3.2 Step 1: Initialization
During the initialization step, the two high-level data structures which are used by ddX are generated. ddX
works with a “model” object and a “state” object:

• The model object (ddx_type in Fortran) collects all the parameters which control the calculation, like
the chosen continuum solvation model, the dielectric permittivity, the information about the discretiza-
tion, cavity information (the number, centers, and radii of the spheres) and similar. Furthermore, it
contains all the precomputed constants which depend on the geometry of the system, and contains
the preallocated workspaces, such that most of the memory allocation is done during the initialization
phase. This object does not contain variables which depend on the solute’s density, like RHSs or
solutions.

• The state object (ddx_state_type in Fortran) contains all the quantities that depend on a given solute
density, like RHSs, solutions, and various intermediate quantities for computing analytical derivatives.

Using separate objects for the state and for the model makes it possible to concurrently solve differ-
ent electrostatic problems characterized by the same geometry. This could be helpful within certain QM
calculations of molecular response properties, which require solving a set of response equation for each per-
turbation, and thus to treat simultaneously multiple perturbed densities. Note, however, that if the geometry
is updated, it is necessary to recompute a new model object.

The model object allocation is done by calling the subroutine ddinit in Fortran, or the corresponding
functions in C and Python. This function performs three main steps: i) a consistency check on the input
parameters, ii) the preallocation of all the workspaces, and iii) the precomputation of the constants. The
host code needs to provide all the parameters that control the calculation, of which some are mandatory,
like the chosen continuum solvation model, cavity information, and the dielectric permittivity, whereas the
others are optional and can be used to finely tune the method. In Fortran and Python, we used keyword
arguments for the optional parameters; in this way, it is possible to implement additional functionalities
that require new parameters in the future without breaking backwards compatibility with existing external
software.

The state object allocation is done by calling the subroutine allocate_state, or the corresponding
functions in C and Python. Allocating the state object requires a model object, as the quantities to be
allocated and their size depend on the specific nature of the calculation. At this point, the state object is
simply an empty container: the information about the RHSs has yet to be loaded, and the solutions have to
be computed.

3.3 Step 2: Building the RHSs for Multipolar Solutes
As anticipated, step 2 depends on the nature of the solute, and in ddX itself we provide support for densities
written as point multipolar distributions. For this reason, we cover here only such a case. For other densities,
and in particular for QM ones, some functionalities need to be added to the host code. Further information
will be given in the description of the Psi4-interface, Section 4.2.

The primal RHS F consists of the electrostatic potential and possibly its higher-order derivatives (field
and field gradient, depending on the PCSM and on whether the forces are requested). To encompass all
possible cases without extensive modifications to the host code, the various electrostatic properties are
collected into a high level data type.

In Fortran and C we provide subroutines for allocating and populating the electrostatics object (ddx_-
allocate_electrostatics, ddx_multipole_electrostatics). In Python, the same operations are done
by the method Model.multipole_electrostatics.

The adjoint RHS Ψ is simpler, as it is the same regardless of the PCSM and kind of computation. In
Fortran it is computed respectively by calling multipole_psi, or in C and Python with the corresponding
functions.
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3.4 Step 3: Solving the Problem
Solving the electrostatic problem requires loading the RHSs in the state object, solving the primal and
adjoint linear systems, and possibly computing the energy and forces. We provide a high-level procedure
that combines the steps together and returns the energy and, if requested, the solvent contribution to the
forces. The subroutine for this step is ddrun in Fortran.

This subroutine takes as input the model and state objects, the RHSs, and the tolerance for the linear
systems and gives in output the energy and, if requested, the forces. An optional argument controls if the
guesses for the linear systems should be generated from scratch or read from the state object. This might
help in the case of repeated calculations for similar RHSs, as it might be the case during the iterative solution
to the self-consistent field problem.

Finally, if requested, the subroutine computes the solvation contribution to the nuclear gradients (step 3e).

3.4.1 Finer Control

Some particular applications may require a finer control over the workflow. For this reason, we decided to
expose a lower-level API alongside the high-level API described so far. In particular, it is possible to run
separately the steps 3a, 3b, 3c, 3d and 3e by calling the associated functions. The same functionality is
exposed in Fortran, C, and Python as shown in table 2. The setup function takes care of loading the RHSs
in the state and setting up the calculation; this is not required in Python, as this step is done implicitly by
the constructor. The functions fill_guess and fill_guess_adjoint can be used to generate a guess for
the linear system solver; this step can be skipped if a better guess is already present in the state. The solve
and solve_adjoint functions solve the primal (step 3b) and adjoint linear systems (step 3d). The energy
function computes and returns the energy (step 3c), and, finally, the solvation_force_terms functions
assemble and return the solvent contributions to the forces (step 3e).

