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Abstract

Recently Lu and Gao [J. Phys. Chem. Lett. 13, 33, 7762-7769 (2022)] published a

new, rigorous density functional theory for excited states and proved that the projection

of the kinetic and electron repulsion operators into the subspace of the lowest electronic

states are a universal functional of the matrix density D(r). This is the first attempt

to find an approximation to the multistate universal functional F [D(r)]. It is shown

that F (i) does not explicitly depend on the number of electronic states and (ii) is an

analytic matrix functional. The Thomas-Fermi-Dirac-von Weizsäcker model and the

correlation energy of the homogeneous electron gas are turned into matrix functionals

guided by two principles: That each matrix functional should transform properly under

basis set transformations, and that the ground state functional should be recovered for

a single electronic state. Lieb-Oxford-like bounds on the average kinetic and electron

repulsion energies in the subspace are given. When evaluated on the numerically exact

matrix density of LiF, this simple approximation reproduces the matrix elements of the

electron repulsion operator in the basis of the exact eigenstates accurately for all bond

lengths. In particular the off-diagonal elements of the effective Hamiltonian that come

from the interactions of different electronic states can be calculated with the same or

better accuracy than the diagonal elements. Unsurprisingly, the largest error comes

from the kinetic energy functional. More exact conditions that constrain the functional

form of F are needed to go beyond the local density approximation.
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1 Introduction

Kohn-Sham (KS) density functional theory (DFT)1,2 is probably the single most used elec-

tronic structure method in academia and industry, because it can be operated as a black

box and often gives reasonable answers without requiring excessive computational time. For

molecules, linear-response3 time-dependent4 DFT (LR-TDDFT) provides excited state prop-

erties very efficiently, but it has problems with core-excitations,5,6 doubly excited states,7

charge transfer states,8 Rydberg states8 and conical intersections to the ground state.7 Al-

though some of these issues can be fixed with tuned9 range-separated10 or projected6 hybrid

functionals or spin-flip DFT,11 whenever the electronic structure becomes more complicated,

multi-reference wavefunction-based methods have to be employed.

In wavefunction theory (WFT) near-degenerate states can be included in a multi-state

treatment through configuration interaction (CI) or multi-configurational self-consistent field

(MC-SCF). A few important configurations can capture the ”static correlation” and give a

qualitatively correct electronic structure. The remaining configurations each have a very

small weight in the wavefunction, but since there are many of them, huge CI expansions

are needed to get accurate, quantitative energies. It is the treatment of this ”dynamic

correlation” by perturbation theory or configuration interaction that makes wavefunction-

based methods so expensive. In density functional theory, on the other hand, the exchange-

correlation functional already accounts for the ”dynamic correlation”, while the ”static cor-

relation” is problematic. Since DFT is formulated in terms of the electron density rather

than wavefunctions, it is not clear how to compute the interaction of states, which gives

the off-diagonal elements in some effective Hamiltonian. The central question in this article

therefore is the following: How does one get the off-diagonal matrix elements for treating

static correlation with DFT in a configuration-interaction-like manner?

The development of a multi-configurational and time-independent, variational DFT is

an active research area, but a far cry from the established TD-DFT. A number of vari-

ational density-functional theories for excited states have been formulated, most notably
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Theophilou’s subspace DFT,12 Gross-Oliveira-Kohn ensemble DFT13 and Levy & Nagy’s

variational DFT for individual excited states.14 In those theories, the universal excited-state

functional depends on additional parameters apart from an electronic density, which allow to

distinguish between the excited state and the ground state: In ensemble density functional

theory13,15 there is a dependence on a vector of ensemble weights and Levy & Nagy’s excited

state functional14 depends on both the excited and the ground state densities. In addi-

tion the functionals seem to depend on the number of electronic states, so that a different

functional would be needed for 2,3 etc. states: In ensemble DFT the length of the weight

vector changes with the number of states N ; in Levy and Nagy’s theory the constrained

search in Eqn.(2) of Ref.14 is over all wavefunctions that are orthogonal to the first N − 1

states, which introduces an implicit dependence on N . In Görling’s Kohn-Sham formalism

for excited states the functionals depends on the ground state density and the index of the

excited state.16 Ayers showed that the Coulomb interaction is special, because the density

of an excited state of a Coulombic system also encodes the excitation level, so that no ad-

ditional parameters are needed.17 The universal functional for any electronic state depends

only on the electronic density, provided that the external potential is Coulombic.17 However,

although the existence of those universal functionals can be proven, it is not clear how to

approximate them for practical calculations and if or how they differ from the ground state

functional.

Most publications on time-independent DFT are formal. They derive their value from

providing justification for the use of some simpler theory such as ∆SCF which employs a

ground state functional. Numerical calculations using variational DFT methods are rare and

usually reuse the ground state functional. Pastorczak at al. tested ensemble DFT methods

on small molecules using ground state functionals or exact exchange with self- and ghost-

interaction corrections.18 They found that the corrections do not necessarily improve the

energies and that ensemble DFT cannot compete with TD-DFT in terms of accuracy.18

Multistate density functional theory (MSDFT)19 predates the rigorous theorems of Lu
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and Gao20 that establish a existence of a universal functional of the matrix density. Orig-

inally MSDFT was developed as a hybrid between DFT and wavefunction theory (WFT)

for treating multiconfigurational problems that combines the best of both worlds. Dynamic

correlation is incorporated into the configurations by DFT, while static correlation is ac-

counted for by letting the configurations interact. Diagonalizing an effective Hamiltonian

leads to the adiabatic eigenstates. MSDFT is akin to multiconfigurational wavefunction-

based methods such MCSCF or multireference configuration interaction (MRCI), but has

the advantage that only a minimal number of configurations is needed21 since DFT is very

good at handling the dynamic correlation.22 The coupling between the configurations is ap-

proximated by the matrix elements of the configurations (the WFT part) and a transition

density functional (TDF),24 has been approximated as the overlap-weighted average corre-

lation energy of the interacting states,25 ETDF
c [ρAB] = 1

2
SAB

(
EKS
c [ρA] + EKS

c [ρB]
)
, or by the

multiplet-sum method23,26 that allows to determine the coupling rigorously from the require-

ment that states in a multiplet (same total spin but different spin projections) are degenerate

in the absence of a magnetic field. These approximations make use of existing, Kohn-Sham

density functional approximations (DFA) for the ground state and are born out by encour-

aging benchmark calculations.27 But in view of Lu and Gao’s multistate equivalent of the

Hohenberg-Kohn theorem, which states that there is a one-to-one correspondence between

the matrix density of the lowest few states and the Hamiltonian matrix, it is clear that ETDF
c

cannot be a functional of a individual state densities ρA, ρB or the transition density ρAB.

