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Calcium	ion	(Ca2+)	control	is	an	essential	tool	in	neuronal	research.	Herein,	
we	report	three	thiocoumarin-based,	visible	light-activated	Ca2+	chelators	
with	high	quantum	yields	of	0.39,	0.52,	and	0.83.	The	chelators	demon-
strated	an	over	105-fold	increase	in	Ca2+	binding	affinity	upon	irradiation.	
These	chelators	are	efficiently	triggered	by	biologically	safer	wavelengths,	
rendering	 them	excellent	 candidates	 for	use	 in	neuroscientific	 research	
and	medicine.	

Calcium	is	an	essential	second	messenger	for	communica-
tion	across	neurons.1-4	Dysregulation	of	ionic	calcium	in	the	
brain	is	a	known	cause	of	early	cell	death,	and	by	extension,	
conditions	such	as	Alzheimer’s	disease	(AD),	heart	 issues,	
and	cancer.5-7	Over	the	past	15	years,	research	on	this	cor-
relation	has	rapidly	gained	momentum,	rendering	control	
over	Ca2+	concentration	a	highly	desirable	tool.8	However,	
while	several	photo-release	systems	for	Ca2+	exist,9-11	there	
are	limited	examples	of	molecules	that	can	uptake	Ca2+	upon	
irradiation.	The	 only	 examples	 to	 date	 were	 reported	 by	
Roger	Y.	Tsien	et	al.	in	1989	and	1997	with	the	design	of	two	
UV-responsive	 calcium	 ion	uptake	 systems	 (Figure	1).12,13	
The	first	example	involved	the	attachment	of	an	ortho-nitro-
benzyl	 (ONB)	 photolabile	 protecting	 group	 (PPG)	 to	 1,2-
bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic	 acid	
(BAPTA).12	The	second	replaced	the	ONB	PPG	with	an	azide	
for	better	efficiency.13	In	both	systems,	UV	light	irradiation	
leads	to	the	detachment	of	 the	PPG,	 thereby	releasing	the	
calcium	ion	chelating	moiety.12-14	Since	calcium	ion	modula-
tion	is	critical	in	studying	animal	behavior,	the	design	of	ef-
ficient,	visible	light-triggered	tools	for	calcium	uptake	is	ex-
tremely	valuable.15-17		
The	ONB-	and	azide-caged	BAPTA	moieties	offer	excellent	
foundations	 for	photoactivatable	Ca2+	 chelators.	However,	
their	activation	by	UV	 light	 imposes	severe	 limitations	on	
potential	neurobiological	application	due	to	the	adverse	ef-
fects	of	use	in	vivo.	18,19	These	damaging	effects	are	mainly	
resultant	from	the	tendency	of	UV	light	to	initiate	undesira-
ble	photochemical	side	reactions20,21	and	generate	toxic	by-
products	within	 the	body.20,22,23	 Additionally,	UV	 light	has	
low	penetration	capabilities,	further	limiting	application	in	
deep	tissues.23,24		
In	addition	to	being	accompanied	by	the	drawbacks	of	acti-
vation	by	UV	light,	these	previously	reported	molecules	suf-
fer	 from	 low	quantum	yields,	making	 them	much	 less	ap-
pealing	for	use.25	Furthermore,	they	are	limited	in	their	flu-
orescence	enhancement,	rendering	them	less	applicable	in	
fluorescence-based	probes.26-29		

While	current	BAPTA-based	molecules	provide	a	solid	basis	
for	effective	Ca2+	chelators,	less	phototoxic	and	more	effec-
tive	 cages	 are	 needed.12,30	 Inspired	 by	 this	 need	 and	 the	
work	of	those	before	us,	we	hereby	introduce	three	photola-
bile	 dimethoxy-BAPTA-based	 Ca2+	 chelators	 photo-trig-
gered	in	the	visible	light	spectrum	and	with	quantum	yields	
as	high	as	0.83.	