Purpose Fortran C Python

Solving
the problem

setup ddx_setup (State)
fill_guess ddx_fill_guess State.fill_guess

solve ddx_solve State.solve
fill_guess_adjoint ddx_fill_guess_adjoint State.fill_guess_adjoint

solve_adjoint ddx_solve_adjoint State.solve_adjoint
energy ddx_energy State.energy

solvation_force_terms ddx_solvation_force_terms State.solvation_force_terms

Table 2: Low-level API functions in Fortran, C and Python.

3.5 Step 4: Solute Contributions to the Derivatives
The expressions that need to be evaluated in this step are quite general, as they depend on both the nature
of the solute, and the specific differentiation variable λ. For this reason, in the most general case, the step
should be carried out in the host code, e.g. in case of the Fock matrix.

However, ddX provides an implementation for this step for multipolar solutes and for λ being the nu-
clear coordinates. This is an interesting case, as the forces are often needed, they have more cumbersome
expressions with respect to other analytical derivatives, and in ddX this step benefits from the internal FMM
library.

The solvent contribution to the forces is computed by calling multipole_force_terms in Fortran or the
corresponding functions in C and Python. These functions take as arguments the multipolar distribution, the
model object and the state object. The latter contains information about the adjoint solution Xadj which is
required to assemble the scalar products in eq. 10.
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3.6 Step 5: Finalization
The finalization of the library is done by deallocating the memory which is occupied by the model object,
the state object, and the electrostatics container. These deallocations are done in Fortran by respectively
calling deallocate_model, deallocate_state and deallocate_electrostatics. In C the library provides
the corresponding functions, whereas in Python the deallocation is handled by the garbage collector.

3.7 FMM Acceleration
Many of the steps reported in 3.1 require the computation of electrostatic interactions and are natively
quadratically scaling. Such steps are computing the RHS F, solving the linear systems for ddPCM and
ddLPB, computing the solvation contribution to the forces for ddPCM and ddLPB, and finally computing
the solute contribution to the forces. All of these steps are accelerated with the FMM81 and are linear scaling
in N , except for the initialization, which scales like N log(N).

The FMM engine implemented in ddX is tailored to accelerating all the calculations involved in the
various domain decomposition algorithms. Here, we do not present our FMM implementation in detail, as
it is already covered by several papers, and an in-depth explanation of the ddX internal FMM library is
given in [68]. However, we provide an explanation of the main differences with respect to traditional FMM
schemes.

• Clusterization: In ddX, we use a non-standard adaptive tree instead of the octree approaches used
by standard libraries. The spheres building the cavity are usually arranged according to non-uniform
distributions; hence, a standard uniform boxification scheme would produce an unbalanced octree,
leading to the suboptimal efficiency of the FMM algorithm. This problem is solved using a different
clusterization scheme, the recursive inertial bisection at the cost of having non-standard (and thus non-
precomputable) M2M and L2L operators from one tree level to another one. In the inertial bisection
step, the distribution of points is split in two by finding the hyperplane that cuts along the moment
of inertia. By applying this step recursively, we obtain the recursive inertial bisection algorithm82,83.
This guarantees a balanced tree and thus optimal number operations. The construction of the tree
scales like N log(N) as the standard octree generation.

• Spherical harmonics: In usual libraries, the sources and targets are usually charges or at the low-
est order Cartesian multipoles. In ddX, we allow the sources and targets to be arbitrary multipolar
distributions in real spherical harmonics.

• Different nature of sources and targets: Traditional libraries are often meant for symmetric
interactions in which the nature of the sources and targets is similar. In ddX, the sources are the
multipolar distributions at the center of the spheres, while the targets are the integration points on
the surface of the spheres. This has two main consequences: i) a particle-to-multipole step (P2M) is
missing, whereas a local-to-particle (L2P) step takes care of evaluating the electrostatic properties at
the integration points; ii) the whole FMM scheme is not symmetric, as there is an asymmetry in the
targets and sources despite the kernel being symmetric.

3.8 Software Distribution and Build System
The source code of ddX is freely available on GitHub at https://github.com/ddsolvation/ddX under
the LGPL v3 license with an automatically generated documentation available at https://ddsolvation.
github.io/ddX/.

In ddX we make use of the CMake build system to detect our dependencies and orchestrate the build
of the library. By default, only the Fortran and C parts of the library are built and linked into a shared
object libddx.so as well as the program ddx_driver. The former can be linked to third-party codes using
the headers (ddx.h for C or compiler-specific .mod files for Fortran), while the latter provides a standalone
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runner for ddX solvation models based on a plaintext input file. In this form the dependencies of the code
are minimal, being them limited to BLAS and LAPACK, as well as an OpenMP-compatible compiler.

