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ABSTRACT: Quickly and accurately predicting the pKa of small molecules is an important unsolved challenge in computational 
chemistry: while approaches based on electronic structure theory have shown great promise, the utility of these methods is limited by 
the considerable expense of the requisite computations. In this study, we investigate AIMNet2, a machine-learned interatomic poten-
tial, as a low-cost surrogate for electronic structure theory in pKa prediction. The accuracy of the AIMNet2-based pKa prediction 
workflow is evaluated over a wide range of compounds and functional groups, and potential sources of error are discussed.

INTRODUCTION  
Knowing the pKa of a molecule is key to understanding its 

structure and reactivity. In medicinal chemistry, pKa values are 
used to predict a variety of important pharmacological proper-
ties, including solubility, hERG potassium channel blocking, 
phospholipidosis risk, CYP inhibition, and blood–brain-barrier 
penetration.1–6 Efficient and accurate pKa estimates play a piv-
otal role in the design of compounds with the desired physico-
chemical and pharmacological properties, and accordingly pKa 
prediction has been recognized as a problem of “immense inter-
est”7 in computational chemistry for decades.8,9 

The most common approach to pKa prediction is to develop 
an empirical quantitative structure–property relationship 
(QSPR) based on experimentally measured data and use this 
model to predict pKa values for new compounds.10 QSPR ap-
proaches are typically fast and display excellent accuracy for 
compounds like those in the training data, making them an ap-
pealing choice for high-throughput pKa prediction.11 However, 
these methods struggle to extrapolate to unseen compounds and 
are generally unable to capture factors that arise from specific 
configurations of molecules in three-dimensional space, like 
conformational or stereoelectronic effects.12 

A contrasting approach is to directly predict pKa values using 
electronic structure theory, since microscopic pKa values are di-
rectly proportional to the ∆G of the underlying acid dissociation 
reactions. This strategy possesses certain advantages over 
QSPR approaches: conformational and stereochemical effects 
are naturally incorporated, and new regions of chemical space 
can be modeled without new training data. In recent pKa predic-
tion challenges, approaches based on electronic structure theory 
have consistently been among the best-performing methods: in 
SAMPL6, submission xvxzd achieved a mean absolute error 
(MAE) of 0.58 pKa units and a root-mean-squared error 
(RMSE) of 0.68,13 while submission EC_RISM achieved an 
MAE of 0.53 and an RMSE of 0.73 in SAMPL7.14  

Unfortunately, many electronic structure theory-based ap-
proaches are too computationally costly for routine usage: in 
their paper describing the xvxzd submission to SAMPL6, Pracht 
and Grimme write that “a macroscopic pKa value for a molecule 
could be calculated within approximately one day on a 28 CPU 

node,”15 which corresponds to roughly $25–30 with current 
cloud computing prices.16 While semiempirical methods like 
PM617 and GFN2-xtb18 have been used for rapid pKa prediction, 
the resulting workflows display lower accuracy and often re-
quire judicious choice of reference compound or significant 
reparameterization. This is unsurprising: calculation of acid dis-
sociation constants is “demanding and arduous,”19 and both a 
sophisticated electronic structure method and a sizable basis set 
are required to consistently get accurate results even in the gas 
phase.20  

Machine-learned interatomic potentials have recently 
emerged as an efficient alternative to conventional electronic 
structure theory.21 We envisioned that AIMNet2, which dis-
plays accuracy comparable to routine density-functional theory 
methods for main-group thermochemistry,22 might allow for 
rapid computation of pKa values while preserving the ad-
vantages of electronic structure-based approaches. Here, we re-
port the successful implementation of this strategy into a work-
flow (“Rowan pKa”), which uses AIMNet2 to calculate micro-
scopic pKa values with good accuracy and minimal empiricism. 