Therefore Lu and Gao replaced the transition density functional by a multistate correlation

matrix functional Ec[D], which depends on the whole matrix density D(r) rather than on

the individual state or transition densities.21 However, because all the complexity is packed

into one functional, it is difficult to reason about the properties of Ec.

Another approach for combining WFT and DFT is multiconfiguration pair-density func-

tional theory (MC-PDFT).28 It uses CASSCF wavefunctions to calculate the kinetic energy,

nuclear attraction and direct part of the electron-electron repulsion energy, while the in-
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direct part is computed from the one-particle density and the on-top pair density using a

new type of density functional. In this way double counting of the correlation energy is

avoided. Double counting can also be avoided by splitting the Coulomb interaction into a

short- and a long-range part and treating the first with DFT and the latter with WFT.22 A

variational version of pair-density functional theory has been published recently.29 Although

the exact pair-density functional, if it even exists, is unknown, ground state functionals of

the total density and spin polarization can be ”translated” into functionals of the total den-

sity and on-top pair density.28 When states interact strongly around conical intersections or

avoided crossings, they cannot be calculated separately as this can lead to spurious crossings

of potential energy surfaces.30 State-interaction pair-density functional theory (SI-PDFT)30

remedies this problem by diagonalizing the effective Hamiltonian in a final step. The di-

agonal elements of the Hamiltonian come from MC-PDFT calculations for each state using

the translated functional. For lack of a prescription for the off-diagonal Hamiltonian matrix

elements in the DFT framework, a kind of diabatization scheme is employed to get non-zero

couplings between the states.30 A later multistate (MS) version of PDFT, called VMS-PDFT

(V for variational), determines the unitary transformation from the SA-CASSCF wavefunc-

tions to a set of intermediate states, which give rise to off-diagonal couplings, by maximizing

the trace of the effective Hamiltonian.31 The dependence of the trace on the basis transfor-

mation is an artifact of making different approximations to the diagonal and off-diagonal

elements. Sand et al. state that ”the evaluation of off-diagonal elements in an effective

Hamiltonian is not well-defined, as no density functional that couples two interacting states

is available”.30 The purpose of this artice is to show that it is indeed possible to obtain

off-diagonal elements with the help of matrix density functional theory, and that it is not

necessary to treat diagonal and off-diagonal elements differently.

In general, existing variational DFT methods suffer from the lack of a clear route to

designing new functionals that go beyond repurposing existing KS-DFT functionals. The

other open question is how to compute matrix elements for state interactions consistently
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with density functional theory.

The rigorous, multistate DFT (MSDFT) theory by Lu and Gao20 might provide answers

to those questions. First of all, the universal functional only depends on a matrix represen-

tation of the one-particle density operator, the matrix density. The matrix density contains

the densities of the electronic states on the diagonal and the transition densities between

them in the off-diagonal elements. It represents the electron density operator in a subspace

of electronic states. It should not be confused with the density matrix of a single electronic

state. Each matrix element is a function of space. And although the number of rows and

columns of the matrix density is equal to the number of electronic states that are considered,

I will argue that the functional of Lu and Gao does not depend on the number of states,

because it is an analytic matrix functional. This property suggests a simple path to an ap-

proximate multistate functional: by retaining the functional form of an approximate ground

state functional and replacing the scalar density with the matrix density.32 The universal

matrix functional provides not only the state energies but also the off-diagonal elements

of the Hamiltonian. MSDFT resembles the state-averaged MCSCF of wavefunction theory,

however, it is formulated in terms of electron densities and transition densities rather than

wavefunctions. The interaction between states is more transparent than in ensemble DFT,

where the densities of the individual states are combined into a single ensemble density,

whose physical meaning is not so obvious.

Outline of the article: Section 1.1 summarizes Lu and Gao’s theorems and highlights

the importance of how the universal functional transforms under a change of basis. The basic

recipe for translating ground state Kohn-Sham functionals into matrix density functionals

by repurposing the coefficients of their Taylor series and the limitations of this approach

are outlined in section 1.2. This idea only works if the universal functional F [D(r)] has

certain mathematical properties: Section 2.1 introduces the term analytic matrix functional

to characterize F and sketches a proof that F [D(r)] does not explicitly depend on the

dimension of the subspace, i.e. the dimension of the matrix D(r). In section 2.2 a local
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density approximation to the universal functional is presented. The approximate functional

is tested on the avoided crossing in LiF (section 3) and section 4 concludes.

Proofs of the lower bounds on the average kinetic and electron-repulsion energies in terms

of the subspace density are relegated to section 5 of the supporting information.

1.1 Rigorous MSDFT: Lu & Gao’s Theorems

Recently Lu and Gao20 published a new, rigorous density functional theory for excited states,

in which the ground and excited states are treated on an equal footing. The fundamental

variable is the projection of the one-particle density operator ρ̂(r) =
∑n

a=1 δ(r̂a − r) on the

subspace VN of the lowest N eigenstates, where r̂a is the position operator of electron a

and the sum goes over all a = 1, . . . , n electrons. The role of the scalar density ρ(r) from

the Hohenberg-Kohn theorem is taken by the multistate matrix density D(r), which is a

matrix function of position r having the state densities DII(r) = ρI(r) on its diagonal and

the transition densities DIJ(r) = 〈ΨI |
∑n

a=1 δ(r̂a − r)|ΨJ〉 on the off-diagonal. Building on

Theophilou’s theorem,12 which states that the subspace of the lowest N electronic states is

uniquely determined by the average density of those states, Lu and Gao prove two theorems

that give access to the individual eigenenergies:

(1) Firstly they showed that the projection of the Hamiltonian operator onto the subspace

VN is a functional H[D(r)] of the matrix density D(r),33

H[D(r)] = F [D(r)] +

∫
d3r v(r)D(r). (1)

This multi-state analogue of the Hohenberg-Kohn theorem states that the Hamiltonian can

be split into an external potential (the attractive nuclear potential v(r) which differs for each

molecule) and a universal functional F [D(r)] for the electronic kinetic energy and electron-

electron repulsion (that is the same for all systems).

An important consequence of the fact that both D(r) and H[D(r)] are projections of op-
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erators onto the same subspace, is that the universal matrix functional transforms bilinearly

under a change of basis within the subspace.34 If the states in the subspace are transformed

as |Ψ′I〉 =
∑N

J=1 L
∗
IJ |ΨJ〉, the matrix density in the new basis becomes D′(r) = LD(r)L†,

and the Hamiltonian becomes H′ = LHL†. Consequently the universal functional has to

transform as20

F [LD(r)L†] = LF [D(r)]L† (2)

under a basis transformation L with L−1 = L†. Note that D(r) is an N ×N matrix function

of r, but the basis transformation L is just an N ×N matrix.

