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Abstract

Force field (FF) based molecular modeling is an often used method to in-

vestigate and study structural and dynamic properties of (bio-)chemical sub-

stances and systems. When such a system is modeled or refined, the force

field parameters need to be adjusted. This force field parameter optimization

can be a tedious task and is always a trade-off in terms of errors regarding

the targeted properties. To better control the balance of various properties’

errors, in this study we introduce weighting factors for the optimization ob-

jectives. Different weighting strategies are compared to fine-tune the balance

between bulk-phase density and relative conformational energies (RCE), us-

ing n-octane as a representative system. Additionally, a non-linear projection

of the individual property-specific parts of the optimized loss function is de-

ployed to further improve the balance between them. The results show that
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the overall error is reduced. One interesting outcome is a large variety in the

resulting optimized force field parameters (FFParams) and corresponding

errors, suggesting that the optimization landscape is multi-modal and very

dependent on the weighting factor setup. We conclude that adjusting the

weighting factors can be a very important feature to lower the overall er-

ror in the FF optimization procedure, giving researchers the possibility to

fine-tune their FFs.

Keywords: force field models; Lennard-Jones parameters, multiscale

parameterization; local optimization; gradient-based optimization;

weighting factors; objective function; non-linear projection;

1. Introduction

Over the past decades, computer-based molecular simulations have gained

an increasingly important role in many scientific fields, for example, in ma-

terial, (bio-)chemical, and pharmaceutical sciences. They are used to model

structural properties or dynamic processes of diverse molecules and provide

insight into the modeled molecular system at an atomistic level of detail

and a fine temporal resolution. Commonly used methods are, for instance,

molecular mechanic (MM) and molecular dynamic (MD) simulations. They

are based on parameterized potential functions, called FF, that model the

interactions between the atoms, molecules, or particles. The quality of the

molecular simulations strongly depends on the used FF and the deployed

FFParams. Numerous good FF, usually including dedicated FFParams

for different applications, are available and have been developed over the

past decades. Examples include General AMBER Force Field (GAFF) [1]
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for small organic molecules compatible with Amber’s [2] biological force fields,

the very recent Amber-consistent small molecule FF developed by Xue et.

al.[3], CHARMM general force field (CGenFF) [4] for bio- and drug-like

molecules (an extension of the CHARMM [5, 6] force field and simulation

tool), and optimized potentials for liquid simulations force field (OPLS) [7, 8]

for liquids, organic molecules and peptides. Another well-established example

is the Open Force Field Initiative (OpenFF) [9, 10, 11] using the SMIRKS-

native Open Force Field (SMIRNOFF) [12] in combination with their ver-

satile simulation toolkit called OpenMM [13]. A more detailed overview and

discussion of recent FF development is provided by He et al. [14].

When optimizing FFParams, usually the bonded interactions are fitted

to quantum mechanic (QM) calculations of energies, frequencies and struc-

tures, while the van der Waals (vdW) parameters are optimized towards

experimental quantities like densities or heat of vaporization [7]. The elec-

trostatic terms are typically parameterized to reproduce QM electrostatic

potentials [15, 16] or energies of water-molecule interactions [17]. Many of

the available FFParams optimization methods are either not automated or

treat the optimization objectives sequentially, instead of simultaneously. To

address the latter, we introduced a multiscale optimization workflow that

simultaneously optimizes Lennard-Jones parameters (LJParams) (i.e. σC,

σH, ϵC and ϵH) towards different property domains (i.e. single-molecule or

atomistic properties and multi-molecular properties) [18]. It was shown that

the relative conformational energies (RCE) reproduction of n-octane could

be significantly improved with a minimal reduction in the accuracy of its

bulk-phase density. Herein, a modified approach is presented that provides
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more control over the balancing of the optimized properties, improving the

accuracy of the density calculations, while maintaining the RCE reproduc-

tion quality. This is achieved by a non-linear projection (NLP) of the individ-

ual property-specific parts of objective function and adapting their weighting

factors (WFs). Four different approaches are investigated to determine the

intra-domainWFs (i.e. those used within the same property domain). Addi-

tionally, inter-domain property balancing is introduced. Using this technique,

the balance between the various properties subject to optimization is finely

tuned. Both intra- and inter-domain balancing are combined with the NLP

approach of the loss function’s components. Finally, we present the best set

of optimized FFParams, improving the previously achieved results [18]. We

also show that different weighting factors result in different parameter sets,

corresponding to different minima in the objective function landscape, indi-

cating that FFParams optimization not only is a multiobjective but also a

multi-modal problem and should be treated as such.

2. Methodology

To quantify the error of the parameter optimization, the following loss

function F (x) is defined [18]:

F (x) =
n∑

i=1

ωMM
i

(
fQM
i − fMM

i (x)

fQM
i

)2

+
m∑
j=1

ωMD
j

(
f exp
j − fMD

j (x)

f exp
j

)2

(1)

The loss function is dependent on the force field parameters x and in-

cludes properties from different domains (i.e. the bulk-phase density and

the RCE). The simulation results fMM
i (x) and fMD

j (x) originate from MM
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minimization and MD calculation, respectively, and are dependent on the

force field parameters x. They are subtracted from the particular property

target values fQM
i and f exp

j , which are, for example, obtained by experiments.

They are divided by the target values to get the relative deviations, squared

to eliminate the sign, and scaled by a weighting factor ω. The target values

consist of fQM
i , i = 1, . . . , n, containing the i-th RCE obtained from QM

calculations (i.e. a single-molecular target property). For this work there are

96 unique RCE of n-octane (n = 96) that are obtained at an MP2.5/AVTZ

theory level [19]. The f exp
j , j = 1, . . . , m, part contains the j-th experimen-

tally obtained bulk-phase density (i.e. a multi-molecular target property).