	
Figure	1.	(a)	UV-responsive	ONB-caged	Ca2+	chelator	syn-
thesized	by	Tsien,	1989,	(b)	UV-responsive	azide-caged	Ca2+	
chelator	 with	 increased	 efficiency	 synthesized	 by	 Tsien,	
1997,	(c)	visible	light-activated	Ca2+	release	modulator	syn-
thesized	 by	 Ellis-Davies,	 2016,	 and	 (d)	 the	 three	 visible	
light-activated	Ca2+	chelators	presented	in	this	work.9–13	
The	caged	Ca2+	chelators	described	herein	are	comprised	of	
two	 parts:	 the	 thionyl	 coumarin	 PPG	 unit	 and	 the	 di-
methoxy-BAPTA-based	Ca2+	chelator.	The	syntheses	of	the	
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PPGs	 were	 accomplished	 by	 modifying	 the	 commercially	
available	 7-diethylamino-4-methyl-coumarin	 (6),	 the	 syn-
thesized	 7-azetidin-1-yl-4-methyl-coumarin	 (7),	 and	 the	
synthesized	 7-aziridin-1-yl-4-methyl-coumarin	 (8)	
(Scheme	1).	The	latter	precursors,	7	and	8,	were	prepared	
from	3-bromophenol	(4)	via	a	reaction	with	ethyl	acetoace-
tate	under	strongly	acidic	conditions.	This	was	followed	by	
a	 Buchwald-Hartwig31	 coupling	 with	 the	 corresponding	
strained	cyclic	amine,	azetidine,	and	aziridine,	leading	to	7	
and	8	respectively.	Subsequent	modifications	were	accom-
plished	via	oxidization	of	the	4-methyl	groups	of	each	pre-
cursor	to	its	corresponding	aldehyde,	9,	10,	and	11,	using	
selenium	 dioxide	 (SeO2).32	 Then,	 the	 aldehydes	 were	 re-
duced	to	their	corresponding	alcohols,	12,	13,	and	14,	using	
sodium	 borohydride	 (NaBH4).	 Subsequently,	 the	 alcohols	
were	protected	with	an	acetate	ester33	to	accommodate	the	
thiolation	of	the	lactone	oxygen	in	the	C-2	position.	Lawes-
son’s	reagent	was	used	for	the	thiolation	to	generate	com-
pounds	18,	19,	and	20.33,34	Finally,	the	alcohol	was	depro-
tected	 to	 attain	 the	 desired	 thionyl	 coumarin	 PPGs,	 com-
pounds	21,	22,	and	23,	as	shown	in	Scheme	1.20,21,35-39	

	

Scheme	1.	Synthesis	of	the	thionyl	coumarin	PPGs.	
Our	Ca2+	chelators	took	advantage	of	the	electron	donating	
capabilities	 of	 methoxy	 groups.	 By	 incorporating	 a	 para	
methoxy	group	into	BAPTA,	we	achieved	a	remarkable	1.8-
fold	 improvement	 compared	 to	 para	 unsubstituted	 aro-
matic	rings.40	Other	reports	demonstrated	that	withdraw-
ing	 groups	 such	 as	 para-dibromo	 and	 para-dinitro	 have	
weaker	chelating	affinities	 toward	Ca2+	than	 the	unsubsti-
tuted	BAPTA.	The	dimethoxy-BAPTA	used	in	this	work	re-
flects	 a	 29-fold	 and	 a	 126×103-fold	 improvement	 in	 Ca2+		
binding	relative	to	the	para-dibromo	and	dinitro-BAPTA	re-
spectively.40,41	This	underscores	the	remarkable	efficacy	of	
our	modified	chelators	in	modulating	Ca2+	binding	interac-
tions.		
Initially,	 we	 dimerized	 a	 5-methoxy-2-nitrophenol	 (24)	
with	 a	 1,2-dibromoethane	 (25)	 to	 yield	 compound	 26.	
Then,	the	two	nitro	groups	in	26	were	reduced	to	amines	by	
hydrogen	with	Pd/C.	Compound	27	was	reacted	with	tert-

butyl	bromoacetate	(28)	in	the	presence	of	a	proton	sponge	
to	afford	29.	We	used	 tert-butyl	bromoacetate	due	 to	 the	
ease	of	 selective	deprotection	of	 the	 tertiary	butyl	 group.	
Mild	conditions	using	 trifluoroacetic	acid	(TFA)	at	0˚C	for	
only	1	h	ensured	partial	deprotection	such	that	only	one	of	
the	four	tert-butyl	groups	in	29	was	removed.	The	synthesis	
of	the	modified	BAPTA	is	illustrated	in	Scheme	2.	