(2) Secondly Lu and Gao formulated a variational principle for finding the exact D(r),

which is a consequence of theorem 2 of Theophilou’s subspace DFT.12 Let the N orthonormal

trial vectors Ψ′I span the subspace VN ′
. Then the average subspace energy, the multistate

(MS) energy in the notation of Lu and Gao,

EMS[{Ψ′I}] =
1

N

N∑
I=1

〈Ψ′I |Ĥ|Ψ′I〉, (3)

of the trial space is larger or equal than the subspace energy of the exact subspace (which

is spanned by the exact lowest N eigenstates ΨI), EMS[VN ] ≤ EMS[VN ′
]. Since according to

Theophilou’s theorems 3 to 5 the subspace is uniquely determined by the subspace density,

ρVN (r) = 1
N

∑N
I=1DII(r), it follows (theorem 2 of Lu and Gao20) that the multistate energy of

any trial matrix density D′(r) is larger or equal to the exact multistate energy, EMS[D(r)] ≤

EMS[D′(r)].

The equality holds when the subspaces are the same VN = VN ′
, in which case D′(r) and

the exact D(r) as well as the Hamiltonians H′ = H[D′(r)] and the exact H[D(r)], respec-

tively, differ only by a basis transformation within the subspace. Therefore the subspace of

the lowest eigenstates can be found by minimizing EMS[D(r)] as a functional of D(r). Since

the Hamiltonian in the basis of the eigenstates should be diagonal, the eigenenergies can be

obtained by diagonalizing the N ×N matrix H[D(r)].
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The significance of the theorems by Lu and Gao is not so much the existence of the map-

ping D(r)→ H (which is already guaranteed by the HK theorem16) but that their universal

matrix functional has the transformation property 2. This restricts the structure of the

universal functional and gives some hints on how it can be approximated. It constrains the

search for matrix functionals to the class of analytic matrix functionals, as will be explained

later on. It also implies that its functional form is independent of the number of states in

the subspace, so that the same functional holds for N states or for a single state 1.

1.2 Basic Idea of Translating KS Functionals for MSDFT

An important open question is how to find approximate multistate density functionals. In

a preprint on Chemrxiv32 Lu and Gao mention that a local ground state functional can be

turned into a matrix functional by applying it to the eigenvalues of the matrix density. I

wish to investigate this idea further.

In the local density approximation (LDA) the exchange-correlation and kinetic energy

functionals of the density ρ(r), Exc[ρ] and T [ρ], respectively, are approximated by integrals

over functions,

Exc[ρ(r)] =

∫
d3r εxc(ρ(r)), (4)

T [ρ(r)] =

∫
d3 t(ρ(r)). (5)

The exchange-correlation energy density εxc(ρ) and the kinetic energy density t(ρ) are func-

tions of a scalar variable. Let us call such a function f : R 7→ R. Assuming that f is an

analytic function, so that all the derivatives f (k)(ρ) = dkf
dρk

exist, f can be expanded in a

Taylor series around ρ = 0,

f(ρ) =
∞∑
k=0

1

k!
f (k)(0)ρk. (6)

Now it is easy to turn the function f(ρ) into a matrix function f(D) : RN×N 7→ RN×N of the
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matrix density D, by taking the coefficients of the Taylor series and replacing ρ by D,

f(D) =
∞∑
k=0

1

k!
f (k)(0)Dk, (7)

where Dk = D ·D · . . . ·D︸ ︷︷ ︸
k times

is the k-th matrix power. The corresponding LDA matrix func-

tional F [D] becomes

F [D(r)] =

∫
d3r f(D(r)). (8)

A matrix function can simply be computed by applying the scalar function to each of its

eigenvalues, but the definition via the Taylor series generalizes more easily to the multivariate

case.

If the scalar functional F [ρ] only depends on the total electronic densities (summed

over spins), as in the LDA, this procedure determines a unique matrix functional F [D].

However, to account for inhomogeneity or spin-polarization, the energy density function has

to depend on multiple arguments. For example, the exchange-correlation energy density in

the generalized gradient approximation (GGA), εxc(ρ(r),∇ρ(r)), or the von-Weizsäcker (vW)

kinetic energy density tvW(ρ(r),∇ρ(r)) are functions of both the density and its gradient.

To translate a function f(ρ,∇ρ) into a matrix function f(D,∇D), we follow the same recipe

as for the single variable case, and expand f into a multivariate Taylor series. Denoting

the partial derivatives by f (m,n) = ∂m+nf
∂ρm(∇ρ)n (0, 0), the first few terms of the series around

(ρ,∇ρ) = (0, 0) are,

f(ρ,∇ρ) = f(0, 0) + f (1,0) ρ+ f (0,1) ∇ρ+
1

2
f (1,1) ρ(∇ρ) + . . . . (9)

When substituting the matrices D,∇D for the scalar variables ρ,∇ρ, ambiguities arise,

because in matrix multiplication the order of the factors matters. It is not clear, for instance,

if the term ρ(∇ρ) should be replaced by D · ∇D or by ∇D ·D or the average of the two.

Since D(r) and ∇D(r) do not commute, [D(r),∇D(r)] 6= 0, any order of factors will give a
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different matrix functional.

Similar ambiguities arise with the local spin-density approximation (LSDA), where εxc(ρ
↑(r), ρ↓(r))

depends on the spin-up and spin-down densities, since the matrix densities for different elec-

tron spins in general do not commute, [D↑(r),D↓(r)] 6= 0.

One sees that from one multivariate ground state functional an infinite number of matrix-

density functionals can be derived. The indeterminacy can be reduced to some extent by

enforcing known properties of the exact multistate functional. For example, the multistate-

equivalent of the von-Weizsäcker kinetic energy functional should yield the exact kinetic

energy matrix for one-electron systems.

2 Theory

In the following the subscripts a, b = 1, . . . , n enumerate electrons, Latin captial letters

I, J,K, L = 1, . . . , N enumerate electronic states in the subspace. Superscripts α,β denote

the electronic spin. Atomic units are used throughout.