In this work, n-octane’s bulk-phase density at 293.13K and 1 bar pressure is

used [20]. The associated WFs are ωMM
i and ωMD

j , which allows control of

the relative importance of the optimization objectives. The number of indi-

vidual properties in each domain is denoted with n and m. Note that any

number of additional properties can be added to the optimization by adding

a suitable term to the loss function.

2.1. Determining the Weighting Factor

For fine-tuning the WFs two aspects are considered. First, the intra-

domain distribution of theWFs and second, their inter-domain balancing.

The former concentrates on the distribution of the WFs values for one prop-

erty independently from the other properties – for example assigning values

for every ωMM
i without concerning the values for ωMD

j (see equation (1)). The

latter takes the balance between the overall weights of the target properties

from different domains (i.e.
∑

i ω
MM
i vs.

∑
j ω

MD
j ) into account.

Herein four approaches for the intra-domain weight balancing are pre-
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sented: “uniformly distributed WFs”, “linearly decreasing WFs”, “expo-

nentially decreasing WFs” and “stepwise decreasing WFs” (see figure 1),

which are discussed in the following sections alongside the inter-domain bal-

ancing approach.

Because the RCE are the energies relative to the structure with the low-

est energy and, by common convention, the lowest energy conformation is

assigned the relative energy value of 0. Consequently, the difference between

the simulation result and the target value is always 0 for this conformation

and the corresponding weight ωMM
1 is also set to 0 in every approach. By

setting ωMM
1 = 0, it is ensured that the total amount of weight assigned for

this property (i.e.
∑

i ω
MM
i ) is distributed among the non-zero RCE. Note

that intra-domain balancing is not applied to the density WFs, because for

this property domain herein only one value is used and thus a balancing is

unnecessary.
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Figure 1: Examples for the four different intra-domain balancing approaches for

the RCE WFs (orange graphs). Additionally, for every ωMM
i the corresponding

RCE is plotted (blue). Note that the highest values for ωMM
i,exp are cut off because

this figure aims to illustrate the trend of the WFs. For that purpose the exact

values of every ωMM
i have a low priority and, additionally, can vary based on the

optimization problem and inter-domain balancing setup.

2.1.1. Uniform Distribution

The uniform distribution scheme assigns the same value to each RCE

weighting factor. While simplistic in its implementation, this approach does

not follow the chemical reasoning that in a real bulk-phase system of n-octane

– at a given temperature and pressure – the possible conformations will not

be equally populated, and are thus not equally important for the simulation
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modeling. This approach was used in previous work [18] and serves as a

baseline to compare the other approaches to.

The allocation of the uniform distribution WFs to n-octane’s RCE is

visualized in figure 1, where every factor ωMM
i for i = 2, . . . , n is assigned

the same value. The WFs corresponding to each of the RCE are calculated

using the following equation:

ωMM
i,uni =

1

(n− 1)
· b, i = 2, . . . , n

ωMM
1,uni = 0

(2)

Thereby, n is the total number of WFs (here: n = 96) and b is the overall

amount of weight that is assigned to the property domain (i.e.
∑n

i ω
MM
i,uni =

b; here: b = 0.96). Note that b can, in general, be freely chosen and is

only dependent on the inter-domain balancing, (see section 2.1.5, which also

explains why b = 0.96 and not just b = 1).

2.1.2. Linearly Decreasing Distribution

An alternative simplistic approach is to assign a linear relationship be-

tween the WFs and the RCE that better highlights the importance of the

lower energy conformations. At room temperature and atmospheric pressure

(293.15K and 1 bar), higher-energy conformations are less likely to occur

than lower-energy conformations. Thus, the WFs have been adapted to lin-

early decrease (i.e. ωi+1,lin = ωi,lin−d), while still preserving the overall value

for all RCE WFs (i.e.
∑

i ω
MM
i,lin = 0.96). Figure 1 shows the WFs calculated

using equation (3). Note, that the WFs are linearly decreasing w.r.t. the

energy state IDs (i.e. i = 1, . . . , n) and not a linear function dependent on

the RCE values.
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ωn,lin = k

ωn−r,lin = ωn−r+1,lin + d, r = 1, . . . , n− 2

d = 2 · b− ((n− 1) · k)
(n− 2) · (n− 1)

ω1,lin = 0

(3)

Thereby, n is the total number of WFs (here: n = 96) and b is the overall

amount of weight that is assigned to the property domain (i.e.
∑n

i ω
MM
i,lin = b;

here: b = 0.96). k is a user-chosen value for the lowest weighting factor ωn,lin.

It determines the slope of linearly decreasing WFs and how much weight is

assigned to the other WFs, because the sum of all WFs can not exceed b.

Furthermore, k > 0 and is chosen such, that the WFs clearly differ from the

uniformly distributed WFs (here: k = 0.001).

2.1.3. Exponentially Decreasing Distribution

The exponentially decreasing WFs for the RCE follows an idea similar to

the linearly decreasing WFs. In contrast, however, this approach is based on

a Boltzmann distribution (see equation (4)) and is visualized in figure 1. This

approach attempts to mimic the probability that a conformation occurs based

on its internal energy in combination with the system’s temperature. Thus,

its importance for the parameter optimization is based on those properties.

ω̃MM
i,exp = e−Eĩ(kB·T )−1

ωMM
i,exp = ω̃MM

i,exp ·
b∑n

i ω̃
MM
i,exp

, i = 2, . . . , n

ωMM
1,exp = 0

(4)
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Thereby, Ei is the i-th RCE (Note, that for Ei the units are converted

from kcal/mol to joule), kB = 1.38064852·10−23m2 ·kg·s−2 ·K−1 (Boltzmann’s

constant) and T the temperature (here: T = 293.15K). The number of WFs

is n (here: n = 96) and b is the overall amount of weight that is assigned to

the property domain (i.e.
∑n

i ω
MM
i,exp = b; here: b = 0.96). After calculating

the unscaled WFs ω̃MM
i,exp they are scaled such that

∑n
i ω

MM
i,exp = b, resulting in

the actual WFs ωMM
i,exp.

