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Abstract 

The purinyl ring contains four embedded nitrogen atoms of varying basicities. Selective utilization 

of these ring nitrogen atoms can lead to relatively facile remote functionalization, yielding 

modified purinyl motifs that are otherwise not easily obtained. Herein, we report previously 

undescribed N-directed aroylation of 6-arylpurine ribo and the more labile 2’-

deoxyribonucleosides. Kinetic isotope analysis as well as reaction with a well-defined dimeric, 

palladated 9-benzyl 6-arylpurine provided evidence for N-directed cyclometallation as a key step, 

with a plausible rate-limiting C–H bond cleavage. Radical inhibition experiments indicate the 

likely intermediacy of aroyl radicals. The chemistry surmounts difficulties often posed in the 

functionalization of polynitrogenated and polyoxygenated nucleosidic structures that possess 

complex reactivities and a labile glycosidic bond that is more sensitive in the 2’-deoxy substrates. 

Introduction 

The Friedel-Crafts acylation and reactions of organometallics with acylating agents or nitriles 

constitute classical approaches for acylation of aromatic systems.1–4 Whereas carboxylic acids or 

their derivatives can be utilized, through the addition of organometallic reagents, over-addition 

leading to tertiary alcohols is a problem. One solution to this problem has been the Weinreb 
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amide methodology.5–7 Another has been cross coupling reactions of acyl halides, thiol esters, 

amides, anhydrides and in situ formed mixed anhydrides with a variety of organometallic and 

organoboron reagents.6–30 More recently, photocatalytic methods have emerged for acylation 

reactions.31–36 

Carbonylation reactions constitute another approach to the synthesis of ketones, and sp2 

nitrogen atoms in heterocyclic substrates are effective site directors for such reactions.37–40 In 

the development of CO-free carbonylations, Pd-catalyzed reactions of nitrogenated substrates 

with DEAD led to regioselective ethoxy carbonylations,41 and Ru- or Pt-catalyzed reactions of 

pyridine-ring-containing substrates (benzo[h]quinoline, 2-aryl pyridines, and (2-

aryloxy)pyridines) with carbamoyl chlorides, alkyl chloroformates, and acyl chlorides led to the 

corresponding remote regioselective functionalizations.42–44 Ru-mediated carbonylation and 

reaction with aryl iodides45 and Ru3(CO)12 mediated C–N(Me)2 bond cleavage followed by 

carbonylation with CO and ArB(nep) have both also led to remote aroylations.46 

The utility of aldehydes as p-acceptors in N-directed acylations requires a terminal oxidation, 

and whereas air was initially reported,47 t-BuOOH has been a suitable oxidant in a variety of such 

acylation reactions.48–56 Beyond aldehydes, other reagents have been utilized for N-directed 

aroylation reactions.57 For example, acylations of 2-aryl pyridines have been conducted with a-

oxocarboxylic acids,58 alcohols,59 a-diketones,60 toluene derivatives,61,62 carboxylic acids,63 

benzyl amines,64 styrenes,65,66 phenyl acetylenes,66,67 benzylic oxiranes,67 mandelic acids,68 

benzylic halides,69,70 and N-phenyl-N-tosylbenzamides.71 

Nucleosides are a significantly important family of biomolecules, and the nucleoside scaffold 

has provided a rich diversity of compounds impacting broad-ranging areas, such as biological, 

medicinal, and pharmaceutical fields.72 Thus, facile approaches to nucleoside modifications are 

of significant interest. Within such contexts and among various metal-catalyzed reactions, purinyl 

nitrogen atom-directed “ortho-C–H” bond activation and functionalization has been a goal of 

ours.73,74 Although purines have been a subject of C–H bond activation reactions, by comparison, 

the literature on purine nucleosides is quite limited.75–78 In nucleosides, beyond the multiple 

metal coordinating nitrogen atoms in the purines themselves, there are multiple oxygen atoms 

in the saccharide, and a labile glycosidic bond that renders them prone to deglycosylation. 2’-
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Deoxyribosides are more prone to deglycosylation than the ribo analogues and nucleoside 

stability also depends upon a number of factors such as structure, temperature, and pH.79 Thus, 

in general, reactions, and metal-catalyzed reactions in particular, can be challenging with these 

substrates, in comparison to purines.80–82 A summary of the significant carbo functionalizations 