2.1 Properties of the Matrix Density Functional.

The transformation property 2 implies that F is an analytic matrix functional . As we

know, an analytic function of a scalar variable, f(z) : C → C is defined by its Taylor series

around some point z0:

f(z) =
∞∑
k=0

f (k)

k!
(z − z0)k (10)

With the help of the Taylor series the scalar function can be turned into a analytic matrix

function, f(Z) : CN×N → CN×N , where the product of complex numbers is replaced by the

matrix product

f(Z) =
∞∑
k=0

f (k)

k!
(Z− z0I)k (11)
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where I is the identity matrix. If the Taylor series converges everywhere, we can expand

around z0 = 0 without loss of generality. The coefficients f (k) are independent of the matrix

dimension. Under a similarity transformation, an analytic matrix function behaves as

f(LZL−1) =
∞∑
k=0

f (k)

k!
(LZL−1)k = Lf(Z)L−1, (12)

since (LZL−1)k = LZ(L−1L)ZL−1 · · · = LZkL−1. The definitions of analytic matrix func-

tions in terms of a Taylor series or the transformation property are equivalent.35 An analytic

matrix functional F [D(r)] : (L1)N×N → CN×N takes a matrix of L1-integrable functions,

which depend on the 3-dimensional spatial coordinate vector r, as an argument. Because of

the transformation property 2 the series expansion of the matrix density functional F [D(r)]

is constrained to have the form

F [D(r)] =
∞∑
k=0

1

k!

∫
d3r1d

3r2 · · · d3rk

f (k)(r1, . . . , rk;N (r), tr(D(r)), . . .)D(r1)D(r2) · · ·D(rk)

(13)

The coefficients f (k) are scalar functions and the matrix density occurs either as a ma-

trix product or in scalar quantities that are invariant under basis transformations, such as

the trace tr(D(r)). The transformation property does not exclude the possibility that the

functional depends implicitly on the dimension of the subspace, which can be expressed as

N (r) = tr{D(r)D−1(r)} and therefore is also a functional of the matrix density.

F [D(r)] does not depend on the subspace dimension. Although an analytic matrix

functional can accept a matrix density of any dimension, it is not immediately obvious that

the functional has to be the same independently of the dimension of the subspace. The

ensemble density functional theory of Gross, Oliveira and Kohn13,15 certainly depends on

the weights of the states, so that there is a different functional for an ensemble of 2,3,4,...

states. It is conceivable that a similar dependence on the subspace dimension exists for the

matrix density functional F [D(r)]. However, the following considerations (which falls short
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of a rigorous proof) suggests that this is not the case and that the same matrix functional

applies to all subspace dimensions: Let us suppose that the matrix functional could be

different and denote the functional for a subspace with dimension N as F (N). Let v(r) be

the external potential (for instance the Coulomb attraction to the nuclei in a molecule) that

is localized around the origin O. v(r) decays like ∝ −1
r

or faster with distance. A copy of the

same nuclei is put at a distant point R, so that the total external potential is v(r)+v(r−R)

as shown in Fig. S1 of the SI.

VN
O is the subspace spanned by N bound, electronic wavefunctions (not necessarily eigen-

states) that are localized around the origin O. These wavefunctions decay exponentially with

distance.36 VN
R is spanned by the same wavefunctions rigidly translated to the center R. A

subspace of twice the dimension is formed by combining the subspaces of the left and right

molecules, V2N = VN
O ∪ VN

R. Because of the large distance R, the transition densities be-

tween states localized at O and those at R vanish. The state densities and transition densities

among the states localized on the same molecule are the same for both moleules except for a

rigid shift. The matrix density for the combined subspace therefore consists of two blocks of

size N , each, D(2N)(r) = D(N)(r)⊕D(N)(r−R). As the distance between the two molecules

is increased (R→∞), the matrix elements of the Hamiltonian vanishes, 〈ΨA|Ĥ|ΨB〉 → 0, if

the wavefunctions ΨA and ΨB are localized on different molecules. The matrix elements of

the kinetic energy decrease exponentially, 〈ΨA|T̂ |ΨB〉 ∝ exp(−αR), for the Coulomb opera-

tor the decrease is like 〈ΨA|Ŵ |ΨB〉 ∝ 1
R

. Therefore, in the limit R→∞, the universal part

of the Hamiltonian in the subspace V(2N) is just block-diagonal, Ĥ
(2N)
0 = Ĥ(N) ⊕ Ĥ(N). The

projection of Ĥ0 into the combined subspace V(2N) is a functional of the matrix density D(2N),

and the Hamiltonians in the individual subspaces V(N)
O and V(N)

R are functionals of the matrix

densities D(N)(r) and D(N)(r−R), respectively. Furthermore the universal functional should

be translationally invariant, so that F (N)[D(N)(r−R)] = F (N)[D(N)(r)] = H
(N)
0 . Therefore

the following relation holds between the functionals F (2N) and F (N):
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F (2N)


D(N)(r) 0

0 D(N)(r−R)


 =

H
(N)
0 0

0 H
(N)
0

 =

F (N)[D(r)] 0

0 F (N)[D(r)]


(14)

The plan is to plug the functional series expansion of Eqn. 13 into Eqn. 14 in order to

work out the relation between the functional F (2N) and F (N). A priori it is assumed that the

functional could be different for different subspace dimensions. It will be shown that this is

not the case. However, Eqn. 14 is not yet in a suitable form to compare the two functionals,

since on its LHS the functional F (2N) operates on a matrix density of dimension 2N , while on

the RHS the arguments of the functional F (N) have dimension N . So we have to transform

the expession in such a way, that F (2N) operates on a matrix density of dimension N .

First some preliminaries. The functional series expansion involves integrations over three-

dimensional space. The three-dimensional space is partitioned into Voronoi polyhedra. Each

point r is assigned to the closest molecule,

VO = {r : |r| < |r−R|} (15)

VR = {r : |r−R| ≤ |r|} (16)

R3 = VO ∪ VR. (17)

Integration over space is split into separate integrations over the Voronoi polyhedra,

∫
R3

. . . d3r =

∫
VO

. . . d3r +

∫
VR

. . . d3r. (18)

Since the wavefunctions are localized around the potential at either O or R, there is no

point in space where D(r) and D(r −R) are simultaneously non-zero. So dependening on

where the point r lies, the projection of the density operator in the subspace V2N has only
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one non-zero block at the top or at the bottom:

D(2N)(r) = D(N)(r)⊕D(N)(r−R) =


D(N)(r)⊕ 0 if r ∈ VO

0⊕D(N)(r−R) if r ∈ VR
(19)

If the functional should depend implicitly on the subspace dimension, the number of elec-

tronic states has to be expressed as a functional of the matrix density. One way to do this

is

N (r) = tr
{
D(r)D−1(r)

}
. (20)

If at some point the matrix density does not have full rank and therefore is not invertible, the

pseudinverse is used instead of the inverse. N (r) always equals the rank of the matrix density.