2.1.4. Stepwise Decreasing Distribution

The underlying idea for a stepwise decreasing distribution of the WFs for

the RCE is that room temperature introduces an energy of approximately

0.6 kcal · mol−1 to a system. Thus, the RCE are grouped into multiples of

0.6 kcal ·mol−1 and every subsequent group, containing energetically higher

RCE than the previous group, are weighted less because they are less likely

to occur. They are calculated following equation (5) and are visualized in

figure 1.

To calculate the stepwise decreasing WFs, first, the set E containing all

RCE e1, . . . , en is divided into subsets A1, . . . , Ap containing the energies

that are less or equal than multiples of the stepsize k (here: k = 0.6 kcal ·

mol−1):

E = {e2, . . . , en} = ∪p
q=1Aq

Aq = {ei ∈ E | (q − 1) · k < ei ≤ q · k}, i = 2, . . . , n

Where p is the number of different subsets A. For every RCE ei, the corre-

sponding unscaled weighting factor ω̃MM
i,step is assigned based on the subset Aq

the RCE ei is an element of. Thereby, the WFs corresponding to the RCE
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with the lowest energy are assigned the highest value:

ω̃MM
i,step = p− (q − 1), ∀i : ei ∈ Aq

Finally, the WFs ω̃MM
i,step are scaled such that their sum equals the overall

amount of weight that is assigned to the property domain b (here: b = 0.96),

resulting in the scaled WFs:

ωMM
i,step =

ω̃MM
i,step∑n

i ω̃
MM
i,step

· b

ωMM
1,step = 0

(5)

2.1.5. Inter-Domain Balancing

In the previous work [18] the summed values of the WFs of the two

domains (i.e.
∑n

i=1 ω
MM
i vs.

∑m
j=1 ω

MD
j ) were equally weighted, putting no

emphasis on either domain. In order to improve the force field for both

domains, in this work different inter-domain weights are evaluated to re-

balance the loss function. For example, by setting
∑m

j=1 ω
MD
j = 1.44 (that

herein simplifies to ωMD = 1.44) and
∑n

i=1 ω
MM
i = 0.48, a re-balancing is

reached that assigns 75% of the overall weight to the density, and thus is

called “75-25”. The different intra-domain balancing setups used herein are

listed in section 2.4.

2.2. Non-linear Projection Of The Loss Function

A difficulty in this simultaneous multiscale optimization approach is that

the loss function values for the different target domains might be poorly

comparable. For example, the error for the RCE (errRCE ≈ 10% . . . 100%) is

approximately one to two orders of magnitude higher than the error for the

density (errdens ≈ 0.5% . . . 15%) and while an error of approximately 10% for
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the RCE is acceptable, it would be too large for the density, rendering the

parameter sets unusable for reproducing experimental results.

The loss function therefore needs to have different sensitivities in the two

domains. To address this problem, the loss function value for every single

property is projected to the closed interval [0, 1], herein called non-linear

projection (NLP), before being further processed in the loss function. The

function z∗ is used to convert the original loss function value z:

z∗(c, z) = 1− e(−c·z) (6)

The hyperparameter c > 0 controls the sensitivity of how z∗ responds to

changes in the loss function values z. For z the original loss function values

of the different properties from equation (1) are used:

zMM
i (x) =

(
fQM
i − fMM

i (x)

fQM
i

)2

, zMD
j (x) =

(
f exp
j − fMD

j (x)

f exp
j

)2

Combining the NLP (see equation (6)) with the loss function F (x) (see

equation (1)) gives the resulting NLP loss function F ∗(x):

F ∗(x) =
n∑

i=1

ωMM
i

(
z∗,MM
i (x)

)
+

m∑
j=1

ωMD
j

(
z∗,MD
j (x)

)
(7)

2.3. Determining the Sensitivity Hyperparameter c

The hyperparameter c is used to control the sensitivity of the NLP loss

function (see section 2.2). Since we already established that different domains

need different loss sensitivity, how actual values for c can be obtained is shown

in the following examples for the density and RCE.

In general, c needs to be adjusted such that an improvement in the sim-

ulation results yields a lower loss function value z∗, while a worsening would
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yield a higher value (i.e. d
dz
z∗(c, z) ̸= 0). This is required because otherwise

the gradient-based optimization algorithm can not calculate a descent direc-

tion to update the parameter set and suggest a better solution. Additionally,

c must be chosen such that the loss function value for unwanted results does

not fall below the threshold that causes the optimization to stop.

Analyzing various values for c with respect to the density, showed that

cdensity = 1000 induce the aforementioned desired behavior. In figure 2 the

loss function values, using the NLP loss function, for a hypothetical and

unsuitable cdensity = 10 and a suitable cdensity = 1000 are shown (solid and

dashed orange lines). The gray line shows the corresponding original loss

function values (see equation (1)); Note, that those values can exceed 1, al-

though this cannot be seen in the figure. Higher cdensity values result in a

narrower area where z∗ < 1, and a steeper slope results in the transition ar-

eas. When c is too large, high loss function values can overlap with the range

of acceptable errors (blue area), prohibiting the optimization algorithm from

terminating. However, when c is too low, unwanted optimization results

are assigned a low loss function value, erroneously causing the optimiza-

tion to finish. For the optimization performed herein, the density sensitivity

hyperparameter is set to cdensity = 1000. For that value, a well-balanced

configuration between the aforementioned aspects is achieved.
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Figure 2: Impact of sensitivity hyperparameter cdensity on the NLP loss function value

(solid and dashed orange lines). The vertical blue line marks the target density and the

blue area is the acceptable error for the optimization target (here: 1%). The original loss

function value is visualized by the gray graph. Note, that the latter can exceed 1 (not

shown in this figure).

The same scheme and rules need to be applied when determining cenergy.