by N-directed C–H bond activation of 6-arylpurine nucleosides is shown in Scheme 1.73,83–89 A vast 

majority of previous work explore 2’,3’,5’-tri-O-acetyl-protected ribonucleoside substrates, 

which generally display higher stabilities as compared to the 2’-deoxy analogues and silyl-

protected derivatives. A recent review summarizes C–N, C–S, and meta-functionalizations of 

purines and purine nucleosides.75 

 
Scheme 1. Examples of N-directed ortho-functionalization of 6-aryl- and 6-anilinopurine 

nucleosides. 
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In prior studies on acylation of acetyl-protected 6-anilinopurine ribonucleosides (Scheme 

1(c)), aryl aldehydes could not be used because they were observed to undergo ready oxidation 

to carboxylic acids. Thus, we were drawn to the unknown purinyl N-directed ortho aroylation of 

6-arylpurine ribo and 2’-deoxyribonucleosides. Our initial efforts were based upon 

photochemical approaches and specifically PdII/IrIII cocatalysis.90,91 These initial results are shown 

in Table 1. Using Boc-Val-OH as an additive, reactions of 1a and PhCHO under 48 and 36 W blue 

light LEDs proceeded to give product 2a in comparably good yields (entries 1 and 2). However, 

use of 24 W LEDs led to a decreased yield (entry 3). 

Table 1. Photochemical and thermal conditions tested for the aroylationa 

 

Entry Pd (mol%) Additive (mol%) LED (W) Time Yieldb 

Photoredox (Conditions A)  
1 20 Boc-Val-OH (20) 48 24 h 64% 
2 20 Boc-Val-OH (20) 36 24 h 65% 
3 20 Boc-Val-OH (20) 24 24 h 56% 
4 20 Boc-Val-OH (20) 24 24 h Incc,d 

Thermal (Conditions B)  
5 20 Boc-Val-OH (20) – 1 h 74% 
6 10 Boc-Val-OH (10) – 18 h 78% 
7 20 Boc-Val-OH (20) – 18 h Ince 

8 20 Ac-Val-OH (20) – 1 h 60% 
9 20 Boc-Ile-OH (20) – 1 h 66% 

10 20 Ac-Ile-OH (20) – 1 h 52% 
11 20 None – 1.5 h 77% 
aReactions were conducted in a vial, charged with nucleoside 
1a (0.1 mmol), t-BuOOH (5–6 M in decane, 4 equiv.), freshly 
distilled PhCHO, and in a nitrogen atmosphere. bYields are of 
isolated and purified product. cA fan was used to dissipate any 
heat. dReaction was incomplete. eThe reaction was conducted 
in PhCl. 
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To ensure that the photoredox reactions were not influenced by local heating, a fan was used 

to dissipate any heat generated. This reaction (entry 4) remained incomplete, with a significant 

amount of residual precursor 1a. We determined that the temperature of a reaction under 24 W 

LEDs was ca. 60 oC. On the basis of these collective observations, thermal conditions were 

evaluated, using 20 mol% Pd(OAc)2. Notably, the very first attempt resulted in a very good yield 

of product 2a (entry 5). However, halving the amount of catalyst increased the reaction time 

significantly, without a major yield improvement (entry 6). In order to eliminate any possible 

undesired outcomes with other reactants under long reactions times, experimentation was 

continued with 20 mol% of Pd(OAc)2.  A switch from MeCN to PhCl as solvent led to a significant 

amount of residual precursor 1a after 18 h (entry 7). Other amino acid additives also led to 

successful product formation, but with decreased yields (entries 8–10). Finally, and interestingly, 

eliminating the amino acid additive was not significantly detrimental, and a very good yield of 

product 2a was obtained with only a slightly increased reaction time (entry 11). 

Using the conditions in entry 11 of Table 1, a variety of products were prepared (Scheme 1) 

from the ribosyl precursors 1a–e (X = OTBS) and the 2’-deoxyribosyl precursors 3a and 3b (X = H). 

For reactions with PhCHO and p-MeO-PhCHO, the aldehydes were distilled prior to use. The 

reaction appears to be sensitive to substituents on both the 6-arylpurine nucleoside as well as 

the aldehyde, although the outcome seems to be a balance between substituents R and R1. With 

6-phenylpurine riboside (R = H), reactions with PhCHO and p-MeO-PhCHO proceeded quite 

efficiently (2a, 2b). Presence of electron-withdrawing p-Cl and p-CN groups on the benzaldehyde 

lowered the product yields (2c, 2d), whereas 2-naphthaldehyde gave a good product yield (2e). 