Since D(2N)(r) has at most rank N (the number of wavefunctions that are simultaneously

non-zero is at most N),

N (2N)(r) =

 N (N)(r) if r ∈ VO

N (N)(r−R) if r ∈ VR.

 (21)

By using the series expansion 13 for F (2N)[D(2N)(r)], splitting the integration volume

into the Voronoi polyhedra, using relations 19 and 21 and the translational invariance, it

can be shown (see Eqn. SI-21 in the SI for details) that F (2N)[D(2N)(r)] = F (2N)[D(N)(r)]⊕

F (2N)[D(N)(r)]. From comparison with Eqn. 14 it then follows that

F (2N)[DN(r)] = F (N)[DN(r)]. (22)

for any matrix density D(N)(r) that decays exponentially with distance. Now the dimension

of the argument is the same on both sides. The above equality suggests that the same

universal functional applies to all subspace dimensions and one can drop the superscript

and simply write F [D(r)]. For N = 1 it is equal to the ground-state kinetic and Hartree-
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exchange-correlation (Hxc) functionals,

F [ρ(r)] = T [ρ(r)] + EHxc[ρ(r)] (23)

However, deducing the exact multi-state functional from known ground-state kinetic-energy

and Hartree-exchange-correlation functionals is not readily possible. Even if one has a closed

expression of a local functionals in term of ρ(r), it is not clear where ρ(r) has to be replaced

by the scalar tr(D(r)) and where by the matrix D(r). For N = 1, all three are the same,

i.e. ρ(r) = tr(D(r)) = D(r). Nevertheless ground-state functionals can give some guidance.

The next step is to find a multistate matrix density functional, that has the required

transformation properties and reduces to a known ground state functional for N = 1.

2.2 An Approximate Matrix Functional

The electronic Hamiltonian Ĥ = T̂ + Ŵ + V̂ consists of the kinetic energy T̂ =
∑n

a=1−
1
2
∇2
a,

the electron-electron repulsion Ŵ =
∑n

a<b
1

|r̂a−r̂b|
and the external potential V̂ =

∑n
a=1 v(ra),

where v(r) usually is the electron-nuclear attraction. While the projection of the external

potential into any subspace is trivially a functional of the matrix density of that subspace,

V [D(r)]IJ = 〈ΨI |V̂ |ΨJ〉 =

∫
d3r v(r)DIJ(r), (24)

the functionals for T̂ and Ŵ have to be approximated. The kinetic energy multistate func-

tional T[D] will be derived from the Thomas-Fermi and von-Weizsäcker ground state func-

tionals. The electron-electron repulsion is split into a Hartree-like direct term J[D], a Dirac-

like exchange term −KLDA[D], a correlation-like term CLDA[D] based on Chachiyo’s fit to

the correlation energy of the homogeneous electron gas and a self-interaction correction for

the core electrons. Each functional of the matrix density behaves properly under basis trans-

formations of the state vectors. Auxiliary basis states are not used to compute any parts of

the Hamiltonian. Let us start with the electron-electron repulsion.
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2.2.1 Electron Repulsion Functional

The matrix element of the electron repulsion operator,
∑n

a<b 1/|ra − rb|, between two elec-

tronic states ΨI and ΨJ with n electrons is

WIJ =

∫
dx1

∫
dx2 . . .

∫
dxn Ψ∗I(x1,x2, . . . ,xn)

n∑
a<b

1

|ra − rb|
ΨJ(x1,x2, . . . ,xn), (25)

where xa = (ra, σa) are the spatial and spin coordinates of electron a. Because of the

requirement that W [D]IJ is an analytic matrix functional, the Hartree-like term

J[D] =
1

2

∫ ∫ ′ D(r)D(r′)

|r− r′|
(26)

contains a matrix product that mixes the electron density of a single state, DII(r), with the

transition densities DIJ(r′) (I 6= J). The electrostatic energy of a single excited state, which

has a classical interpretation, cannot be calculated in isolation. It depends on the transition

densities, which have no classical analogue. Only if the transition densities to other states

in the selected subspace vanish everywhere, can the state be treated in isolation.

The exchange-like term in the local density approximation (LDA)38,39

KLDA[D] = Cx

∫
(D(r))4/3 d3r, Cx = 0.7386 (27)

or in the local spin density approximation (LSDA),40

KLSDA[Dα,Dβ] = 21/3Cx

∫
(Dα(r))4/3 + (Dβ(r))4/3 d3r, (28)

involves a fractional matrix power of the matrix density, (Dα)4/3. It is important to stress

that this is different from applying the function •4/3 to each element of the matrix. The

best way to actually compute a matrix function such as the fractional power, is to first

do a spectral decomposition of the matrix density at each point in space. Let Λ(r) =
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diag (λ1(r), λ2(r), . . . , λN(r)) be the diagonal matrix of eigenvalues of D(r), which is a func-

tion of the point in space r. The corresponding orthonormalized eigenvectors are the columns

of the unitary matrix U(r) satisfying U†(r)U(r) = IN×N , ∀r. Then the eigendecomposition

of D(r) is

D(r) = U(r)Λ(r)U†(r) (29)

Note that eigenvalues and eigenvectors are functions of space. And the fractional matrix

power is

D4/3(r) = U(r)Λ4/3(r)U†(r). (30)

In general any analytic scalar function f : C 7→ C can be converted into an analytic matrix

function F[D] : CN×N 7→ CN×N by applying f to the eigenvalues of D. Actually applying

the ground state exchange functional element-wise is not even possible, since the transition

density DIJ(r) can be negative. For negative arguments the fractional power is not uniquely

defined. This problem does not occur for the fractional matrix power, since the matrix

density is positive definite, so that all eigenvalues are positive everywhere.

Let us move on to the correlation energy. The Chachiyo functional41 is a simple and

elegant parametrization of the correlation energy per electron. It recovers the high-density

limit and fits the quantum Monte-Carlo results of Ceperley and Alder 42 rather well. In

terms of the Wigner-Seitz radius rs = (4π/3ρ)−1/3 the correlation energy per particle is

given by εcorr(ρ) = a log(1 + br−1s + br−2s ). Since εcorr is an analytic function of the electron

density it can be turned into a multistate functional by retaining the functional form and

replacing the scalar density argument ρ = ρα + ρβ with the matrix density D = Dα + Dβ.