Alternatively, the library can be installed as a Python package using the pip utility and the Python se-
tuptools module. In this form we provide the code through conda-forge and PiPy, allowing for an even more
user-friendly installation — simply by issuing pip install pyddx or conda install conda-forge::pyddx.
This also takes care of automatically providing the additional Python-specific dependencies (Pybind11,
numpy, scipy) the pyddx Python package requires.

4 Interfacing
In this section, we illustrate how an interface between ddX and an existing code can be achieved by illustrating
in detail two examples: one with a QM, namely, Psi470, and one with a classical molecular dynamics code,
namely, Tinker72. The first uses the Python bindings and the second uses the native Fortran API.

4.1 Tinker-interface
Tinker is a collection of different programs and tools that perform various kinds of calculations on systems
described using classical molecular mechanics (MM)72. By coupling Tinker with ddX we want to allow
Tinker to include solvation contributions to energy and forces computed with ddX. This requires four main
modifications to Tinker: i) as customary in Tinker, implementing a global data structure that contains all the
ddX intermediates and parameters; ii) changing the input parsing to read also ddX parameters; iii) changing
the way the energy is computed; iv) changing the way the forces are computed.

Tinker mostly works using global variables, all the variables related to the same problem are collected in
a Fortran module, and whenever they need to be used, the corresponding module is imported. In our case,
we followed the same pattern and we created a ddx_interface module. This contains pointers to the ddX
quantities (data, state, error, and electrostatics) and temporary storage for the parameters.

We will not discuss the input parsing, as it is technical and unrelated to how to use ddX. It is sufficient
to know that, when a Tinker input file is read, all the relevant ddX parameters are read and stored in the
ddx_interface module. The initialization of ddX is not done at this step, as many important tasks of
Tinker — such as molecular dynamics — require updating the geometry, and as the geometry changes the
ddX initialization needs to be done from scratch. So it is more convenient to move the ddX initialization to
where the energy and forces are computed.

In Tinker, all the modules that deal with certain interaction terms are split into one function that
computes only the energy, and one that computes energy and forces. In our case, we slightly deviate from
the standard pattern and we added a single function called ddx_run which has a logical argument for doing
the forces. In turn, this is called by the Tinker functions for solvation, if a ddX solvation is set.

Algorithm 1 shows the inner workings of the ddx_run function, the functions called reflect the example
case reported in fig. 1. All the inputs are read from global variables in Fortran modules, and the outputs
(energy and optionally forces) are also written to global variables in modules.

The first three functions called in lines 2, 3, and 4 are novel additions to Tinker and mostly take care
of converting Tinker quantities to ddX quantities, both in terms of format and units of measure. ddx_-
build_multipoles takes care of reading the multipoles from the Tinker arrays and converting them to real
spherical harmonics in atomic units. ddx_build_cavity uses the atom types and positions to create a list
of sphere centers and radii in atomic units. ddx_add_sph adds optional user-specified spheres to the list.

Then, ddx_init is a simple wrapper to ddinit which takes also care of allocating Ψ. The calls at lines
6 and 7 are direct to the ddX API and compute the primal and adjoint RHSs. The problem is solved by
calling ddrun, which is part of the ddX API, and finally, if the forces are requested, the second contribution
is computed by calling multipole_force_terms which is again part of the ddX API. The finalization of the
library is done by calling ddx_free, this is a wrapper to deallocate_model and deallocate_state which
deallocates also Ψ and the arrays containing the multipoles, centers, and radii.
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Algorithm 1: Using ddX from Tinker. Note that for simplicity, most arguments are omitted from
function calls.
1 subroutine ddx_run(do_forces):
2 call ddx_build_multipoles() ;
3 call ddx_build_cavity();
4 call ddx_add_sph();

5 call ddx_init();

6 call multipole_electrostatics();
7 call multipole_psi();

8 call ddrun(do_forces);
9 if do_forces then

10 call multipole_force_terms();
11 end
12 call ddx_free();

To conclude, coupling Tinker with ddX was possible by adding a new module ddx_interface, an input
parsing function, three helper functions (ddx_build_multipoles, ddx_build_cavity, and ddx_add_sph), a
wrapper to ddinit, a finalizing function (ddx_free) and a main driver (ddx_run) of only 166 lines of code.

4.2 Psi4-interface
This section discusses the integration of ddX with Psi470, a software suite for performing a wide range of first-
principle quantum-chemistry calculations. Currently the implicit solvation models of ddX can be used both
to compute self-consistent ground states (e.g. HF or DFT methods) as well as subsequent linear response
properties including excited states computations based on TDDFT. For more details on using ddX with Psi4
see the ddX section of the Psi4 user manual at https://psicode.org.