 
Figure 1. Visual overview of the Rowan pKa workflow. 
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METHODOLOGY 
Our workflow begins by iteratively adding or removing hy-

drogens to the molecule of interest using RDKit and quickly 
estimating the proton affinity for the conjugate acid/conjugate 
base pair. If (de)protonation is predicted to yield a pKa value 
close to the desired range, conformers are generated using the 
ETKDG algorithm23,24 and optimized using the MMFF 
forcefield. After removing redundant geometries, low-energy 
conformers are then optimized using the GFN2-xTB semiem-
pirical method,25 single-point energies are calculated using the 
AIMNet2 model trained on ωB97M-D3/def2-TZVPP (hence-
forth abbreviated as AN2-ωB97MD3),22 and the lowest N un-
dergo full optimization and frequency calculations at the AN2-
ωB97MD3 level of theory to generate a free energy for each 
conformer, including all standard entropy- and symmetry-based 
corrections.26 (N is set to 10 by default but can be varied by the 
end user; vide infra.) Since AIMNet2 does not take solvation 
into account, ∆Gsolv is computed from a single-point GFN2-xtb 
calculation with the CPCM-X implicit water model.27  

Following Pracht and Grimme, we combine energies from 
each conformer to generate a single hybrid ∆G for the conjugate 
acid/conjugate base pair and apply a quadratic free-energy rela-
tionship to convert this into pKa values.18 Initial application of 
this strategy provided disappointing results, with considerable 
systematic error observed between different classes of acids. 
Functional group-dependent systematic error is common in ab 
initio pKa prediction, and many different corrections have been 
employed: Schrödinger’s Jaguar pKa contains a different linear 
free-energy relationship for roughly a hundred different func-
tional groups,28 while Jensen and co-workers employed differ-
ent reference molecules for each class of compound under 
study.17 To minimize the number of empirical parameters em-
ployed in our workflow, we instead add an element- and va-
lence-specific constant to ∆G for each conjugate acid/conjugate 
base pair. (The correction for divalent oxygen, i.e. deprotona-
tion of ROH, is defined as zero to eliminate extra degrees of 
freedom.) These constants are determined by Levenberg–Mar-
quardt least-squares minimization, not by comparison to any in-
dividual reference compound, and can be thought of as a cor-
rection for systematic errors in both thermochemistry and solv-
ation. Similar corrections are often used to account for disper-
sion in mean-field electronic structure theory methods without 
substantially compromising the generality of the method.29 

Workflow development and parameter optimization was con-
ducted on a slightly modified version of the TR224 dataset, also 
used by Pracht and Grimme.18 The final Rowan pKa workflow 
contains 7 tunable parameters, shown in Table 1. 

  
Table 1. Tunable Parameters for Rowan pKa 

Coefficients for Free-Energy Relationship 
C0: -123.242550  
C1: 0.50677935 mol/kcal 
C2: -1.7401e-04 mol2/kcal2 
Element-/Valence-Specific Constants (kcal/mol) 
N3: 3.91398 
N4: 5.13054 
C4: 6.03872 
O2: 0.00 (defined) 
S2: -5.14438 

RESULTS 
Quantifying the accuracy of property prediction under realis-

tic conditions is challenging: evaluation over a large dataset, 
while superficially appealing, often leads to exaggerated corre-
lation coefficients that are not reproduced in smaller, less di-
verse populations.30 Instead, we follow Rich and Birnbaum in 
using “assay-stratified metrics” to evaluate the predictive abil-
ity of our pKa workflow.31 All datasets were scored using four 
metrics: mean absolute error (MAE), root mean square error 
(RMSE), the square of the Pearson correlation coefficient (r2), 
and Kendall’s tau (τ). Low values for MAE and RMSE reflect 
a high degree of absolute accuracy, while high values for r2 and 
τ demonstrate relative accuracy within a given dataset (arguably 
more predictive of performance under real-world usage). 