In figure 3 (subfigure (b)), it is shown that using cenergy = cdensity = 1000

would result in the same loss function values for the RCE before and for an

intermediate iteration of the optimization (black and gray lines, respectively).

This is a problem because when the loss function value of a given parameter

set F (x) (e.g. the loss function values for the initial RCE; black graph) is

the same as or very similar to another value F (x+ h) (e.g. the loss function
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values for theRCE of an intermediate iteration of the optimization, when the

force field parameters x are changed by a small amount h; gray graph), the

resulting gradient ∇F (x) = 0 and no descent direction can be recognized.

Analyzing various values for c with respect to the RCE showed that by

choosing cenergy = 1, the aforementioned problem does not occur and yields

the desired behavior regarding the reproduced RCE and loss function values

(see figure 3, subfigures (a) and (c), respectively).
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Figure 3: Subfigure (a): the reproduced RCE before (black graph), for an intermediate

iteration of the optimization (gray graph) and after (orange graph) the optimization com-

pared to their target values (blue graph), including an 10% error range (blue area).

Subfigure (b): Loss function values corresponding to the RCE before, for an intermediate

iteration of the optimization and after the optimization (black, gray and orange graphs,

respectively) for cenergy = 1000. Note, that the gray and black graphs overlap.

Subfigure (c): Loss function values corresponding to the RCE before, for an intermediate

iteration of the optimization and after the optimization (black, gray and orange graphs,

respectively) for cenergy = 1.

2.4. Simulation Tools and Setup

The optimization workflow used herein is called Force FieLd Optimiza-

tion Workflow (FFLOW), which is a modular optimization toolbox con-

taining structures and methods introduced by Gradient-based Optimization
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Workflow (GrOW)[21]. The FFLOW software files, scripts for parameter

conversion (Gromacs to Amber), steering scrips that manage, for example,

the queuing system, used input files, and all simulation configurations are

available on GitHub via [22]. The density calculations were carried out using

Gromacs [23, 24], while the RCE were computed by Amber [2].

The following fourteen inter-domain weight distribution setups are inves-

tigated, each applied to the four intra-domain balancing approaches: “0-100”,

“05-95”, “10-90”, “15-85”, “20-80”, “25-75”, “40-60”, “50-50”, “60-40”, “80-

20”, “85-15”, “90-10”, “95-05” and “100-0”. For all of those (i.e., 14 · 4)

setups two different loss functions are studied, the original and the NLP loss

function (see section 2.2). In total, 112 (i.e., 14 · 4 · 2) different setups are

investigated.

Note, that the MM calculations for reproducing the RCE are determinis-

tic, and for the MD simulations of the density, equilibrated systems are used

that were initialized with the identical “random” seeds. Thus, all calculation

results have a very low variance, as shown in previous work [18], and thus

are not statistically repeated or analyzed.

3. Results

In this section, the results for the original loss function (equation (1)),

followed by the results using the NLP loss function (equation (7)) are pre-

sented, including every combination of inter- and intra-domain balancing

used. Finally, the best overall optimized parameter set is presented.
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3.1. Original Loss Function

The errors of the optimization objectives (i.e. density and RCE) using

the original loss function (equation (1)) are visualized in figure 4. The errors

for the density (blue line) and RCE (orange line) are shown depending on

the overall weight that is assigned to the density weighting factor (i.e. the

inter-domain balancing). Consequently, an x-axis value of 20% stands for the

“20-80” balancing where 80% of the total weight is distributed among the

RCE weighting factors and 20% is assigned to the density weighting factor.

The subfigures show the data for the four different intra-domain weighting

factor balancing strategies.
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Figure 4: Errors for the reproduction of the density (blue) and RCE (orange). The FF-

Params optimizations are performed using the original loss function and all combinations

of inter- and intra-domain weighting factor balancing approaches (figures (a) – (d)).

For every setup, the density and RCE error curves intersect in the region

where approximately 95% to 99% of the weight is assigned to the density.

The location of the intersection is an interesting characteristic because it

is an indicator for a well-balanced weighting factor distribution. Note that

this does not necessarily correspond to the lowest combined error (i.e. the

sum of the density and RCE errors). The intersections around “40-60” in

figure 4(a) are caused by the optimization algorithm being stuck in a local

minimum, which is a general problem for local optimization algorithms. The

corresponding resulting parameter set also differs from the other resulting pa-
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rameter sets (see tables 2, 3, 4 and 5 in section Supplementary Information).

Generally, the resulting parameter sets do not show a clearly favorable pa-

rameter combination (see figure 5). Some combinations of the force field

parameters σH, ϵC and partially σC occur more frequently than others, but

other combinations can result in similar or even lower loss function values.

Figure 5: Resulting Lennard-Jones parameters (i.e. 56 optimized parameter sets) using the

original loss function and all combinations of inter- and intra-domain balancing approaches.

3.2. NLP Loss Function

Optimizing the Lennard-Jones parameters using the NLP loss function

(equation (7)) shifts the intersection points of the graphs to a balancing

where approximately 25% to 30% of the overall weight is assigned to the
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density weighting factor (see figure 6). All resulting parameter sets and their

corresponding errors are listed in tables 6, 7, 8 and 9 in section Supplementary

Information.

Figure 6: Errors for the reproduction of the density (blue) and RCE (orange). The

FFParams optimizations are performed using the NLP loss function and all combinations

of inter- and intra-domain weighting factor balancing approaches (figures (a) – (d)).

On average, the combined errors (i.e. the sum of the density and RCE

errors) using the NLP loss function are higher than the combined errors

using the original loss function. However, the optimizations resulting in the

lowest combined error are predominately achieved when applying the NLP

to the loss function (see figure 7).
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Figure 7: Comparison of the combined errors using the original loss function (purple) and

the NLP loss function (green). All combinations of inter- (on the x-axis) and intra-domain

(figures (a) – (d)) weighting factor balancing approaches are used. The lowest combined

errors for the setups using the original and NLP loss function are marked with a horizontal

dashed line.