	
Scheme	2.	Synthesis	of	the	dimethoxy-BAPTA	moiety.	
The	synthesized	thionyl	coumarin	PPG	precursors,	21,	22,	
and	23,	and	compound	30,	were	esterified	using	EDC	cou-
pling	with	DMAP	to	form	the	three	caged	dimethoxy-BAPTA	
molecules.	The	obtained	products,	31,	32,	and	33,	were	pu-
rified	by	column	chromatography.	Then,	the	remaining	tert-
butyl	groups	were	exhaustively	deprotected	using	TFA	 to	
afford	target	products	1,	2,	and	3	as	depicted	in	Scheme	3.		

	
Scheme	3.	Reaction	of	 thionyl	coumarin	with	dimethoxy-
BAPTA.	
Herein,	from	this	synthesis,	we	report	three	novel	caged	cal-
cium	 chelators	 that	 uptake	 Ca2+	 upon	 irradiation	 by	 blue	
light	 at	 467	 nm.	 A	 comparison	 of	 the	 quantum	 yields	 of	
these	caged	systems	is	illustrated	in	Scheme	4.		
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Scheme	4.	Photo-uncaging	and	quantum	yield	comparison	
of	7-Diethylamino-4-thiocoumarin-BAPTA	(1),	7-Azetidin-
4-thiocoumarin-BAPTA	 (2),	 and	 7-Aziridin-4-thiocouma-
rin-BAPTA	(3).	
Visible	 light-responsive	 systems	 are	 critical	 for	 biological	
research.26,42-44	The	light	responsiveness	for	compounds	1-
3	was	evaluated	by	measuring	the	quantum	yields	(ϕ)	of	un-
caging.	We	employed	sequential	NMR	analysis	to	quantify	
the	 depletion	 of	 the	 starting	 material	 with	 irradiation	
time.44,48,49	The	concentration	depletion	of	the	compounds	
obeys	the	pseudo-first-order	rate	law,	as	displayed	in	Fig-
ure	2.	As	a	 result,	all	 three	caged	molecules	could	be	em-
ployed	for	use	in	neuroscience	with	relatively	high	concen-
trations.		

	
Figure	2.	Rate	of	photolysis	for	(a)	1,	(b)	2,	and	(c)	3.	
The	following	equation	was	used	to	calculate	the	quantum	
yield	of	each	caged	molecule.44,48-50	

𝜙 =	
−𝑑[𝑐𝑎𝑔𝑒]

𝑑𝑡 ×
𝑉𝑁!𝐸"

𝐹𝐴(1 − 10#$%['])	

The	dataset	includes	key	parameters	such	as	the	maximum	
absorbance	wavelength	(λmax),	molar	extinction	coefficient	
(𝜀),	power	density	of	the	light	source	or	light	flux	(F,	Wm-2),	
volume	(V,	L),	Avogadro’s	number	 (NA,	mol-1),	 energy	 (E𝜆,	
J.photon-1),	area	(A,	m2),	path	length	(b,	cm),	and	concentra-
tion	of	the	caged	molecule	(C,	molL-1).	Quantum	yields	(ϕ),	
and	 photocrossed	 sections	 (𝜀ϕ)	 were	 computed	 and	 are	
presented	in	Table	1.	We	determined	the	light	flux	using	liq-
uid-phase	potassium	ferrioxalate	actinometry.44	3	exhibited	
the	highest	quantum	yield	(0.83),	attributable	to	the	height-
ened	ring	and	torsional	strain	inherent	in	the	three-mem-
bered	aziridine	ring.51-54	Ring	strain	arises	when	the	bond	
angles	 in	 a	 cyclic	 structure	 deviate	 from	 the	 ideal	 angles,	
leading	to	 increased	energy.52,54	Higher	ring	strain	can	re-
sult	in	more	energetic	intermediates	during	photochemical	

processes,	 potentially	 contributing	 to	 a	 higher	 quantum	
yield.54	In	contrast,	the	four-membered	azetidine	ring	in	2	
experiences	lower	ring	strain,	likely	accounting	for	its	com-
paratively	lower	quantum	yield.	

Table	1.	Photochemical	properties	of	1,	2,	and	3.	