The reduction in product yield was most dramatic with p-CF3-PhCHO (2f). Presence of a strongly 

electron-withdrawing substituent on the 6-arylpurine moiety (R = CN) led to incomplete reactions 

at 60 oC. Increasing both the nucleoside concentration from 0.1 to 0.2 M and the reaction 

temperature to 100 oC, led to successful aroylation reactions (2g, 2h). With substrate 1c, bearing 

a p-OMe group on the 6-arylpurinyl unit, product yields with PhCHO, p-MeO-PhCHO and p-NC-

PhCHO (2i, 2j, 2l) were all lower as compared to reactions of substrate 1a. However, p-Cl-PhCHO 

gave a better product yield (2k versus 2c). Relocation of the methoxy group to the m-position on 

the 6-arylpurine prolonged reaction times with PhCHO and p-MeO-PhCHO, and while the product 
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aThe aldehyde was distilled just prior to use. bReaction was conducted with 3 equiv. of the 
aldehyde. cYield from 2 ´ 0.5 mmol scale reactions, 3.5 h reaction time. dReaction was conducted 
with 2 equiv. of the aldehyde. eBecause of a minor inseparable byproduct, the aroylated product 
was desilylated with Et3N•3HF in THF, at rt. The yield is over two steps. 
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Scheme 1. Products from the aroylation reactions of TBS-protected ribo- and 2’-
deoxyribonucleoside substrates. 

yield with the former (2m) was similar to that with 6-phenylpurine riboside, that with the latter 

was lower (2n). Interestingly, p-Cl-PhCHO gave a better product yield in this comparison (2o), 

whereas that with p-NC-PhCHO was similar (2p). With a p-anisyl or p-tolyl substituent on the 

purine nucleus, product yields with PhCHO and p-MeO-PhCHO were similar (compare 2i to 2q 

and 2j to 2r). With a p-tolyl substituent on the purine, product yields with p-Cl-PhCHO and p-NC-

PhCHO were higher (2s, 2t) within the series and as compared to other comparable reactions, 

with the exception of product 2o. The highest product yield with p-NC-PhCHO was obtained with 

a p-tolyl substituent on the purine (2t). One reaction with precursor 1a was scaled up to the 1 

mmol scale and this also resulted in a good yield of product 2b. 

Products 2m–p are notable. Although precursor 1d, with a meta-methoxy group on the C6 

aryl ring, presents two potential aroylation sites, reactions occurred at the p-position to the 

methoxy group. This could be readily ascertained by an analysis of the remaining C6 aryl proton 

resonances post aroylation. These data are shown in Table 2. 

 Table 2. Chemical shifts and coupling constants of the protons in the arylpurine unit of 

compounds 2m–p.a,b 

 

Compound d ppm (J Hz) d ppm (J Hz) dd ppm (J Hz) 

2m d = 8.06 (2.0) d = 7.57 (8.5) d = 7.14 (8.4, 2.2) 
2n d = 7.98 (1.7) d = 7.57 (8.4) d = 7.10 (8.4, 1.8) 
2o d = 8.04 (1.9) d = 7.57 (8.4) d = 7.14 (8.5, 2.2) 
2p d = 8.18 (2.2) d = 7.55 (8.5) d = 7.13 (8.5, 2.3) 

aSpectra were obtained at 500 MHz in CDCl3. bd = Doublet, dd = 
doublet of doublet. 

2’-Deoxyribonucleoside precursors 3a and 3b also performed admirably although the yields 

were slightly lower in four of the five examples (4a–d). Due to the formation of a byproduct, 

these reactions were performed with 2 equiv. of the aldehyde. The product yield with p-NC-

PhCHO (4e) was highest in this series, comparable to that of ribo product 2t. In the case of the 

product from p-MeO-PhCHO (4d), the yield shown in Scheme 1 is that of the desilylated material. 

This was done because of the presence of a minor inseparable byproduct formed in the aroylation 

reaction. One product, 2s, was conventionally crystallized from PhH, and its structure was 
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obtained by X-ray analysis (Figure 2, please see the Supporting Information for additional 

structural data). 