Similar to the resulting parameters using the original loss function, there

is an even larger diversity of the optimization results (see figure 8). This is

more evidence that the loss landscape is highly multi-modal and gradient-

based optimization can get stuck in wildly different local optima even de-

pending on the weighting strategy in the loss function.
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Figure 8: Resulting Lennard-Jones Parameters (i.e. 56 optimized parameter sets) using the

NLP loss function and all combinations of inter- and intra-domain balancing approaches.

3.3. Best Optimized Parameter Set

The best overall result for the combined error of density and RCE yields

the optimization using the NLP loss function, linearly decreasing WFs for

the RCE and an overall balancing between density and RCE WFs of 25%

to 75% (i.e. the “25-75” setup), respectively. The resulting FFParams and

their corresponding errors, errdens for the density and errener for the RCE,

is shown in table 1.
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Table 1: Resulting optimized parameter set with the lowest combined error. The setup

optimization used for this result combines the NLP loss function, linearly decreasing WFs

for the RCE and an inter-domain balancing of 25% for the density and 75% for the RCE.

σC [nm] σH [nm] ϵC [kJ/mol] ϵH [kJ/mol] errdens errener

0.3286 0.2606 0.6730 0.1194 1.0 % 9.75 %

The reproduced density is (707.0± 4.7) kg
m3 , leading to an error of 1.0%±

0.67%. For the herein used target density of 0.7 g
cm3 [20], that is converted

to 700 kg
m3 , no error range is provided in the data’s source [25]. However,

other literature, for example the Chemistry Webbook [26] of the National

Institute of Standards and Technology (NIST), report an estimated error of

0.1% to 0.3% for their density values [27, 28]. Therefore, the herein used

target density is assumed to have an error less or equal to 0.3%.

The average error of the RCE is 9.75% (for the individual RCE values

see table 10 and figure 9 in section Supplementary Information). The average

error for the RCE is calculated by adding all individual errors and dividing

the sum by the amount of RCE. If the (absolute) error for the target RCE

based on MP2.5/AVTZ’s reproduction of CCSD(T) results (Table 2 of refer-

ence [19]) is estimated, the upper limit was −0.012 kcal ·mol−1 as computed

for n-hexane (i.e., 12 conformers). This results in an average relative error

of −0.91% and the herein achieved results and error ranges are not as good

as those results and error ranges. However, considering the different theories

(i.e. MM vs. CCSD(T) or MP2.5/AVTZ calculations) and the required time

to compute the results, the average relative error range of 9.75% achieved

herein is acceptable. It is worth noting that this level of error is similar when
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comparing 96 Density Functional Theory (DFT) (B2K-PLYP-D) computed

octane values to MP2.5/AVTZ values, which has an error of +0.19kcal·mol−1

(i.e., 9.43%) [19].

In total, the previously achieved results [18] are improved. The average

error of the RCE increased from 7.85% to 9.75%, but the error for the

density is decreased substantially from −4.14%± 0.04% to 1%± 0.67%.

4. Discussion

For the original loss function, the graphs in figure 4 show that the most

balanced inter-domain weighting factor distribution is reached when most

of the weight (∼ 95%) is assigned to the density. However, for this setup,

the errors for the density reproduction are large with the best values lying

between 2.80% to 5.90% (see tables 2, 3, 4 and 5 in section Supplementary

Information). Further analyses of the loss function suggest that applying

a non-linear projection (NLP) to the individual parts of the loss function

is beneficial, increasing the comparability of the particular optimization ob-

jectives. The NLP ensures that the loss function values for the particular

objectives have the same order of magnitude, once the sensitivity hyperpa-

rameter c is configured appropriately.

Using theNLP loss function shifts the most balanced inter-domain weight-

ing factor distribution to a setup with ∼ 25% of the overall weight assigned

to the density (see figures 6 and 7 as well as tables 6, 7, 8 and 9 in section

Supplementary Information). The NLP works as expected and improves the

comparability of the errors (i.e. the loss function values) of the different tar-

get property domains. Furthermore, the best optimization result is achieved
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by using the NLP loss function. However, this method introduces an addi-

tional layer of complexity represented by the sensitivity hyperparameter c. It

needs to be determined and configured for every optimization objective sepa-

rately and requires a deeper insight into that specific optimization objective.

This might not be a problem for experienced users but is oppositional to a

user-friendly, fast and automatized force field optimization workflow.

The diversity of the optimization results (see figures 5 and 8) shows the

multi-modal nature of the loss function’s landscape. Almost every optimiza-

tion run results in a different FFParams set, depending on the optimization

setup. A major disadvantage of this local optimization algorithm is that it

can get stuck in a local minimum of the optimization landscape, unable to

discover other minima that might be representatives of more suitable param-

eter sets. A consequence is that the current optimization workflow is very

dependent on the initial parameter set. This might be a small issue when

an already well-performing force field is re-optimized, but can be challenging

for newly investigated models of molecules.

5. Conclusion

This study’s goal is to reduce the reproduction error of the density, arisen

in a previous study [18], while maintaining the accuracy of the RCE repro-

duction. This goal is accomplished by adapting the particular WFs and the

objective function used for this multiscale optimization process. The error

for the density reproduction is decreased by a considerable amount, while the

error for the reproduction of the RCE remains at approximately the same

level.
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Compared to the previously achieved results, the error regarding the bulk-

phase density is improved from (−4.14± 0.04)% to (1.0± 0.67)%, which is

an acceptable error considering experimental uncertainties of 0.1% to 0.3%,

keeping in mind that MD and MM calculations are mathematical models

based on several assumptions and simplifications. The average error for the

RCE reproduction, however, slightly increased from 7.85% to 9.75%. This

is still approximately the same quality of results. This error range is not as

good as the target data’s average error of −0.91%, however, considering the

necessary time to compute the RCE using the different modeling theories,

an average relative error of 9.75% is acceptable, especially compared to their

average reproduction error of ∼ 100% prior to the multiscale optimization,

this is a substantial improvement. It is also worth noting that this error level

is similar to that seen when comparing DFT (B2K-PLYP-D) to MP2.5/ATZ

computed values.