We began by evaluating Rowan pKa on datasets from the 
SAMPL6 and SAMPL7 blind pKa prediction challenges run 
several years ago. The SAMPL6 dataset consists of 24 mole-
cules designed to resemble fragments of kinase inhibitors, many 
of which contain multiple potential sites of (de)protonation.13 
We computed microscopic pKa values starting from each mole-
cule’s neutral state and compared these values to the relevant 
macroscopic pKa values, excluding doubly ionized states (Fig-
ure 2). Rowan pKa performed well, with an MAE of 0.94 and 
an RMSE of 1.21, comparable to the performance of commer-
cial pKa prediction tools like ChemAxon’s Chemicalize and 
Schrodinger’s Jaguar and Epik.32 The high values obtained for 
r2 and τ also illustrate the predictive utility of Rowan pKa, alt-
hough the large range of pKa values in the SAMPL6 dataset 
makes obtaining a high value for r2 relatively easy. 

 
Figure 2. Correlation plot for the SAMPL6 dataset. 

The SAMPL7 dataset consists of 20 N–H acids with experi-
mentally measured pKa values.14 Rowan pKa performed some-
what less well on the SAMPL7 dataset (Figure 3), with an MAE 
of 1.38 and an RMSE of 1.72—nevertheless, our workflow still 
outperformed all but the top two or three entries to the SAMPL7 
challenge (depending on which metric is used for ranking), sug-
gesting that SAMPL7 is a more challenging dataset. While most 
molecules were predicted with reasonable accuracy, Rowan fre-
quently significantly overestimated the acidity of various 
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sulfonamides, which may point to a limitation of the underlying 
AN2-ωB97MD3 model. 

 
Figure 3. Correlation plot for the SAMPL7 dataset. 

We next evaluated Rowan pKa on three datasets selected to 
showcase changes in amine basicity. In 2010, Müller and co-
workers reported that introducing spiro-oxetane substituents in 
saturated N-heterocycles could attenuate the basicity of 
amines.33 We modeled their dataset using Rowan pKa, with the 
change that the bulky N-piperonyl group (added as a UV-
absorbing handle for experimental convenience) was replaced 
with N-methyl in silico. Overall, good agreement between ex-
perimental and predicted pKa was observed, although the effect 
of β-oxetane substituents was systematically underestimated 
(Figure 4). More recently, scientists from Enamine reported a 
new route towards the synthesis of α-CF3 bridged bicyclic 
amines and measured the experimental pKa values for a variety 
of bridged bicyclic amines.34 Rowan pKa was able to reproduce 
the observed attenuation of basicity induced by the α-CF3 
group, although subtle changes in pKa caused by differing ring 
size were not captured, leading to a poor value for τ (Figure 5). 

In a 2017 paper, Leito and co-workers measured the basicity 
of a range of unsaturated N-heterocycles in several different sol-
vents, including water.35 We selected 28 of these values for a 
test set, excluding compounds which were in our initial training 
set (pyridine and pyridazine). Rowan pKa was able to reproduce 
the measured pKa values with good accuracy, including effects 
from stabilizing intramolecular hydrogen bonding which are 
challenging to identify without explicit consideration of 3D 
conformers (Figure 6). In fact, the largest errors came from 
overestimating the effect of intramolecular hydrogen bonding: 
for instance, the basicity of 1,10-phenanthroline was overesti-
mated by about 2.5 pKa units (Figure 6), which may point to 
inaccuracies in the directionality of N–H–N hydrogen bonding 
in AN2-ωB97MD3.   

 

 
Figure 4. Correlation plot for the Müller spiro-oxetane dataset 
and illustration of Rowan’s failure to model β-oxetane substitu-
ents (R = piperonyl for experiments, methyl for computations). 

 
Figure 5. Correlation plot for the Enamine α-CF3 amine dataset. 
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Figure 6. Correlation plot for the aromatic N-heterocycle dataset 
and illustration of the effect of intramolecular hydrogen bonding. 

We next examined the ability of Rowan to recapitulate pKa 
values from the medicinal chemistry literature. In 1972, Miller, 
Doukas, and Seydel reported that N-aryl sulfonamides served 
as potent inhibitors of folate synthesis and found that the inhib-
itory activity could be correlated with the pKa of the sulfona-
mide N–H.36 The Rowan pKa workflow recapitulates the exper-
imental trend in pKa values and thus also the observed trend in 
potency, illustrating the utility of pKa calculations in this system 
(Figure 7).  

