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Abstract

Electrochemical Impedance Spectroscopy (EIS) has the potential for improved prediction of

battery performance and lifespan, but often has costly computation requirements. Current

SOC/SOH prediction methods rely on data-driven or model-based matrix approaches. In

advancing towards EIS's big data applications, we propose an efficient and unambiguous curve

feature extraction method, surpassing traditional ECM fitting.
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1. Introduction

With the burst of production of electric vehicles (EV) and the urgent need to recycle or reuse

batteries from EVs[1], it is increasingly important to determine and predict the battery

performance and life time. Many efforts have been made to incorporate big data, artificial

intelligence (AI) and machine learning into helping the determination and prediction of battery

performance [2], [3]. However, most methods for predicting battery performances only collect

data from current, voltage, and temperature, which has limited information about the battery

impedance or electrochemical properties, resulting in inaccurate predictions [4], [5]. Data fidelity,

the mix of various theories and different quality of datasets [6], is another issue that blocks the

prevalent application of big data applications in battery. Therefore, it is significant to develop

methods to collect features with a computation-efficient, information-rich, and high-fidelity

approach.

Electrochemical impedance spectroscopy (EIS) provides information about intrinsic

electrochemical behaviors and thus frequently gets adopted in battery research to understand

aging or other phenomena. EIS is also combined with machine learning to predict the battery

state of charge (SOC) and/or state of health (SOH) [7], [8], [9], [10], [11], [12], [13]. A common

way to extract information about electrochemical behaviors from EIS is to fit the Nyquist plot with

equivalent circuit models (ECM) [9], [14], [15], [16], [17], [18], [19]. Nevertheless, fitting with

ECM requires the selection of a suitable circuit model and manual input of initial values, which is

demanding for both user and computation hardware requirements. Besides ECM, some studies

apply principal component analysis (PCA) directly on the EIS data or select a few data points
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[9], [10], [11], which might lose important information. An efficient way of extracting features from

EIS is needed.

In this work, we propose a new method to extract features from EIS Nyquist plots efficiently.

Compared to traditional ECM fitting, we extract import curve features from the Nyquist plots that

are related to physical parameters in ECM. Our curve feature extraction method would allow

extracting important features from the data without initial inputs or complex fitting, which will

greatly reduce the computation redundancy and reduce data storage size >100X. This feature

extraction tool paves a path to use EIS in big data applications.

1.1 EIS feature extraction method

Nyquist plot of imaginary impedance versus real impedance was analyzed to extract features as

shown in Figure 1a and 1b. The raw data was interpolated first. The start of the tail (tailhead)

was obtained with smoothing and derivatives or manual input. The intercept with x-axis

(intercept), the maximum in y-axis (ymax), corresponding x value of ymax (xofymax) were

extracted. The slope of the tail was extracted with linear fitting on the tail. The diameter of the

semicircle was calculated with the distance between the intercept and center of the semicircle.

The center of the semicircle was obtained by finding the center of curvature with dissection at

half max and 0.75 of max. In the case of more than one semicircle at presence in Figure 1b, the

connection (shoulder) between two semicircles was found. Shape was the ratio between the

differences from center of 0.75 max and that of half max to intercept. Since there is no need for

initial inputs or complex curve fitting, this curve feature extraction only takes 0.006s for each

computation using Google Collab[20] with NVIDIA Tesla K80 with 12GB of VRAM, which is

roughly 200 faster than running an ECM fitting with impedance.py [17] and 8 times faster than

PyEIS [16].

Figure 1: a) and b) Examples of feature extraction for typical EIS Nyquist curves.
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1.2 Usage and examples

Figure 2: a) EIS Features of charging the and discharging the Ryobi pack of five 18650 cells in

series and measuring individual cells with potentiostat. b) Plot of principal components for EIS

features.

Three of 5s1p 3600mAh and 18V battery pack P180 (RBL1805) and three of 5s1p 2000mAh

and 18V P190 (ONE+ P190) were tested for the feature extraction.There were five 18650 cells

in series in each of the pack. The Ryobi pack was charged with model P135 class 2 battery

charger from Ryobi and discharged with Ryobi (P21081VNM) leaf blower for 10-20 minutes to
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partially or fully discharge the battery packs. The cells in the battery pack were tested with

potentiostat individually. This process was repeated four times, EIS of the individual cells from

the batter packs at discharged states were collected after resting the pack for at least one hour

to cool down to 25 °C. Admiral Instruments (Squidstat Plus) was used to measure the EIS. The

EIS was taken between 1MHz and 0.1 Hz with 10 mV excitation amplitude and 10 steps per

decade. As shown in Figure 2a, some features were processed again with subtraction to

compensate for the series resistance change due to electrical connection variations. There are

some correlations between certain features such as diameter and trailhead-intercept. Hence the

features were further scaled and analyzed with PCA. In Figure 2b of the two principal

components with larged mean squared errors, it is shown that the packs from the same brand

have the same trend. This example demonstrates the feasibility of using EIS and curve feature

extraction to differentiate behaviors from different battery branding: P180-2, 3 and 4 are

aggregated in the lower region for principal component 1 and 2 while P190-2 ,3, and 4 are

spread more linearly in the upper region. This result of similar branding of battery packs

showing similar trend in PCA of this computationally efficient feature extraction proves that the

curve feature extraction of EIS Nyquist plots has the potential to be used in machine learning or

other big data applications.

2. Impact overview

Unlike other EIS analysis tools, this curve feature extraction tool has the additional advantage of

being chemistry-agnostic and does not require manual input of initial values or selection of ECM

for fitting to get features. For scientists familiar with electrochemistry, it lifts the burden to

manually inspect and guess initial values for each curve. This tool also invites programmers and

data scientists to use EIS data by removing the prerequisite of electrochemical knowledge. Most

importantly, this method eliminates the ambiguity that traditional ECM fitting is faced with when

selecting different models and initial values, which allow observing battery behaviors from a

pure data-driven perspective.

Since there is no complex curve fitting in this tool, the computation is extremely efficient. It frees

the computation power from going through complex optimization. This computation-efficient

method provides the chance to generate features from batches of EIS data. The generated

features can be directly used for machine learning. This method simplifies the process to use

EIS data for machine learning studies or applications, making it possible to use EIS, such an

information-rich measurement to predict battery performances, in big data applications.
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Besides collecting EIS with advanced potentiostats in the lab environment, there are chips in

development allowing testing EIS in portable devices or incorporating into BMS [21]. The need

for computational efficient algorithms like the one covered here will be critical for these portable

EIS enabled devices/technologies to be successful in the marketplace. Incorporating EIS on

battery packs in EVs could generate more than thousands of EIS data that need analysis. With

this software tool, users would be able to generate features and conduct analysis efficiently

either through cloud-based systems or with the software integrated into regular maintenance

routines.

3. Limitations and Future Development

This software only analyzes the features from EIS Nyquist plots. Future work will incorporate

modeling Bode plots of impedance and frequency as a function of frequency. We are aware that

there could be different unique curve shapes so we plan to make the codes accommodate all

shapes.

For next development, we plan to integrate this EIS feature extraction method with typical data

from BMS including current, voltage, and temperature. Experiments to capture SOC/SOH

information together with EIS will help develop the feature extraction for prediction of SOC/SOH.
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