To tackle the challenge of the loss function’s multi-modality and diversity

of optimization results for future development in automated custom force

field parameter optimization, we propose to use a global optimization ap-

proach. Additionally, the current optimization scheme yields a single re-

sulting parameter set. However, the different optimization setups show that

there are different parameter sets that might be promising, depending on the

intended use case. Furthermore, the two optimization objectives used herein

seem to be contrary to one another because, if there is an improvement for

one property, often the error of the other increases. Thus, for further de-

velopment, we additionally plan to use a multi-objective optimization with

multiple solutions.
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Supplementary Information

Data and Software Availability

The code and input data used to perform the optimizations herein are

available at: https://github.com/rstrickstrock/tuning_weighting-factors_

objective-function.git

Note: The code is provided for reproduction purposes and may need to

be adapted to the IT infrastructure it is used on.

The MP2.5/AVTZ optimized geometries for octane are available within

the SI material of reference [19].
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Results using the Original Loss Function

Table 2: Results of the parameter optimization using the original loss function (see equa-

tion (1)) and the Uniformly Distributed WFs approach. The Errors errρ, errRCE and

errcomb, for the density, RCE and their sum, respectively, are given in [%]. The units of

σ and ϵ are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Uniformly Distributed WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.11485 0.25605 0.65199 0.05944 16.07 12.76 28.83

05-95 0.11411 0.25581 0.6519 0.06037 16.12 12.74 28.86

10-90 0.14924 0.24515 0.68702 0.09691 9.35 20.45 29.80

15-85 0.11487 0.24838 0.65201 0.05845 11.98 23.87 35.85

20-80 0.11422 0.2557 0.65204 0.06058 16.10 12.77 28.87

25-75 0.11472 0.24833 0.652 0.05825 12.06 24.02 36.08

40-60 0.28822 0.24456 0.82853 0.06211 5.24 63.90 69.14

50-50 0.15399 0.24914 0.65446 0.07556 11.87 19.93 31.80

60-40 0.15417 0.24953 0.65405 0.07587 11.80 19.16 30.96

80-20 0.15339 0.24925 0.65378 0.07709 11.76 19.13 30.89

85-15 0.15335 0.24696 0.65488 0.07945 10.80 22.57 33.37

90-10 0.12123 0.23834 0.64111 0.12527 5.28 23.47 28.75

95-05 0.15132 0.23737 0.65843 0.10286 5.97 33.81 39.78

100-0 0.22736 0.19383 0.6552 0.08922 1.28 104.88 106.16
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Table 3: Results of the parameter optimization using the original loss function (see equa-

tion (1)) and the Linearly Decreasing WFs approach. The Errors errρ, errRCE and

errcomb, for the density, RCE and their sum, respectively, are given in [%]. The units of

σ and ϵ are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Linearly Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.09485 0.2506 0.65142 0.08723 12.38 11.86 24.24

05-95 0.09996 0.25296 0.65158 0.05653 14.41 16.53 30.94

10-90 0.09999 0.25301 0.65153 0.05653 14.49 16.47 30.96

15-85 0.10005 0.25301 0.65159 0.0566 14.64 16.44 31.08

20-80 0.1001 0.25319 0.65159 0.0566 14.59 16.22 30.81

25-75 0.1002 0.2533 0.65153 0.05663 14.65 16.06 30.72

40-60 0.10048 0.25368 0.65152 0.05679 14.71 15.55 30.26

50-50 0.10066 0.25359 0.65132 0.05701 14.65 15.58 30.23

60-40 0.10078 0.25326 0.65104 0.05715 14.44 15.94 30.38

80-20 0.147 0.24902 0.65467 0.07322 12.11 20.05 32.16

85-15 0.14656 0.25109 0.653 0.07359 12.67 16.42 29.09

90-10 0.32156 0.26236 0.82934 0.07625 2.80 12.52 15.32

95-05 0.14191 0.23737 0.66014 0.10862 5.90 31.23 37.13

100-0 0.2168 0.19657 0.65935 0.10183 0.53 100.08 100.61
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Table 4: Results of the parameter optimization using the original loss function (see equa-

tion (1)) and the Exponentially Decreasing WFs approach. The Errors errρ, errRCE and

errcomb, for the density, RCE and their sum, respectively, are given in [%]. The units of

σ and ϵ are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Exponentially Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.08436 0.25299 0.65191 0.05556 14.60 16.28 30.88

05-95 0.08435 0.25301 0.65191 0.05555 14.18 16.25 30.43

10-90 0.08434 0.25301 0.6518 0.05551 14.32 16.28 30.60

15-85 0.08439 0.25302 0.65179 0.05551 14.64 16.27 30.91

20-80 0.08448 0.25302 0.65199 0.05564 14.67 16.20 30.87

25-75 0.08447 0.25304 0.65193 0.05555 14.29 16.22 30.51

40-60 0.08444 0.25302 0.65208 0.05567 14.56 16.20 30.76

50-50 0.08427 0.25279 0.65196 0.05563 13.99 16.51 30.50

60-40 0.0845 0.25293 0.65137 0.05596 14.48 16.21 30.69

80-20 0.08198 0.25043 0.65151 0.05717 13.13 19.13 32.26

85-15 0.08423 0.25 0.65054 0.05793 12.88 19.59 32.47

90-10 0.08252 0.23958 0.66181 0.11964 5.93 19.30 25.23

95-05 0.0826 0.23798 0.65725 0.13754 4.77 18.92 23.69

100-0 0.24694 0.22287 0.65516 0.07463 1.59 85.16 86.75
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Table 5: Results of the parameter optimization using the original loss function (see equa-

tion (1)) and the Stepwise Decreasing WFs approach. The Errors errρ, errRCE and

errcomb, for the density, RCE and their sum, respectively, are given in [%]. The units of