Inhibition of BACE1, an enzyme involved in amyloid pro-
duction, has been extensively investigated as a potential treat-
ment for Alzheimer’s disease. BACE1 inhibitors must possess 
very precise physicochemical properties to pass through the 
blood–brain barrier: while cyclic amidines have been demon-
strated to be potent BACE1 inhibitors, substantial reduction of 
amidine basicity is necessary to achieve suitable brain penetra-
tion.37 In 2013, Rombouts and co-workers at Janssen investi-
gated the effect of electron-withdrawing groups on the basicity 
of tricyclic amidine BACE1 inhibitors.38 We modeled this da-
taset with Rowan pKa: while some compounds were modeled 
quite accurately, Rowan overestimated the effect that an α-
nitrile substituent would have on lowering amidine basicity, re-
sulting in large deviations from experiment (Figure 8). Never-
theless, the error induced by an α-nitrile is systematic, allowing 
for comparisons to be made between different nitrile-containing 
compounds.  

 

 
Figure 7. Correlation plot for the folate dataset and illustration of 

the sulfonamides investigated by Miller, Doukas, and Seydel. 

 
Figure 8. Correlation plot for the Rombouts dataset and illustra-
tion of Rowan’s underestimation of the pKa of α-cyano amidines. 
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In 2007, Müller and co-workers at Hoffmann–La Roche 
found unusual pKa effects in a series of stereochemically com-
plex tricyclic thrombin inhibitors.39 This paper has subse-
quently been used as a test set for pKa prediction and has been 
observed to be particularly challenging in several different 
cases.9,17 We too found this to be a challenging dataset, with an 
MAE of 1.63 and an RMSE of 1.94. Visual analysis of the pre-
dictions shows that Rowan pKa systematically overestimates the 
pKa of the tricyclic amines and that substantial predictive power 
remains despite the high error, as demonstrated by the moderate 
r2 and τ values. These errors may arise in part from the fact that 
the conjugate acid of these amines is doubly cationic, which 
may lead to inaccuracies in the computed free energy of solva-
tion. 

 
Figure 9. Correlation plot for the tricyclic thrombin inhibitor da-
taset and illustration of the general tricyclic scaffold investigated 
by Müller and co-workers, with the site of protonation illustrated 

in blue. 

We next examined the ability of Rowan pKa to predict the 
pKa of macrocyclic peptides. Macrocyclic peptides inhabit dif-
ferent conformations from their linear congeners and frequently 
possess markedly different pKa values, with significant conse-
quences for solubility and bioavailability. In 2018, Yudin and 
co-workers reported that the pKa of reduced amide bonds adja-
cent to oxadiazole rings was lowered in macrocycles, which 
they attributed to intramolecular hydrogen bonding that stabi-
lizes the neutral amine.40 Rowan pKa was able to recapitulate 
the observed trend in pKa values (Figure 10), which would be 
considerably more challenging for QSPR-type methods that do 
not explicitly consider conformational effects. 
 

 
Figure 10. Comparison of predicted and experimentally measured 

pKa values for various oxadiazole/pyrrolidine-containing struc-
tures, with the intramolecular hydrogen bonds proposed by Yudin 

and co-workers illustrated in red. 

Finally, we explored the suitability of Rowan pKa as a high-
throughput method for pKa prediction. We selected the first 100 
rings from Peter Ertl’s recently published library of medicinal 
chemistry-relevant ring systems as a test set (15.5 atoms/mole-
cule on average) and investigated whether the accuracy of the 
conformation search/refinement process could be further re-
duced to increase throughput without significantly hurting the 
workflow’s accuracy.41 Two modes with reduced conformer 
searching were eventually developed: the key changes made for 
each new mode are summarized in Table 2. Modest gains in 
efficiency are possible, but at the cost of significantly increased 
error: if multiple low-energy conformers exist, these data sug-
gest that they should be included.42 

 
Table 2. Different Modes for Conformer Searching 

Parameter Careful Rapid Reckless 
# initial confs. 250 100 50 
initial energy cutoff (kcal/mol) 15.0 10.0 5.0 
RMSD threshold (Å) 0.10 0.25  0.50 
# confs. (xTB) 20 10 3 
final energy cutoff (kcal/mol) 5.0 5.0 3.0 
# confs. (AIMNet2) 10 3 1 
MAE (relative to “Careful”) 0.00 0.38 0.69 
RMSE (relative to “Careful”) 0.00 1.17 1.66 
Average Time (s)a 23.05 16.01 14.13 

a Timings reported for an EC2 c5.2xlarge instance. 
 