Cage	 𝜆Max/nm	 𝜀(𝜆Max)/M-1cm-1	 Φ	 𝜀ϕ/M-1cm-1	
1	 469	 23009	 0.39±0.01	 8.9×103	
2	 473	 20542	 0.52±0.02	 1.1×103	

3	 475	 15664	 0.83±0.01	 1.3×103	
The	surface	plasmon	resonance	(SPR)	band	(460-500	nm)	
of	caged	compounds	1,	2,	and	3	exhibited	a	decrease	during	
50	s	of	total	irradiation.	This	shift	in	the	SPR	band	suggests	
a	photoinduced	alteration	in	the	electronic	structure	of	the	
caged	compounds	during	the	irradiation	process.	The	cor-
responding	UV	spectra	for	the	caged	molecules	can	be	found	
in	 the	Supporting	 Information.	The	calcium	affinity	of	 the	
dimethoxy-BAPTA	and	caged	compounds	were	determined	
by	spectrophotometric	titration	at	a	pH	of	7.4	using	HEPES	
buffer	 solution.55-57	 The	 absorbance	 of	 dimethoxy-BAPTA	
steadily	decreased	with	successive	additions	of	CaCl2	until	
it	leveled	off	above	2.5	µM	Ca2+,	while	1,	2,	and	3	failed	to	
reach	above	0.5	µM	of	Ca2+	(Figure	3d).	We	conducted	com-
parisons	of	titrimetrically	obtained	binding	constant	values	
for	the	three	caged	molecules	against	the	independent	di-
methoxy-BAPTA	moiety.	Dimethoxy-BAPTA	alone	demon-
strated	highly	efficient	chelation	with	a	binding	affinity	of	
1.8	•	107	M-1.	The	high	affinity	of	BAPTA	to	Ca2+	results	from	
the	negatively	charged	carboxylate	groups	on	the	octa-den-
tate	ligand.	However,		1,	2,	and	3	had	binding	efficiencies	of	
36.6	M-1,	32.2	M-1,	and	25.4	M-1	respectively,	with	an	average	
value	over	5.8	x	105	 times	 lower	than	the	value	 found	for	
dimethoxy-BAPTA.	 The	 decrease	 in	 affinity	 confirms	 that	
the	PPG	effectively	disrupts	chelation	as	it	occupies	one	of	
the	carboxylate	groups	on	the	dimethoxy-BAPTA.	This	sug-
gests	a	lower	binding	affinity	of	the	caged	molecules	com-
pared	to	dimethoxy-BAPTA.	
	

Figure	3.	Data	for	the	spectrophotometric	titration	of	47.6	
µM	aqueous	solution	of	1,2,	and	3	with	0.225	µM	of	CaCl2	to	
determine	Ca2+	binding	affinity.		
A	preliminary	computational	investigation	of	the	affinity	of	
each	of	the	cages	to	Ca2+	was	conducted	using	density	func-
tional	theory	calculations.	All	calculations	were	performed	
in	gas	phase	using	the	PBEh-3c	composite	method	as	imple-
mented	 in	 the	Q-Chem	software.58,59	The	binding	energies	
between	Ca2+	and	each	cage,	as	well	as	dimethoxy-BAPTA,	
were	 calculated	 using	 optimized	 geometries	 of	 the	
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complexes	and	the	unbound	molecules.	Results	show	that	
the	three	cages	have	binding	energies	to	Ca2+	that	are	very	
similar	to	each	other:	1:	–669.	kcal/mol,	2:	–669.	kcal/mol,	
and	3:	–673.	kcal/mol.	Dimethoxy-BAPTA	alone,	however,	
has	a	calculated	binding	energy	to	Ca2+	of	–815.	kcal/mol,	
which	is	at	least	142	kcal/mol	stronger	than	for	each	of	the	
three	cages	(Figure	4).	These	results	align	with	the	experi-
mental	binding	efficiencies	reported	above	and	help	explain	
the	observed	105	times	difference	in	Ca2+	affinity	between	
the	caged	molecules	and	dimethoxy-BAPTA.	The	structural	
analysis	 reveals	 that	 the	 complex	 formed	 by	 dimethoxy-
BAPTA	is	octa-dentate,	with	four	atoms	in	the	first	shell	of	
vdW	 radii	 at	 2.30±0.05	 Å	 from	 the	 central	 Ca2+	 and	 four	
other	atoms	 in	 the	second	shell	 at	3.00±0.05	Å.	The	com-
plexes	 formed	by	1,	2,	and	3	are	effectively	hepta-coordi-
nated,	with	three	oxygen	atoms	at	2.23±0.03	Å	and	the	three	
remaining	oxygen	atoms	at	distances	ranging	from	2.37	to	
3.05	Å,	one	nitrogen	atom	at	2.70±0.05	Å,	and	the	second	
nitrogen	atom	at	3.37±0.20	Å,	a	distance	that	is	outside	the	
second	 complexation	 shell.	 The	 computational	 results	 for	
the	binding	distances	and	partial	 charges	of	all	molecules	
are	reported	in	the	Supporting	Information.	