Following the previous detailed discussion84 about how to couple domain-decomposition solvation meth-
ods to QM host codes, three main modifications were needed inside Psi4: (1) the handling of the additional
input parameters for ddX, (2) the computation of solvation energy and Fock matrix contributions as well
as (3) the addition of integration routines for electrostatic quantities, which are based on a Becke-type
quadrature scheme, which Psi4 uses for DFT computations. This quadrature is used for ddX, since it is able
to properly deal with the overlapping atom-centred balls Ωj of the ddX cavity84. (1) and (3) are strongly
dependent on the internals of Psi4, thus of minor interest to implement interfaces with other host codes; we
will thus focus our discussion on point (2).

Algorithm 2 sketches our main addition to Psi4, the function get_solvation_contributions. In a
ground state calculation this function is called in each SCF step to add to the Fock or Kohn-Sham matrix
the solvation contribution which is computed from the current density matrix. The first block of Algorithm 2
performs the basic setup, which only needs to be done once, e.g. in the first SCF iteration. This step processes
the user-defined parameters discussed in Section 3.2 to initialize the ddX model (pyddx.Model) as well as
the Psi4-specific helper classes for the required analytical (MintsHelper) and numerical (NumIntHelper)
integrals. Based on these helper classes, the electronic contributions to F and Ψ (Step 3a in Section 3.1) as
well as the solute contributions to the derivatives (Step 4) will be computed on the host side. For the detailed
expressions, we refer the reader to the aforementioned method-specific literature61,64,67. Next, the nuclear
contributions are added by calling model.multipole_electrostatics() and model.multipole_psi(). If
this is the first iteration of the self-consistent field loop, the resulting F and Ψ are used to initialize the
pyddx.State. This object in particular stores the RHS of the linear systems (6) and (9) as well as iterated
solution vectors X and Xadj. A following call to state.fill_guess() and state.fill_guess_adjoint()
generates a crude initial guess for X and Xadj. As discussed in Section 3.4.1 in any of the subsequent SCF
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Algorithm 2: Pseudocode illustrating the integration of ddX within Psi4. The function takes a
density matrix (or transition density matrix) and returns the respective Fock matrix contribution.
Psi4 specific code is highlighted.
1 def get_solvation_contributions(density_matrix):
2 # Setup
3 if first SCF iteration then
4 model = pyddx.Model()
5 mints = psi4.core.MintsHelper()
6 numints = psi4.core.NumIntHelper()
7 scaled_ylm = model.scaled_ylm()
8 end

9 # Electronic contributions to F and Ψ
10 numints.dd_density_integral(scaled_ylm, density_matrix )
11 mints.electrostatic_potential_value() # For LPB only
12 mints.electric_field_value()

13 # Nuclear contributions to F and Ψ
14 model.multipole_electrostatics()
15 model.multipole_psi()

16 # Setup linear systems (6) and (9)
17 if first SCF iteration then
18 state = pyddx.State(model, F, Ψ)
19 state.fill_guess()
20 state.fill_guess_adjoint()
21 else
22 state.update_problem(F, Ψ)
23 end

24 # Solve (6) and (9)
25 state.solve()
26 state.solve_adjoint()

27 # Use X and Xadj to build Fock terms
28 numints.potential_integral(scaled_ylm, X)
29 mints.induction_operator(X, Xadj) # For LPB only
30 psi4.core.ExternalPotential().computePotentialMatrix(Xadj)
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iterations we only update the RHS of the ddX equations (state.update_problem()), and keep the solution
from the previous SCF step to be used as a guess for the ddX iterative solver. This reduces the required
number of iterations to solve the updated linear systems (6) and (9) in particular in the later SCF steps,
where the density matrix only changes little. Next, the forward and adjoint problems defined inside the
state object are solved and their solutions X and Xadj employed to compute the Fock matrix contributions
— using again the host-specific integration routines.

Finally, we consider the computation of solvated excited states in a linear-response TDDFT formalism.
Psi4 already offers the method set_external_cpscf_perturbation to add further potential terms to the
response equations. We use this function to add a call to get_solvation_contributions when computing
vertical excitation energies. For this, we follow the standard approach85 to only consider the fast (electronic)
components in the solvent’s response, which in Algorithm 2 reflects in two notable changes. First, we employ
the optical permittivtiy ε∞ instead of the static permittivity εs when setting up the pyddx.Model and second,
we skip over lines 14 and 15, i.e., we do not add the nuclear contribution to F and Ψ.