σ and ϵ are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Stepwise Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.1048 0.25603 0.6517 0.05818 97.94 12.83 110.77

05-95 0.10482 0.25216 0.65172 0.05769 13.79 17.40 31.19

10-90 0.1045 0.2518 0.65171 0.05921 13.67 17.30 30.97

15-85 0.10451 0.25188 0.65215 0.05924 13.74 17.19 30.93

20-80 0.10452 0.25184 0.6517 0.05927 13.72 17.23 30.95

25-75 0.10367 0.25156 0.65177 0.06075 13.72 17.04 30.76

40-60 0.10408 0.25172 0.65184 0.06085 13.47 16.79 30.26

50-50 0.07504 0.25308 0.64896 0.03831 14.69 25.04 39.73

60-40 0.14765 0.25156 0.65368 0.07301 13.30 16.00 29.30

80-20 0.14756 0.2487 0.65298 0.07324 11.64 20.66 32.30

85-15 0.14793 0.24602 0.65397 0.0739 10.40 25.43 35.83

90-10 0.1483 0.25191 0.65293 0.07419 12.75 15.19 27.94

95-05 0.12727 0.23966 0.66385 0.13306 5.33 20.14 25.47

100-0 0.29268 0.25098 0.64966 0.12716 0.02 33.29 33.31
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Results using the NLP Loss Function

Table 6: Results of the parameter optimization using the NLP loss function (see equation

(7)) and the Uniformly Distributed WFs approach. The Errors errρ, errRCE and errcomb,

for the density, RCE and their sum, respectively, are given in [%]. The units of σ and ϵ

are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Uniformly Distributed WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.13767 0.25982 0.65293 0.05891 98.37 11.36 109.73

05-95 0.19152 0.25709 0.66034 0.08798 98.37 10.49 108.86

10-90 0.20372 0.25708 0.66132 0.09876 98.38 10.13 108.51

15-85 0.1849 0.26988 0.58088 0.03665 98.62 11.28 109.90

20-80 0.2559 0.2635 0.67679 0.10644 98.65 8.59 107.24

25-75 0.31496 0.25805 0.68059 0.13604 0.05 11.81 11.86

40-60 0.30405 0.25587 0.68475 0.11057 0.02 24.15 24.17

50-50 0.19861 0.20899 0.64243 0.09839 0.21 83.39 83.60

60-40 0.21098 0.22327 0.66489 0.12433 0.00 69.36 69.36

80-20 0.07612 0.21672 0.69629 0.13827 0.46 53.87 54.33

85-15 0.24418 0.10871 0.66282 0.10805 0.43 124.79 125.22

90-10 0.24885 0.11637 0.62035 0.07704 0.21 122.01 122.22

95-05 0.21218 0.20217 0.62182 0.08574 0.39 93.02 93.41

100-0 0.23644 0.15383 0.59135 0.12819 0.02 119.81 119.83
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Table 7: Results of the parameter optimization using the NLP loss function (see equation

(7)) and the Linearly Decreasing WFs approach. The Errors errρ, errRCE and errcomb,

for the density, RCE and their sum, respectively, are given in [%]. The units of σ and ϵ

are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Linearly Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.12641 0.25769 0.65243 0.06138 98.07 11.69 109.76

05-95 0.17404 0.25525 0.65386 0.0775 98.03 12.42 110.45

10-90 0.18246 0.25613 0.64534 0.07214 97.66 13.48 111.14

15-85 0.1893 0.25491 0.67685 0.09918 98.25 10.63 108.88

20-80 0.19764 0.25485 0.63278 0.07647 14.42 16.50 30.92

25-75 0.3286 0.2606 0.67297 0.11941 1.00 9.75 10.75

40-60 0.22094 0.22559 0.67936 0.11403 0.04 70.56 70.60

50-50 0.29529 0.25021 0.6922 0.13141 1.34 35.95 37.29

60-40 0.28451 0.24679 0.64267 0.13965 0.71 41.20 41.91

80-20 0.20069 0.21308 0.63993 0.10021 0.01 79.90 79.91

85-15 0.14655 0.21033 0.73213 0.13719 0.43 69.40 69.83

90-10 0.24833 0.11266 0.64822 0.11476 0.02 125.78 125.80

95-05 0.2168 0.1933 0.68302 0.08373 0.13 101.92 102.05

100-0 0.23122 0.18039 0.59022 0.07149 0.08 108.52 108.60

36

https://doi.org/10.26434/chemrxiv-2024-vfzx8 ORCID: https://orcid.org/0000-0002-4581-920X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-vfzx8
https://orcid.org/0000-0002-4581-920X
https://creativecommons.org/licenses/by/4.0/


Table 8: Results of the parameter optimization using the NLP loss function (see equation

(7)) and the Exponentially Decreasing WFs approach. The Errors errρ, errRCE and

errcomb, for the density, RCE and their sum, respectively, are given in [%]. The units of

σ and ϵ are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Exponentially Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.09552 0.25671 0.65192 0.05728 97.72 12.42 110.14

05-95 0.12007 0.25315 0.61773 0.06398 14.62 14.65 29.27

10-90 0.18941 0.25381 0.64604 0.09007 13.25 13.02 26.27

15-85 0.19869 0.25722 0.62799 0.08599 98.41 10.82 109.23

20-80 0.19765 0.24898 0.66514 0.11251 9.01 18.30 27.31

25-75 0.10862 0.2556 0.67672 0.053 17.47 15.06 32.53

40-60 0.28039 0.24916 0.69717 0.144 0.08 37.73 37.81

50-50 0.21316 0.23 0.67354 0.13784 0.04 58.06 58.10

60-40 0.28895 0.24989 0.69536 0.11924 0.32 39.38 39.70

80-20 0.20033 0.20162 0.65347 0.10073 0.04 90.60 90.64

85-15 0.22003 0.20879 0.65677 0.07661 0.03 91.38 91.41

90-10 0.20204 0.20572 0.62651 0.10699 0.01 87.20 87.21

95-05 0.2494 0.10379 0.63284 0.05545 0.11 121.15 121.26

100-0 0.21329 0.20744 0.65638 0.09134 0.04 90.18 90.22
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Table 9: Results of the parameter optimization using the NLP loss function (see equation

(7)) and the Stepwise Decreasing WFs approach. The Errors errρ, errRCE and errcomb,

for the density, RCE and their sum, respectively, are given in [%]. The units of σ and ϵ

are [nm] and [kJ/mol], respectively.