   
Figure 2. X-ray crystal structure of compound 2s. Panel A: capped sticks. Panel B: ORTEP (atomic 
displacement parameters are shown at the 30% probability level and disorder at the 3’ silyl group 
is omitted for clarity). 

The next focus was on understanding some of the mechanistic details of the aroylation 

reactions. On the basis of our prior experience74 and other literature reports48,51,55,60 a PdII/PdIII or 

IV catalytic cycle was anticipated. As in the past,74 during this work we were unable to isolate a 

palladacycle from Pd(OAc)2 and a nucleoside precursor for crystallographic structure analysis. 

Thus, we chose to evaluate an aroylation reaction using a purinyl palladacycle we have previously 

prepared and characterized (Scheme 2).74 With 20 mol% of this palladacycle, a 67% yield of 

product 2b was obtained from ribonucleoside 1a, which compares reasonably well to the yield 

obtained with Pd(OAc)2. This shows that a nucleoside-derived palladacycle is a plausible 

intermediate in the reaction. 

 
Scheme 2. Use of a purinyl palladacycle precatalyst for an aroylation reaction. 
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yield of product from this reaction was 57%, as compared to 77% in the absence of 1,1-DPE. Use 

of TEMPO, in place of 1,1-DPE, led to no product formation. However, in both cases we were 

unable to identify and/or isolate any radical-trapped byproducts. Nevertheless, these results 

point to the formation of an aroyl radical. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 500 MHz partial 1H NMR spectra (in CDCl3) of products 2b, 2b-d4, and 2b + 2b-d4. 
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synthesized from (d5)-PhB(OH)2. Under conditions leading to product 2b, three aroylation 
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The yield of product 2b from protiated precursor 1a was 66% (10% recovered 1a) and that of 

product 2b-d4 from deuteriated precursor 1a-d5 was 56% (18% recovered 1a-d5). The 1H NMR 

spectra of products 2b, 2b-d4, and 2b + 2b-d4 that were obtained (relaxation delay D1 = 5 s) are 

displayed in Figure 3. From these data the kH/kD was estimated to be 2.25 (average of two runs). 

From the collective data above, we propose that N-directed palladation of the nucleoside, 

likely produces a PdII-PdII dimer, akin to the palladacycle shown in Scheme 2, involving a primary 

isotope effect. Next, in a PdII to PdIII oxidation, the acyl radical reacts with this dimer (a PdIV 

intermediate cannot be excluded). Formation of radical intermediates is supported by the 

modest inhibition to abrogation by radical inhibitors. This is followed by a product forming sp2-

acyl bond formation and regeneration of the PdII catalyst. The overall pathway is represented in 

Scheme 3. 

 
Scheme 3. A plausible catalytic cycle for the N-directed aroylation. 

Conclusions 

In this work we have demonstrated that a variety of 6-arylpurine ribo and 2’-

deoxyribonucleosides undergo N-directed C–H bond activation and aroylation with a range of 

benzaldehydes, under generally mild conditions. Oxidation of the aryl aldehydes to the carboxylic 

acids does not appear to be a significant problem under the reaction conditions. Despite the 

presence of four nitrogen atoms that could all sequester Pd, interaction with a single nitrogen 

atom leads to effective remote C–H bond activation. From a mechanistic standpoint, it appears 

that cleavage of the C–H bond in the 6-arylpurine moiety, leading to formation of a 

cyclopalladated species, could be rate limiting. In this context, use of a purine-based PdII dimer 
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as precatalyst points to the possible formation of nucleoside-PdII dimers in situ. Formation of 

aroyl radicals by reaction of the aryl aldehydes with t-BuOOH is indicated on the basis of the 

radical inhibition experiments. A PdII/PdIII (or PdIV) redox cycling is then likely responsible for the 

transformations. Importantly, despite the intermediacy of radical species in the reactions and the 

presence of O–C–H bonds in the saccharide units, hydrogen atom abstraction, as would be 

observed in cross-dehydrogenative coupling reactions, does not seem to complicate. One 

product has been characterized by X-ray crystallographic analysis. In summary, we have 

demonstrated the ability to readily functionalize complex systems such as purine nucleoside 

analogues by a N-direction C–H bond activation strategy. 
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