4.3 Employing ddX-Solvated Ground States in adcc

ADC-connect (adcc)71 is a software suite for performing excited states calculations based on the algebraic-
diagrammatic construction scheme for the polarization propagator (ADC)86,87. A key focus of the code is
a modular design, such that multiple host codes can be employed to supply the Hartree-Fock reference.
Additional capabilities, such as interfaces to solvation models, can be passed from the host code to adcc as
well. In combination with Psi4 this includes the treatment of solvation effects when computing excitation
energies. In the past this strategy has already been employed to perform ADC calculations, which consider
environmental effects via a polarisable embedding (PE)71,88 (using cppe89) or using the integral-equation
formulation of PCM (using PCMSolver90). In a similar fashion, we extended adcc in this work to make
use of ddX-based solvation models. Both a full linear response treatment91 as well as an approach based on
perturbative linear-response corrections85 is now available in adcc in combination with ddX solvation models.
In both cases Algorithm 2 is called directly from adcc to compute the effect of the fast solvent components
on the excitation (i.e. we employ the optical permittivity and no nuclear contributions).

This demonstrates the seamless integration of ddX within a larger existing Python-based ecosystem for
quantum chemistry involving the third-party codes Psi4 and adcc.

4.4 Standalone driver
Alternatively, the library can also be run as a standalone using the previously mentioned ddx_driver. The
program ddx_driver is a very simple Fortran code that performs two main functions: it performs the
initialization from the file and then performs the steps given in 3.1. In this case, the initialization from the
input file is done with a separate Fortran function called ddfromfile, which reads the text-based input file
and then calls ddinit with appropriate parameters.

5 Example Applications
ddX was tested through the Tinker/ddX and the Psi4/ddX interfaces. All the calculations have been performed
on the JUSTUS2 computer cluster92, on nodes equipped with 2 Intel Xeon 6252 Gold and up to 384 GB of
memory. For what concerns Tinker/ddX we used our fork of Tinker 872 at commit d53669b, this is available
on GitHub at ddsolvation/tinker-ddX. Tinker was then linked to the ddX shared library obtained by
compiling version 0.6.0. Both Tinker and ddX were compiled using the Intel compiler version 19.1.2 and
MKL libraries version 2020.2. For what concerns Psi4/ddX we used the version Psi4 at commit 990b0e8.
The source code was built in a conda environment containing adcc version 0.15.17 and ddX version 0.6.0
provided through PyPI. Note that in this case, ddX was compiled using the GNU compiler available in the
conda environment. Data for reproducibility is available at [93]. The archive contains all the input and
output files of the simulations, the conda environment used for Psi4/ddX and Psi4/adcc/ddX calculations, a
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copy of the employed versions of ddX, Tinker and Psi4, and the Python scripts used for generating the tables
and plots of this paper.

5.1 Benchmarks
We investigated the scaling of the three models by running calculations on systems of increasing size. To
do so, we first converted the protein data bank (PDB) files into Tinker input files using the Tinker tool
pdb2xyz. We assigned the parameters using the Amber 99 force field94, which is bundled within Tinker.
Further information about the input structures is given in table 3.

PDB code N atoms Ref.
2p7r 70 [95]
1etn 143 [96]
1du9 381 [97]
1caa 975 [98]
1d3w 2051 [99]
1hde 9734 [100]
1ju2 20288 [101]
6ftl 39151 [102]
1stm 138408 [103]
1cnl 169 [104]
1ucs 997 [105]

Table 3: PDB codes and number of atoms for the structures used in the benchmark (upper part) and in the
MD simulations (bottom part).

Then, for each input structure and for each model among vacuum, ddCOSMO, ddPCM, and ddLPB, we
used the Tinker tool testgrad to compute the energy and the analytical forces. The execution time for the
evaluation of the energy and analytical forces was measured using the time command, which also returns
the maximum memory usage.

The time required by the various calculation steps is reported in figure 2. The time required to assemble
the adjoint RHS is negligible with respect to the rest; the next steps, in terms of cost, are the computation
of the RHS and of the forces, which also show a perfectly linear scaling regime. Finally, the most expensive
steps are the two linear systems; these also show a slightly super-linear scaling regime due to an increasing
number of iterations for the largest systems. For the primal linear system of ddCOSMO, the analysis shows
that the number of iterations depends on the globularity of the molecule; see [106]. As shown in a few
examples in [107, Section 5], biological molecules like proteins and DNA often have a chain-like structure
and are thus not globular, and a constant number of iterations can be expected, but with some natural
variation as some molecules are more globular than others that explains this performance.