Inter-dom.
Balance

Stepwise Decreasing WFs

σC σH ϵC ϵH errρ errRCE errcomb

0-100 0.13033 0.25609 0.65261 0.05574 97.33 14.44 111.76

05-95 0.17957 0.25568 0.65359 0.0886 98.20 10.80 109.00

10-90 0.17252 0.25047 0.63676 0.0936 11.47 14.85 26.32

15-85 0.19862 0.25244 0.66197 0.11078 11.38 12.36 23.74

20-80 0.20799 0.25884 0.67612 0.08752 98.45 10.29 108.74

25-75 0.26226 0.24207 0.60066 0.13286 0.35 47.80 48.15

40-60 0.17351 0.2151 0.63783 0.11913 0.70 69.25 69.95

50-50 0.27288 0.24587 0.71864 0.12912 0.17 47.36 47.53

60-40 0.28839 0.24985 0.6747 0.13335 0.09 36.62 36.71

80-20 0.21791 0.22452 0.65969 0.11574 0.05 70.47 70.52

85-15 0.22073 0.22837 0.67301 0.1388 0.50 63.72 64.22

90-10 0.21606 0.19612 0.67408 0.07617 0.16 99.47 99.63

95-05 0.23638 0.22583 0.67193 0.08854 0.18 77.60 77.78

100-0 0.17262 0.19763 0.66564 0.12969 0.02 86.23 86.25
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5.1. Relative Conformational Energies

Table 10: Target and reproduced RCE. The RCE calculations are performed using the

best optimized parameter set (see section 3.3). The units of the RCE are given in kcal/mol

Target Reprod. Target Reprod. Target Reprod.

conf-1 0 0 conf-33 1.876 1.87128 conf-65 3.102 2.91168

conf-2 0.491 0.57358 conf-34 3.011 2.93908 conf-66 4.854 4.34558

conf-3 0.746 0.98098 conf-35 3.129 2.75948 conf-67 5.496 5.31028

conf-4 0.542 0.55378 conf-36 2.963 2.81948 conf-68 5.188 4.54538

conf-5 1.195 1.27148 conf-37 3.588 3.35228 conf-69 5.496 5.13038

conf-6 1.17 1.43488 conf-38 3.323 3.13338 conf-70 4.887 4.39058

conf-7 1.057 1.12778 conf-39 3.093 2.89368 conf-71 4.934 4.10358

conf-8 1.183 1.55428 conf-40 3.101 2.90358 conf-72 5.681 5.17998

conf-9 1.084 1.10778 conf-41 2.959 3.10358 conf-73 3.141 3.08148

conf-10 1.261 1.64818 conf-42 3.153 3.01958 conf-74 5.304 4.79238

conf-11 1.089 1.10998 conf-43 3.193 3.06208 conf-75 4.871 4.20938

conf-12 0.679 0.96138 conf-44 1.466 1.90368 conf-76 0.518 0.58738

conf-13 1.27 1.52108 conf-45 3.375 3.29948 conf-77 1.012 1.12528

conf-14 0.929 1.22548 conf-46 3.443 3.37788 conf-78 2.98 2.78138

conf-15 1.257 1.49848 conf-47 2.531 2.29248 conf-79 3.083 2.83908

conf-16 1.128 1.37668 conf-48 3.021 3.02498 conf-80 3.129 2.96508

conf-17 1.047 1.13348 conf-49 2.664 2.51618 conf-81 3.031 2.92508

conf-18 1.37 1.61768 conf-50 2.487 2.49558 conf-82 3.043 3.19938

conf-19 1.368 1.64128 conf-51 1.644 2.12518 conf-83 3.643 3.90308

conf-20 1.181 1.22368 conf-52 3.614 3.44808 conf-84 3.436 3.62168

conf-21 0.888 1.20438 conf-53 3.736 3.62678 conf-85 3.915 4.09338

conf-22 2.381 2.30608 conf-54 3.296 3.22098 conf-86 4.501 3.97408

conf-23 1.011 1.08218 conf-55 3.101 3.01878 conf-87 3.977 3.64588

conf-24 1.421 1.69198 conf-56 3.34 3.34238 conf-88 5.306 4.69928

conf-25 1.611 1.89278 conf-57 3.018 2.73408 conf-89 5.219 4.72068

conf-26 1.699 1.72868 conf-58 4.33 3.81988 conf-90 5.197 4.68178

conf-27 2.412 2.32238 conf-59 3.619 3.97668 conf-91 5.25 4.69288

conf-28 2.669 2.61838 conf-60 3.555 3.59408 conf-92 5.777 5.56458

conf-29 1.531 1.58828 conf-61 3.337 3.19948 conf-93 5.772 5.13098

conf-30 2.608 2.39378 conf-62 4.995 4.45968 conf-94 6.667 5.62108

conf-31 3.153 2.93728 conf-63 3.039 2.94798 conf-95 5.641 5.44538

conf-32 2.923 2.72408 conf-64 3.671 3.51228 conf-96 7.791 7.03588
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Figure 9: Table 10 visualized. Target and reproduced RCE. The RCE calculations are

performed using the best optimized parameter set (see section 3.3).
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