DISCUSSION 
In this work, we show that relatively aggressive approxima-

tions can be applied to “gold standard” approaches like 
Grimme’s xvxzd workflow while still maintaining useful accu-
racy. The xvxzd workflow consists of extensive metadynamics-
based conformation searching in crest, geometry optimization 
with PBEh-3c in implicit solvent, single-point energy calcula-
tions using the double-hybrid functional DSD-BLYP-
D3(BJ)/def2-TZVPD, and subsequent implicit solvent calcula-
tions using COSMO-RS; here, we replace crest with RDKIT’s 
ETKDG conformer generation algorithm, DSD-BLYP-D3(BJ) 
with AIMNet2, and COSMO-RS with CPCM-X.15 While Ro-
wan pKa is not as fast as QSPR-based approaches or as accurate 
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as high-level electronic structure theory-based approaches like 
xvxzd, the combination of accuracy, speed, and minimal empir-
icism achieved by our workflow is nevertheless appealing. We 
anticipate that the ability to obtain fast and reasonable pKa val-
ues for unseen regions of chemical space will be particularly 
useful in drug discovery. Owing to the lack of functional group-
specific corrections, the pKa values computed by Rowan are 
ideally suited to downstream manipulation or scaling, which 
can further reduce systematic error where desired. 

What limits the accuracy of the Rowan pKa workflow, and 
what can be done to improve it? At a high level, errors in ab 
initio microscopic pKa prediction can come from several differ-
ent sources: (1) insufficient consideration of conformational ef-
fects or analysis of the wrong conformations, (2) poor descrip-
tion of the underlying gas-phase thermochemistry, or (3) inac-
curate description of solvation.43 To achieve maximum effi-
ciency, a Pareto-optimal pKa prediction workflow ought to bal-
ance errors from all three sources without “overspending” for a 
high-accuracy answer in only one area. In specific cases, we 
have been able to track down anomalous predictions made by 
Rowan pKa to all three underlying potential sources of error—
conformational searching, gas phase thermochemistry, and im-
plicit solvent model—indicating that no factor is solely respon-
sible for the observed error. While improvements to conforma-
tional generation44 and machine-learned interatomic poten-
tials45 are easy to envision based on current research, improve-
ments to implicit solvation may prove to be more elusive: de-
spite repeated calls for alternatives to “scandalous” implicit 
solvation,46 no practical and general alternatives have yet been 
developed.47 Recent work in coarse-grained machine-learned 
potentials may point towards a new paradigm for handling sol-
vent effects, but more work is needed to investigate the 
strengths and limitations of such approaches.48,49 

More generally, the approach described in this paper divides 
the task of predicting pKa into two separate components: (1) a 
general pre-trained model which maps molecular structures to 
energies, thus “learning chemistry” at a high level, and (2) an 
application-specific workflow which translates geometries and 
energies generated by the pre-trained model into predictions rel-
evant to the task at hand. This partitioning has certain ad-
vantages: the general pre-trained model (here AIMNet2) is sys-
tematically improvable and can be trained using purely in silico 
data, in principle allowing arbitrarily high levels of accuracy to 
be attained, while the application-specific workflow relies 
largely on conventional computational chemistry techniques 
and does not require extensive experimental training data like 
ML-based QSPR methods. As the accuracy of machine-learned 
interatomic potentials improves, we anticipate that the strategy 
demonstrated here—using machine-learned interatomic poten-
tials as drop-in replacements for quantum chemistry—will be-
come a general strategy for accelerating computational chemis-
try.  
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