The overall performance of ddX is remarkably good. For the largest system, which consists of more than
138,000 atoms, the total time required to compute the energy ranges between 3 minutes for ddCOSMO, 4
minutes for ddPCM and 56 minutes for ddLPB, the timings increasing to 9, 10 and 204 minutes respectively,
if also the forces are computed. We remark that the timings were obtained on a single computer node
equipped with two Intel Xeon 6252 Gold CPUs, which is commonly available hardware, and that the results
are obtained using conservative discretization parameters, that ensure no compromise on the accuracy of the
compute gradients.

Various previous studies can further illustrate the good performance: ddCOSMO was used to solvate viral
capsides of up to 7 million atoms in less than 1 hour57, ddPCM was used to solvate a system of ∼625k atoms
in ∼5 hours on a single core68, and finally ddLPB was tested against the TABI-PB and the APBS finite
difference method LPB solvers, finding that it performs similarly for loose accuracies and that outperforms
both when a higher accuracy is requested69.
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Figure 2: Scaling of the various steps of a ddX calculation for systems of increasing size for the three models
(ddCOSMO, ddPCM, ddLPB). The various steps are reported using different colors and different models
using different panels. The gray dotted lines report an indication of the linear scaling regime.

Figure 3 reports the peak memory usage for the three models, which is only an estimate as the values
are computed as the difference between the peak memory usage using ddX and the peak memory usage of
a vacuum calculation. The three models present a perfectly linear scaling memory consumption, and as
expected, the memory consumption increases with the complexity of the model, so it increases going from
ddCOSMO to ddPCM and finally to ddLPB.

5.2 Molecular Dynamics
The interface with Tinker and the rigorous analytical gradients implemented in ddX allow one to perform
MD simulations. We tested the MD simulations on two systems (reported in the bottom of table 3). For
each PDB structure, the input files were prepared using the pdbxyz tool from Tinker and the Amber 99
sb force field108, which is bundled in Tinker. The input files were used to run the first 2 ps of NVT MD
simulation at a temperature of 300 K, and then the restart files were used to run 2 ps long NVE simulations.
The simulations were repeated using two different threshold for the linear solvers of ddX, 10−4 as a loose
threshold and 10−8 as a tight threshold. These two simple-minded examples show that the forces computed
by ddX are indeed accurate, making thus rigorously energy conserving NVE simulations with ddX possible.

Figure 4 reports an analysis of the energy conservation during the NVE simulations for the two systems
and for the four models (including vacuum). The energy conservation is overall good, as it remains of
the same order of magnitude as the one observed for the vacuum trajectory. In terms of relative energy
conservation, the energy fluctuations in the antifreeze protein MD remain in the -2–4‰ range, whereas the
ones of the peptide remain in the ±2‰ range. The usage of a tighter threshold mostly affects the short-time
fluctuations, with a more pronounced effect on ddLPB due to the inner-outer linear system solver.

5.3 Psi4 Calculations
The ddX interface with Psi4 was tested by comparing between using ddX and using PCMSolver90, which
we use as a reference. As a test molecule, we choose the dye nile red. This molecule presents a large
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Figure 3: Memory consumption of ddX in a energy and forces calculation done with the Tinker/ddX imple-
mentation. The three models (ddCOSMO, ddPCM and ddLPB) are reported with different colors. The gray
dotted lines report an indication of the linear scaling regime.

solvatochromic red-shift and is of medium size (with 42 atoms) which makes it an interesting test case for
continuum solvation models.

First, we optimized the ground state geometry of nile red using the MP2 method with a cc-pVDZ basis set.
The optimized ground state geometry was then used to run both MP2 calculations and TDDFT calculations.
In this case, continuum solvation was enabled and the calculations were repeated in three different solvents,
water (wat, εs = 80.1, ε∞ = 1.777), acetonitrile (acn, εs = 37.5, ε∞ = 1.807), and cyclohexane (cyhex,
εs = 2.02, ε∞ = 2.034).

Solvent Model Energy (Hartree)
wat ddPCM -1026.5343
wat PCM -1026.5343
wat ddCOSMO -1026.5343
wat COSMO -1026.5344
acn ddPCM -1026.5340
acn PCM -1026.5341
acn ddCOSMO -1026.5342
acn COSMO -1026.5342
cyhex ddPCM -1026.5279
cyhex PCM —
cyhex ddCOSMO -1026.5290
cyhex COSMO -1026.5290
vac — -1026.5241

Table 4: Results of MP2 calculations on nile red, done in three solvents (water, acetonitrile and cyclohex-
ane), with methods from PCMSolver (PCM, COSMO) and from ddX (ddPCM, ddCOSMO). The results of
calculation done in vacuum are added as a reference.