Considering only the paramagnetic part of the correlation energy, the multistate extension of

the Chachiyo correlation functional (Eqn. 8 in Ref.41) can be written in the following form:

CLDA[D] =

∫
a log

(
1 +b1D

1/3(r) + b2D
2/3(r)

)
D(r) d3r (31)
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with the parameters

a =
log(2)− 1

2π2
= −0.01554534543482745 (32)

b = 20.4562557 (paramagnetic case) (33)

b1 = (4π/3)1/3 b = 32.975319597703546 (34)

b2 = (4π/3)2/3 b = 53.155949872619715. (35)

The integrand of Eqn. 31, the correlation energy density, is calculated by diagonalizing D,

applying the function f(D) = a log(1+b1D
1/3+b2D

2/3)D to the eigenvalues and transforming

the result back from the eigenbasis to the original basis. For a single electronic state Eqn. 31

reduces to the correlation energy of the local density approximation. This functional only

evaluates the paramagnetic part of the correlation energy, the spin polarization is assumed

to be zero. For closed-shell molecules the diagonal elements of the matrix density are not

spin-polarized, however the transition densities usually have a large spin-polarization. Un-

fortunately, it is not obvious how to turn the spin polarization ζ = (ρα−ρβ)/ρ into a matrix

functional. With spin polarization the matrix functional would have to depend on two ma-

trix densities, Dα + Dβ and Dα−Dβ, which do not commute. The correlation energy of the

uniform electron gas is always negative. For medium and low densities (0.5 ≤ rs ≤ 10.0), the

ratio of ferromagnetic to paramagnetic correlation energy is approximately 1.1, see Fig. S2

in the Supporting Information (SI). So by neglecting the difference between paramagnetic

and ferromagnetic correlation we incur an error of approximately 10%.

The functional form of the Hartree term (Eqn. 26) for the off-diagonal elements can be

justified qualitatively as follows: Suppose for simplicity that the wavefunctions ΨI ,ΨJ , . . . in

the electronic subspace are Hartree products built from a set of orthonormal orbitals φa(r).

The electrons are assumed to be spinless and distinguishable. All wavefunctions have n− 1
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orbitals (φ1, . . . , φn−1) in common and differ only in the last orbital (φI or φJ etc.),

ΨI = φ1(r1)φ2(r2) · · ·φn−1(rn−1)φI(r) (36)

ΨJ = φ1(r1)φ2(r2) · · ·φn−1(rn−1)︸ ︷︷ ︸
”inactive”

φJ(r). (37)

The diagonal and off-diagonal parts of the matrix density for these states are

DII(r) =
∑

1≤a≤n−1

|φa(r)|2 + |φI(r)|2 (38)

and

DIJ(r) = φ∗I(r)φJ(r) I 6= J, (39)

respectively. The matrix element of the electron repulsion operator between two different

states is

WIJ =

∫
d3r1 . . .

∫
d3rn Ψ∗I(r1, r2, . . . , rn)

∑
1≤a<b≤n

1

|ra − rb|
ΨJ(r1, r2, . . . , rn)

=

∫
d3r1 . . .

∫
d3rn

∑
1≤a<b≤n

|φ1(r1)|2 . . . |φn−1(rn−1)|2φ∗I(rn)φJ(rn)

|ra − rb|

=

∫
d3r1

∫
d3r2

( ∑
1≤a≤n−1

|φa(r1)|2
)

1

|r1 − r2|
DIJ(r2)

(40)

The last equality follows because all terms that involve an integral over rn vanish since φI

and φJ are orthogonal. So WIJ is the electrostatic interaction of the transition density with

the density of the ”inactive” orbitals that are shared by all electronic states. On the other
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hand, the Hartree-term in Eqn. 26 gives

J [D]IJ =
1

2

∫
d3r1

∫
d3r2

∑
K

DIK(r1)DKJ(r2)

|r1 − r2|

=

∫ ∫
1

2
(DII(r1) +DJJ(r1))

1

|r1 − r2|
DIJ(r2) +

1

2

∑
K 6=I,J

∫ ∫
DIK(r1)

1

|r1 − r2|
DKJ(r2)

(41)

In going from the first to the second line, the terms where K is equal to I or J were

separated out. The first term in Eqn. 41 differs from the exact electron repulsion (Eqn. 40)

only by the spurious electrostatic interaction of DIJ with 1
2
(|φI |2 + |φJ |2) The additional

second term in Eqn. 41 involves the electrostatic interaction between transition densities

of I and K. It is much smaller than the first, since densitities have magnitudes on the

order of n (number of electron), while transition densities are on the order of < 1. The

additional term is needed to ensure that J[D(r)] is a matrix functional of D and transforms

as J[LD(r)L−1] = LJ[D(r)]L−1 under a basis transformation of the electronic states.

For I = J the second term in Eqn. 41 is positive, so that J [D]II is larger than the

electrostatic repulsion of the state density DII alone. The trace of the Hartree-like matrix

functional is larger than the sum of the Hartree energies of the individual states,

tr(J[D]) ≥
N∑
I=1

1

2

∫ ∫ ′ DII(r)DII(r
′)

|r− r′|
. (42)

However, in the electron repulsion without correlation, J[D] −KLDA[D], this larger direct

electron repulsion is partly compensated for by the exchange part of the indirect electron

repulsion KLDA, which on average is larger than the exchange energies of the individual

electronic states,

tr(KLDA[D]) = Cx

∫
d3r tr(D4/3(r)) ≥

N∑
I=1

Cx

∫
d3r DII(r)4/3. (43)
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This is a result of Klein’s inequality43 44 and is proven in section 2.2 of the SI. The correlation

energy is left out in the comparison since it is usually an order of magnitude smaller than

the exchange energy.

2.2.2 Self-Interaction Error of Core Electrons

Many failures of the local spin density approximation can be attributed to the self-interaction

error.45 The largest part of the deviation between the exact electron repulsion W and the

MSDFT approximation J[D]−KLDA[D] + CLDA[D] does not depend on the geometry. This

suggests that it is due to the core electrons, which do not participate in the bonding. It is

known that in the core regions the self-interaction errors are particularly large (see section

D in Ref.46). We have to subtract the unphysical interaction of a core electron with itself.