	
Figure	 4.	 Binding	 energies	 of	 the	 caged	 molecules	 com-
pared	 to	 dimethoxy-BAPTA	using	 the	 PBEh-3c	 composite	
method.	
We	also	noted	that	the	three	thiocoumarin	scaffolds	exhib-
ited	 high	 fluorescence	 activity,	 enabling	 broader	

application.	 Due	 to	 their	 fluorescence	 capabilities,	 these	
caged	molecules	are	viable	for	use	as	fluorophores	in	future	
biochemical	investigation.27,60-62	For	example,	fluorophores	
integrating	these	thiocoumarin	scaffolds	can	be	used	for	ob-
serving	 the	 dynamics	 of	 enzymes	 and	 their	 interactions	
within	 the	 biosystem	 via	 real-time	 fluorescence	 imag-
ing.28,29,63	Laser	scanning	confocal	microscopy	was	used	for	
high-resolution	fluorescence	 imaging	of	all	 three	cages	on	
exact	planes,	allowing	for	better	overall	object	visualization.	
We	analyzed	 the	3D	planes	and	depth	of	 the	 caged	mole-
cules	by	stacking	several	images	from	different	optical	lev-
els.	The	data	from	this	analysis	is	included	in	the	Supporting	
Information.	 Four	 different	 wavelengths	 were	 utilized	 in	
the	 emission	 parameters,	 allowing	 for	 the	 observation	 of	
fluorescence	active	sites	with	varying	emission	colors.	The	
caged	 dimethoxy-BAPTA	 complex	 exhibits	 high	 fluores-
cence	activity,	yet	the	thiocoumarin	PPG	alone	only	demon-
strates	a	fraction	of	the	same	fluorescence	output.	In	the	bi-
ological	 analysis	of	 these	 chelators,	 this	difference	 can	be	
exploited	for	tracking	the	caged	or	uncaged	state	of	the	di-
methoxy-BAPTA	moiety.	

	
Figure	5.	Images	of	1,	2,	and	3	with	4-Line	Solid	State	Laser	
Confocal	 System	 with	 Nikon	 Eclipse	 Ti2	 Inverted	 Micro-
scope.	The	sample	was	excited	with	the	laser	at	(a)	405	nm,	
(b)	488	nm,	(c)	561	nm,	and	(d)	640	nm	wavelengths,	and	
the	emission	was	observed	at	424–483	nm,	502–522	nm,	
552–581	nm,	and	655-688	nm	respectively.	
In	summary,	we	developed	 three	blue-light-activated	Ca2+	
chelators	with	quantum	yields	of	0.39,	0.52,	and	0.83.	These	
molecules	are	the	first	Ca2+	chelators	in	literature	to	be	acti-
vated	 by	 visible	 light.	 The	 7-aziridin-4-thiocoumarin-
BAPTA,	3,	had	the	highest	reported	quantum	efficiency	of	
the	three	synthesized	chelators.	Furthermore,	binding	affin-
ity	of	the	blue	light-released	dimethoxy-BAPTA	was	nearly	
a	million	 times	 greater	 than	 that	 of	 the	 caged	molecules.	
These	three	new	caged	Ca2+	chelators	represent	safer	and	
more	efficient	options	with	strong	potential	for	future	use	
in	neuroscientific	 research	and	medicine.45-48	We	are	 cur-
rently	 collaborating	with	 neuroscientists	 who	 are	 testing	
the	 biological	 functionality	 of	 these	 photoreleasable	 Ca2+	
chelators.	
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Data Availability Statement 
The	data	underlying	this	study	is	available	in	the	published	ar-
ticle	and	its	Supporting	Information.	
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