The MP2 results are reported in table 4, whereas the TDDFT results are reported in table 5. The ddX
results agree perfectly with the PCMSolver results, confirming the validity of the implementation. It was not
possible to perform the PCMSolver calculations in cyclohexane due to numerical errors, and in this case, ddX
showed its better stability. We did not report the timings, as all the investigated models performed similarly,
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Figure 4: Energy conservation during the NVE trajectories, the values reported are the total energy minus
the starting energy of the NVE simulation. The different models (vacuum, ddCOSMO, ddPCM and ddLPB)
are reported using different colors, the combination of the two systems, and the two convergence thresholds
(loose 10−4, tight 10−8) using different panels. The solid curves report a moving average of the energies over
100 steps to improve the readability, and the partially transparent curves report the energies and show the
short-term fluctuations.

suggesting that the bottleneck of the calculations is not solving the linear systems but rather computing the
electronic integrals at the grid points, an operation which is similar for both ddX and PCMSolver.

However, it should be noted that since ddX is entirely linear scaling, we can expect a molecule size at
which the PCMSolver calculation becomes more expensive as the quadratic contribution for solving the linear
system becomes dominant.

To conclude, the ddX implementation in Psi4 shows similar performance and improved stability with
respect to traditional implementations while generating the same results. Further, for this size of the solute,
there is no significant difference in the timings between ddCOSMO and ddPCM as opposed to PCMsolver.
Overall, the Psi4-ddX interface is ready to be used in production calculations and its linear scaling allows us
to consider much larger molecules than the nile red molecule.

5.4 ADC(2) Energies
The adcc support for ddX was tested by performing ADC(2) calculations on the p-nitroaniline molecule.
This molecule is a push-pull system characterized by a bright absorption due to a charge transfer transition.
The band is subject to a large solvatochromic red-shift when going from low to high polarity109.

The initial structures were obtained by performing MP2 geometry optimizations with the cc-pVDZ basis
set. The initial structure was first optimized in vacuum, and then the resulting structure was used as
a starting point for three geometry optimizations in the investigated solvents. The solvation effects were
included using ddPCM. As the analytical forces are not yet supported in Psi4/ddX, we used the automatic
numerical differentiation provided by Psi4 to carry out the optimizations.

On the final four structures, we performed excited state calculations using ADC(2). The solvation effect
on the excited states was included through a perturbative linear response correction88.

The results are reported in table 6. The ground state energy (Hartree-Fock) progressively decreases
with an increasing dielectric constant of the environment. The first and third excited states are dark and
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Solvent Model Energy (Hartree) Exc (eV)
wat ddPCM -1032.4381 2.80 3.56 3.63 4.11 4.33
wat PCM -1032.4382 2.79 3.56 3.63 4.11 4.33
wat ddCOSMO -1032.4382 2.78 3.56 3.63 4.11 4.33
wat COSMO -1032.4382 2.78 3.56 3.63 4.11 4.33
acn ddPCM -1032.4379 2.80 3.56 3.64 4.11 4.33
acn PCM -1032.4380 2.79 3.56 3.63 4.11 4.33
acn ddCOSMO -1032.4380 2.78 3.56 3.63 4.11 4.33
acn COSMO -1032.4381 2.78 3.56 3.63 4.11 4.33
cyhex ddPCM -1032.4326 2.85 3.45 3.68 4.12 4.31
cyhex PCM — — — — — —
cyhex ddCOSMO -1032.4334 2.82 3.46 3.68 4.12 4.30
cyhex COSMO -1032.4334 2.82 3.46 3.68 4.12 4.30
vac — -1032.4292 2.99 3.37 3.72 4.12 4.30

Table 5: Results of TDDFT calculations on nile red, done in three solvents (water, acetonitrile and cyclo-
hexane), with methods from PCMSolver (PCM, COSMO) and from ddX (ddPCM, ddCOSMO). The results
of calculation in vacuum are added as a reference.

Solvent Energy (Hartree) Exc (eV)
wat -489.2550 3.80 3.97 4.54
acn -489.2547 3.80 3.98 4.54
cyhex -489.2483 3.81 4.26 4.69
vac -489.2436 3.76 4.53 4.72

Table 6: Results of ADC(2) calculations on p-nitroaniline, done in three solvents (water, acetonitrile and
cyclohexane) and in vacuum.

are only slightly influenced by the different dielectric constants of the environment, whereas the second
excited state is bright and undergoes the expected red-shift when going from a low polarity solvent to a high
polarity solvent. The general trend is in agreement with experimental results110–112, however, a quantitative
agreement is missing mostly due to limitations of the continuum solvation models109.