An electron in a 1s spin-up (α) core orbital φα1s(r) contributes to the DFT electron repulsion

the spurious interaction of the density ρα1s(r) = |φα1s(r)|2 with itself. There is a Hartree-like

contribution,

J [ρα1s] =
1

2

∫ ∫ ′ ρα1s(r)ρα1s(r
′)

|r− r′|
, (44)

an exchange-like contribution,

−KLSDA[ρα1s] = −21/3Cx

∫
ρα1s(r)4/3, (45)

and a correlation-like contribution,

C[ρα1s] =

∫
ρα1s(r)εcorr(ρ

α
1s(r)), (46)

that have to be subtracted from the diagonal elements WII [D]. This completely removes

a single core electron’s repulsion with itself. The off-diagonal elements WIJ [D], I 6= J , do

not suffer from the self-intersection problem. The self-interaction energies from different

elements (except the very light ones like hydrogen, lithium etc.) are added. Since core
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orbitals are doubly occupied, a factor of two appears. The self-interaction correction (SIC)

is supposed to cancel the self-interaction error (SIE), so there is a minus sign in front:

SIC = −
core orbs.∑

c

2

(
1

2

∫ ∫ ′ ρc(r)ρc(r
′)

|r− r′|
− 21/3Cx

∫
ρc(r)4/3 +

∫
ρc(r)εcorr(ρc(r))

)
(47)

This self-interaction correction is not a functional of the matrix density. Like its ground state

counterpart, the multistate LDA-like functional is too simplistic to cancel the self-interaction,

so that a correction outside of the MSDFT formalism has to be employed.

The self-interaction correction is a constant that only depends on the elemental compo-

sition of the molecule, but not on the geometry and is the same for all electronic states. So

the final expression for the matrix elements of the electron repulsion in the subspace of the

lowest few electronic states is

W [D]IJ = J [D]IJ −KLDA[D]IJ + CLDA[D]IJ + SIC δIJ . (48)

2.3 Kinetic Energy Functional

The kinetic energy of a nearly-homogeneous electron gas (ρ ≈ const, ∇ρ ≈ 0) is

T [ρ] = TTF[ρ] +
1

9
TvW[ρ], (49)

with the Thomas-Fermi (TF) functional,

TTF[ρ(r)] =
3

10
(3π2)2/3

∫
ρ(r)5/3 d3r, (50)

which is exact for the free, non-interacting electron gas, and the von Weizsäcker (vW) cor-

rection,

TvW[ρ(r)] =
1

8

∫
|∇ρ(r)|2

ρ(r)
d3r, (51)
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which yields the exact kinetic energy for a single electron. The factor 1
9

in the Thomas-

Fermi-von-Weizsäcker functional of Eqn. 49 stems from the conventional gradient expansion

to second order around the homogeneous electron gas limit.47

The generalization of the Thomas-Fermi functional to multiple electronic states is ob-

tained by replacing the density ρ(r) by the matrix density D(r) and taking the fractional

matrix power D5/3(r),

TTF[D(r)]IJ =
3

10
(3π2)2/3

∫ [
D(r)5/3

]
IJ

d3r. (52)

The von-Weizsäcker functional depends on both the density and its gradient, which turn

into non-commuting matrices D and ∇D in the multistate case. The ground state functional

of Eqn. 51 does not determine the order of the factors uniquely. If the matrix inverse is placed

symmetrically between the two gradients, which form a scalar product, the multistate von-

Weizsäcker functional becomes

TvW[D(r)]IJ =

∫
d3r

1

8

∑
K

∑
L

∇DIK(r)
(
D−1(r)

)
KL
∇DKL(r). (53)

This is not the only conceivable extension. One could also use the gradient of the matrix

square root of D,

TvWsqrt[D(r)]IJ =
1

8

∫
d3r

N∑
K

∇(D1/2)IK(r)∇(D1/2)KJ(r). (54)

Since ∇D and D do not commute, ∇D1/2 · ∇D1/2 6= ∇DD−1∇D, unlike in the single-state

case, where
(
∇√ρ

)2
= ∇ρ2/ρ. For the small systems studied, equations 53 and 54 give

slightly different results, but it is not clear which one is superior. In particular neither

functional is exact for 1-electron systems. A multistate von-Weizsäcker functional that is

exact for 1-electron matrix densities is presented in section 3 of the SI.
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The kinetic functional that will be used in the Results section is taken as

T[D(r)] = TTF[D(r)] +
1

9
TvW[D(r)]. (55)

3 Results

3.1 Dissociation Curve of LiF

In Ref.20 lithium-fluoride was chosen as a test case, because it has an avoided crossing

between the lowest ionic and covalent 1Σ+ states, the position of which depends sensitively

on the balance between static and dynamic correlation. The position of the avoided crossing

(7.24 Å) can be estimated from the experimental ionization energy of lithium, the electron

affinity of fluorine and the polarizabilities of the two atoms.48 However, for MRCI or MCSCF

the prediction of the crossing is a challenge, since a large number of configurations have to

be included.48 Lu and Gao showed that MSDFT requires much less configurations than

CASSCF since the density functional incorporates most of the dynamic correlation into

the diagonal parts of the Hamiltonian.20 The dissociation curve of LiF was also studied

with state-interaction pair-density functional theory30 and constrained DFT configuration

interaction.49

The same system is used to test the LDA-like matrix density functionals described above.

Since the implementation does not yet allow to find the density that minimizes the subspace

energy, a simplified check is performed: The exact matrix density is calculated from the

exact wavefunctions and is fed into the matrix functionals for the electron-repulsion and

kinetic energy. The resulting projections of the electron-repulsion W[D] (Eqn. 48) and the

kinetic energy T[D] (Eqn. 55) into the subspace of the lowest eigenstates are then compared

with the exact values Wexact and Texact that are evaluated from the exact wavefunctions.

The exact matrix elements of the electron-repulsion are obtained by subtracting the kinetic

and nuclear-attraction matrices from the diagonal matrix containing the exact adiabatic
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eigenenergies:

W exact
IJ = Eexact

I δIJ − TIJ −
∫
v(r)DIJ(r) (56)

The exact wavefunctions are calculated with PySCF50 at the SA(2)-CASSCF level with

the aug-cc-pVQZ basis set,51–53 exploiting the Cinf v symmetry of the linear molecule and

solving only for the lowest two singlet states with 1Σ+ symmetry (irrep A1). The complete

active space consists of 6 electrons in 21 orbitals. The initial guesses for 9 a1 orbitals, 6

e1x orbitals and 6 e1y orbitals are taken from a Hartree-Fock calculation. Although the

large active space captures both static and some dynamic correlation, the avoided crossing is

underestimated at 6.8 Å. An even larger active space should shift the avoided crossing closer

to the experimental value, but the calculation would become too expensive for a desktop

computer. The exact position is of little importance. The goal is to validate the matrix

functional at the (almost) exact matrix density.