6 Conclusion and outlook
The ddX library represents the culmination of over ten years of dedicated effort in the field of PCSM. By
combining three PCSMs based on domain decomposition, namely ddCOSMO, ddPCM, and ddLPB, and
easy-to-use API in multiple programming languages, this library is a robust and efficient tool for treating
solvation effects in a wide variety of cases and different host codes. Notably, the implemented methods are
robust and exhibit a linear scaling regime in both time and memory, making them suitable for applications
in both quantum chemistry and biophysics, thus bridging the gap between the two communities.

However, the current state of the library and its interfaces is only the starting point of a more ambitious
project. There are multiple perspectives which we plan to explore, from interfacing the library to additional
QM and MM packages, making the existing interfaces more rich in features, for example by implementing
the forces in the Psi4/ddX interface, to finally further improving the numerical efficiency of the methods, by
additional optimization and by porting the core algorithms to GPU.
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A Matrix Formulation
In this appendix, we present the structure of the system of equations presented in Sec. 2.3 and Sec. 2.4; also,
for the ease of notation, we denote Fλ −MλX by H.

A.1 ddCOSMO
For ddCOSMO, the structure of the problem has the following form:

M =

(
L 0
0 0

)
, X =

(
X
0

)
, F =

(
−Φ
0

)
, and, Ψ = f(εs)

(
Ψ
0

)
,

where Φ related to the discretization of the function Φ.
Note that only the first component is needed for the ddCOSMO. The notation used in the ddCOSMO

literature, e.g., [60, 61, 84], uses g to denote F. Here, the matrix L is of size M(ℓmax + 1)2 ×M(ℓmax + 1)2

and the vectors X,Φ, and Ψ are of size M(ℓmax + 1)2, where ℓmax is the maximum number of spherical
harmonics. The references [57, 60] also give the entries of the matrix L and the vectors Φ, Ψ as well as the
scalar function f(εs).

For the adjoint system,

M∗ =

(
L∗ 0
0 0

)
, Xadj =

(
Xadj

0

)
, H =

(
−Φλ − LλX

0

)
.

The term ⟨Xadj,H⟩ then writes

⟨Xadj,H⟩ = −
〈
Xadj,Φ

λ
〉
−
〈
Xadj,L

λX
〉
.

A.2 ddPCM
For ddPCM, the structure of the problem has the form

M =

(
L I
0 Rε

)
, X =

(
X
Φε

)
, F =

(
0

R∞Φ

)
, and, Ψ =

(
Ψ
0

)
,

where I denotes the identity matrix of the corresponding size. The notation used in the references [64, 65]
uses σ to denote X. The references [64, 68] also give the definition of the matrices Rε and R∞.

For the adjoint system

M∗ =

(
L∗ 0
I R∗

ε

)
, Xadj =

(
Xadj

−Y

)
, H =

(
−LλX

Rλ(Φ−Φε) +R∞Φλ

)
.

The minus sign in front of Y appears for consistency with the notation introduced in [66].

Remark 1. There holds the relation Xadj = R∗
εY and since R∞ − Rε = − 4π

εs−1 is constant there holds
Rλ := Rλ

ε = Rλ
∞. Hence, it is advantageous to write

⟨Xadj,H⟩ = −
〈
Xadj,L

λX
〉
+
〈
Y,Rλ(Φε −Φ)

〉
−
〈
Q,Φλ

〉
Q := Xadj −

4π

εs − 1
Y.
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A.3 ddLPB
Finally, ddLPB has the following structure

M =

(
A 0
0 B

)
+C, C =

(
C1 C2

C1 C2

)
, X =

(
X
Xe

)
, F =

(
F0 −Φ
F0

)
, and, Ψ =

(
Ψ
0

)
.

The notation used in the ddLPB literature, see e.g. [67, 69], uses Xr to denote X and G0 to denote −Φ.
These references also provide the entries of the matrices A (which is a scaled version of L), B, C1, and C2

as well as the vectors F0, and G0(= −Φ).
Finally, derivatives of the ddLPB-energy can be cast as

M∗ =

(
A∗ 0
0 B∗

)
+C∗, C∗ =

(
C∗

1 C∗
1

C∗
2 C∗

2

)
, Xadj =

(
Xadj

Xadj,e

)
, H =

(
Fλ

0 −Φλ −AλX−Cλ
1X−Cλ

2Xe

Fλ
0 −BλXe −Cλ

1X−Cλ
2Xe

)
.

The term ⟨Xadj,H⟩ then writes

⟨Xadj,H⟩ =
〈
Xadj ,F

λ
0 −Φλ

〉
+
〈
Xadj,e,F

λ
0

〉
−

〈
Xadj,A

λX
〉
−
〈
Xadj ,B

λXe

〉
−
〈
Xadj,C

λX
〉
.
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