All integrals and partial derivatives of the matrix density are computed numerically

on multicenter spherical grids,54,55 the Hartree matrix is obtained by solving the Poisson

equation.56

Figure 1 shows the CASSCF potential energy curves and the matrix densities at the

experimental minimum and at the avoided crossing. With the naked eye it is difficult to

discern the small differences between the densities in different states. The matrix density is

the only input to the matrix functional. The electron-repulsion and kinetic part of the effec-

tive Hamiltonian predicted by the LDA matrix functional are shown in Fig. 2 for different

bond lengths. Figures 2a) and b) suggest that both the diagonal and off-diagonal matrix ele-

ments of the electron-repulsion operator are perfectly reproduced. After subtracting the large

Hartree term, the exchange-correlation matrix still agrees well with the exact one (Fig. 2c

and d). Table 1 shows the individual components of the functionals and the exact values at

the avoided crossing. The exchange part accounts for most of the exchange-correlation and

is approximately a factor of 10 larger than the correlation energy. This statement applies

both for the diagonal and the off-diagonal elements.
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The relative errors of the diagonal elements and the off-diagonal elements of the electron

repulsion are less than 1% and less than 5%, respectively. It is remarkable that the off-

diagonal elements WIJ , which have no equivalent in single-state density functional theory,

also match well.

Diagonal and off-diagonal matrix elements are treated on the same footing. The off-

diagonal elements emerge naturally when turning the scalar LDA functional into a matrix

functional by keeping its functional form (same coefficients in Taylor expansion) and replac-

ing the scalar density ρ(r) with the matrix density D(r). Diagonal and off-diagonal elements

are not independent of each other. A unitary rotation in the subspace of the lowest eigen-

states would mix them. Because the matrix density is represented in the adiabatic basis, the

Hamiltonian H[D(r)] is diagonal. If instead the adiabatic eigenstates 11Σ+ and 21Σ+ were

to be mixed to form diabatic states, which have ionic (Li+F−) or covalent (Li•F•) character,

the matrix functional for the Hamiltonian H[D(r)] would also give the correct diabatic state

energies and diabatic coupling H01 (to the extent possible for a simple LDA functional).

By construction, the functionals of the matrix density transform like the Hamiltonian under

rotations within the subspace.

The kinetic energy functional on the other hand disappoints (Figs. 2e and f). While the

curve of the off-diagonal element T0,1 follows the exact matrix element at least qualitatively,

the diagonal elements are wrong by more than 1 Hartree. More importantly, the kinetic

energy difference between the two states is overestimated by a factor of two. These failures

are expected in view of the known difficulties in designing kinetic energy functionals for

orbital-free DFT.57
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Figure 1: Lithium-fluoride. (a) SA-2-CASSCF(6,21)/aug-cc-pVQZ potential energy
curves for the lowest 2 singlet states with Σ+ symmetry, inset: zoom around avoided crossing.
(b,c) Visual representation of the matrix density DIJ(r) = Dα

IJ(r)+Dβ
IJ(r) of lithium-fluoride

at the experimental bond length of 1.564 Å (b) and at the avoided curve crossing (c). Di-
agonal blocks show the electronic state densities for the states 11Σ+ and 21Σ+, off-diagonal
blocks the transition density. Isovalues of 0.025 and ≈ 0.001 were used for the state densities
and the transition densities, respectively.
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Figure 2: Lithium-fluoride. Comparison between exact WFT (solid lines) and approximate
MSDFT matrix elements (dashed lines) of the total electron-electron repulsion (a,b), the
exchange-correlation (c,d) and the kinetic energy (e,f) in the basis of the adiabatic eigenstates
11Σ+ (I = 0) and 21Σ+ (I = 1). Left column: diagonal elements, Right column: off-diagonal
element.
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Table 1: Electron repulsion and kinetic energy matrices in the basis of the exact eigenstates
11Σ+ (I=0) and 21Σ+ (I=1) of LiF at the avoided crossing (6.8 Å). (a) Exact electron
repulsion matrix W exact

IJ , multistate DFT approximation W [D]IJ = J [D]IJ −KLDA[D]IJ +
CLDA[D]IJ+SICδIJ , Hartree (J [D]IJ), exchange (−KLDA[D]IJ) and correlation (CLDA[D]IJ)
matrices and self-interaction correction for core electrons (SICδIJ). (b) Exact kinetic energy
matrix T exact

IJ and multistate DFT approximation T [D]IJ = TTF[D]IJ + 1
9
TvW[D]IJ , Thomas-

Fermi (TTF[D]IJ) and von-Weizsäcker (TvW[D]IJ) kinetic energy matrices. All energies are
in Hartree.

(a) electron repulsion, matrix elements (I,J)
(0,0) (1,1) (0,1)

W exact
IJ 45.0339 46.0865 1.5754

W [D]IJ 45.0655 46.1082 1.5633

J [D]IJ 57.0469 58.1669 1.6740
−KLDA[D]IJ −10.6125 −10.6832 −0.1014
CLDA[D]IJ −0.7924 −0.7989 −0.0092

SICδIJ −0.5766 −0.5766 0

(b) kinetic energy, matrix elements (I,J)
(0,0) (1,1) (0,1)

T exact
IJ 106.8541 106.9205 0.0785

T [D]IJ 105.8242 105.9969 0.2509

TTF[D]IJ 96.8843 97.0829 0.2829
TvW[D]IJ 80.4596 80.2251 −0.2874
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4 Conclusion

The effective Hamiltonian in the subspace of the lowest electronic states is an analytic matrix

functional of the matrix density and does not depend on the number of electronic states. In

contrast to the ∆SCF method, where a ground state functional is applied to the density of

a single excited state configuration, the multistate functional yields both the energies of the

configurations and the interactions between them.

By construction the average energy of the lowest states is invariant under basis transfor-

mations within the subspace. When turning ground state functionals into multistate func-

tionals, ambiguities arise because scalar descriptors of the density become non-commuting

matrices. As illustrated for the kinetic energy (section 3 of the SI), exact conditions of the

unknown functional can help to constrain its functional form.

A simple LDA-like multistate functional was tested on the dissociation curve of LiF.

Both diagonal and off-diagonal matrix elements of the electron-electron repulsion operator

are reproduced well when the exact matrix density is used as input. The exchange-correlation

part of the state interaction is dominated by the exchange term, while correlation is an order

of magnitude smaller. The tested functional is not yet suitable for reliable calculations, but

mostly so because the errors of the diagonal kinetic energy are so huge, while the errors of

the off-diagonal elements are acceptable.

A limitation of this work is that the matrix density was not determined by minimizing

the subspace energy. Using an efficient parameterization of the matrix density58,21 multi-

configurational self-consistent field calculations with an effective Hamiltonian computed from

the multistate functional should be possible. This is left for future work.

If a good approximation to the universal mulitstate functional were known and it were

somehow possible to restrict the minimization to valid Fermionic matrix densities, the mul-

tistate DFT of Lu and Gao would open the way for studying neutral excitations in very large

systems in the spirit of orbital-free DFT.
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(58) Ref. 20, theorem (3).
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